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Graph  Decompositions : 4 motivations

1.  Context-free  Graph  Grammars

2. Algorithmic applications   (FPT, preliminary steps)

3.  Decidability of logical theories  (Monadic 2nd order  logic)

4.  Graph Theory , structural descriptions :

   Tree-decompositions and the Graph Minor Theorem

    Extensions to matroids (in view of a Matroid Minor Theorem)

    Modular and  "split"  decompositions



Monadic Second-Order Logic

MSOL  =  First-order  logic  over  subsets  of the domain

Graph  G  = < V, edg(.,.) > = < Vertices, adjacency relation >

Logical  expression  of  graph  properties :

 Non connectivity  :   ∃ X ( ∃ u. u ∈ X ∧ ∃ v. v ∉ X

                                                ∧ [∀ u,v. edg(u,v) ⇒ ( u ∈ X  ⇔  v ∈ X )])

Typical  Properties  :  k-colorability  ( fixed k )
to  be  a  tree
planarity  ( by  Kuratowsky's  characterization )

but cannot  express  :  equal  cardinality  of  two sets ;  bijections.



Why  Monadic Second-Order Logic is  interesting  ?

Context-free  Graph  Grammars :

MS logic   Recognizable sets of graphs
    Transductions    (no automata)

Algorithmic applications :

MS logic   Fixed Parameter Tractable  problems
for tree-width and clique-width

    Query evaluation techniques
implementation of graphs ;
linear delay evaluation

Decidability of logical theories :

*  MS2 decidability of  graphs  implies bounded tree-width,
*  MS   decidability of matroids  implies  bounded branch-width



Graph Theory : Decompositions and Monadic 2nd order  logic

a)  Non-canonical graph decompositions :
Tree-decompositions of width < k, fixed k,  are MS constructible :  this
gives  Recognizability =  CMS-definability  for graphs  of tree-width  <  k.

b) Canonical  decompositions  are  easier  to  construct in M. 2nd o. logic:
3-Connected components
Modular decomposition
Split decomposition

General  question :  Which  graph theoretical  constructions are  expressible
in MS  logic ?

• Decompositions
• Intersection  models (circle  graphs)
• Geometrical  models (surface embeddings)
• Extensions of these questions to matroids



Tree decompositions

A  graph  and  a  tree-decomposition
of width 3



Why  interesting  ?

1) Structure  theorems  for  the theory  of  excluded minors
(Robertson  and  Seymour)

2) Inductive  proofs  and  computations

Example :  3-colorability  is  NP-complete  but  testable  in
linear  time  on  graphs  of  tree-width  <  k ,  for each fixed  k.

Thm :  Every  property  expressible  in Monadic 2nd order
Logic   is  linear on  graphs  of  tree-width  <  k.

3) Can  be  constructed  in  linear  time  (for each fixed k)



Tool  box

Graph  grammars  :  they produce  graphs  with tree-
decompositions  of  bounded  tree-width  (defined by the grammar).

Algorithms  for  tree-decompositions and  other types  of
decompositions

Classes  of  graphs  characterised  by  excluded
configurations (minors, induced subgraphs, vertex-minors)

Basic  graph  properties  expressible  in  Monadic 2nd  order
logic

     Transformations   of  graphs, trees,  and other  structures
formalised  in Monadic 2nd  order   logic.



Monadic 2nd  order   transductions   (or  "interpretations")

Transformation  τ  of  logical  structures such that  :

S                 T  =  τ (S)

where   T  is  defined by   monadic 2nd  order   formulas
inside  the  structure:  S ⊕ S  ⊕ ... ⊕ S

(fixed  number  of  disjoint  "marked"  copies  of  S)
in terms  of "parameters"  i.e.  subsets  X1, …,Xp

of  the  domain  of  S

Proposition  :  The  composition  of  two monadic 2nd  order transductions
 is   a  monadic 2nd  order   transduction.

The  inverse  image  of  a monadic 2nd  order definable set under
a monadic 2nd  order  transduction  is monadic 2nd  order definable



Examples  of  Monadic  2nd  order  transductions

The  mappings  from  a graph  to  :
the  forest  of  its  biconnected  components
the  directed  acyclic  graph  of its  strongly  connected

components

all  its  spanning  trees
all  its  minors

(by  using  the  incidence  structure  <V∪E, inc(.,.)>)



Modular  decomposition of (finite) graphs   (Gallai  1967)

Graph substitution : G[H/u]  :  H  replaces  u  and  all  neighbours of u  in G
are linked  to  all vertices  of  H

Module : M  is a module  of   G   if  G = K[H/u]    with  M = Vertices(H).



 Modular  decomposition : expression  of a graph in terms of substitutions

Every  graph is  partitioned into maximal proper strong modules.

Strong  module  :  does not  overlap  any other  module

G  = (u      v      w     x)[H /u , L /w]

H  = (y    z)[(•   •) /z]

L  = (a•    b•    c•)[ K3 / c]



It can be constructed  from  G  and an arbitrary linear order  <  of its vertices
by fixed  Monadic 2nd   order formulas

Each  module  A, B, C,  is  represented  by  one  of its  elements ;  each
vertex  represents  at  most  one  module.

