1 About tree-width

1-1) Let T be a binary tree where each node either is a leaf or has a left and a right son. Let \hat{T} be the graph made of T with an edge between each leaf and the next one in the left-right order. What is the tree-width of \hat{T}? Build an HR-equational system defining the set of all graphs \hat{T}.

1-2) Let us consider T as above with m leaves numbered from 1 to m in the left-right order. The i-th leaf is made into the i-source. What is the tree-width of $fg_{All}(T//T)$? Build an HR-equational system defining the set of graphs $fg_{All}(T//T)$ for all trees T. (fg_{All} forgets all sources).

1-3) Prove that the set of graphs $fg_{All}(S//T)$ for all trees S and T with same number of leaves has unbounded tree-width.

1-4) The graph $G(f)$ of a partial function $f : V \rightarrow V$ where V is finite has vertex set V and arcs $x \rightarrow f(x)$ for all $x \in V$. What is the maximum tree-width of such graphs? Prove that the set of all graphs $G(f)$ is HR- and also VR-equational.

1-5) For f a bijection $V \rightarrow V$ where V is of the form $\{1, ..., k\}$, we let $H(f)$ consist of $G(f)$ augmented with edges between i and $i+1$ for every $i = 1, ..., k-1$. Prove that the set of all graphs $H(f)$ has unbounded tree-width.
2 Monadic second-order logic

2-1) For H a finite simple loop-free undirected graph, show that the property "G
has a minor isomorphic to H" is MS expressible without edge set quantifications.
Conclude that planarity is MS expressible without edge set quantifications.

2-2) Let C be an MS-definable class of graphs. Let $\text{Apex}(C)$ be the class of
graphs such that, by deleting one vertex, one obtains a graph in C. Show that
this class is MS-definable.

2-3) Prove that the class $\text{Apex}(\text{PLANAR})$ is minor-closed and that the
 corresponding set K of minimal excluded minors is MS-definable. Do we obtain
from this fact an algorithm that enumerates the set K which is finite up to
isomorphism by the Graph Minor Theorem (that is can one get one concrete
graph for each element of K)?

2-4) The rank of an undirected graph is defined as the rank over GF(2) of
its adjacency matrix. Show that this number is the common cardinality of the
sets X of vertices that satisfy an MS-formula with free variable X and written
with the even cardinality set predicate $\text{Even}(U)$.

2-5) Assume we augment MS logic with a set predicate $\text{Eq}(X,Y)$ expressing
that two sets X and Y have the same cardinality. Try to establish the
Fefermann-Vaught theorem and explain what does not work.

2-6) How to obtain disjoint union in the Fefermann-Vaught theorem?

2-7) Find classes of graphs on which a linear order of the set of vertices can
be defined by monadic second-order formulas. (That is, for each such class, there
exists a formula $\varphi(x, y, X, ..., Z)$ that defines a linear order $x < y$ on vertices,
with the help of auxiliary sets $X, ..., Z$ that have to satisfy another MS formula
$\theta(X, ..., Z)$. For each graph in the class, there must exist $X, ..., Z$ satisfying
$\theta(X, ..., Z)$.)

There are two cases, depending on whether one uses edge set quantifications.