    For  module  M, Min(M)  is  its  <-minimal  element ;

    MinSubMod(M)  is  its  son  submodule  containing  Min(M)  ;

    M  is  represented  by  xM =  Min(M-MinSubMod(M))

Example  :  b =  Min(B)



Split  decomposition  (Cunnigham  1982)
Based  on  a different  graph  composition

The  canonical  "split  decomposition"  is  a tree  of  cliques,  stars,  prime  graphs.



Circle  graphs

Intersection  graph  of chords  of a  circle

Combinatorial  description  by  double  occurrence  words  : abcbedaedc

Word  abcdabcd  defining  K4

Word abcdadcb  defining  the star  S3



Theorem :  1)  A  graph  is  a circle  graph  iff  the components  of its  split

decomposition  are  circle  graphs.

2) If  a circle  graph  is prime,  it  has  a  unique  representation  as a  double

occurrence  word  (up to  reversal  and conjugacy)  or  as chords  (up to

homeomorphism).



Theorem  :  1)  Circle  graphs  are  characterized  by 3  excluded  vertex-

minors  (Bouchet  1994).

2)  This  characterization  is expressible  in Monadic  2nd  order  logic  with

even cardinality  set  predicate  (Courcelle, Oum 2006)



Vertex-Minors  (Oum)

G    G\x  :  deletion  of  vertex  x  (and  incident edges)

G    G*x  :  local  complementation  at  vertex  x :  one  takes  the  edge

complementation  of  the  subgraph  induced  by the  neighbours  of  x.

H  is  a  vertex-minor  of  G  if  G  *  H

Some  classes  are  characterized  by  excluded  vertex-minors  : distance

hereditary,  circle  graphs,  graphs  of rank-width  <  k.

Question  :  Is  vertex-minor  inclusion  a  well-quasi  order  like  is  minor

inclusion ?



Vertex-minors  of  circle  graphs  ?

G\a  :  deletion  of  letter  a  in a word  (of   chord  a  in a chord)  representation

G*a  :  replacing  word  anaw  by  word  añaw ;



Theorem  : There  exists  a  Monadic  2nd  order  transduction that defines, for

every linearly  ordered  circle  graph  a  representation  of  it  by a  double

occurrence  word.

Method : 1)  We  prove  the  case  of a  prime  circle  graph  by using the

unicity  of the representation.

2) In the  general  case, we build  the  split decomposition of the  given  graph

G  by a  Monadic  2nd order  transduction.

3) We  combine  the  constructed  representations  of  the  components  into

one  of  the  graph  G,  again  by a  Monadic  2nd order  transduction.



First  step  :  We  construct  the  unique  representation  of  a  prime  CG

1) N(G)  the  neighbourhood  graph  is  definable  in G  by C2MS formulas

2) The  Eulerian  trails  of  a  4-regular  graph  are  also  MS definable



Proof  of  1) :

For  a  prime  circle  graph  G,  the  graph  G(a,b ; u,v) is  a  circle  graph

iff  a  and  b  are  neighbours  in the  unique  representation  of  G.

Hence, "neighbourhood"  is  expressible  by  a formula  of  Monadic  2nd

order  logic  with  even cardinality  predicate  by  Courcelle-Oum.



Proof  of  2)  :

A  4-regular graph  H  has  a  17  vertex-coloring  such that  vertices  at

distance  1  or  2  have distinct  colors.

Let  v  be  a  vertex  with  4  neighbours  colored  by  colors  a,b,c,d :

                                                   c

                                        a         v        b

                                                   d

By  attaching  to  v  the  4-tuple  (a,b,c,d) in {1,…,17}4 we  may  stipulate

that  the  Eulerian  trail  traverses  v  from  a to b  and  from  c to d ;  by

attaching to v the  4-tuple  (a,c,b,d) we  may  stipulate  that  the trail  traverses

v  from  a to c  and  from  b to d.

This  can  be  done  in Monadic 2nd order  logic  by  existential  set

quantifications.  Hence, Eulerian  trails  can  be specified.

The  "good"  one  can  be  determined.



Second  step  :  Constructing  the  canonical  split  decomposition.

Can  be  done  (like  for  the  modular  decomposition).

For  each  circle  graph  that  is  a component  of  the  split

decomposition,  we  construct  a representation,

either  by  using  the  first step

or  more  easily (but  with  the help  of the  linear  order)

for  cliques  (square words :  ww)

and  stars (words  of the form  anañ  ; ñ  is  the  reversal  of word n).

Third  step  :  It  remains  to  combine  the  word representations  of

components  into  a  word  representation  of  the  considered  graph.

Remark : Double  occurrence  word  =  Hamiltonian  circuit  +  edges  that

match positions  with  same  letter.



Combining  representations  of  circle  graphs



Overview  of  this  method  which  applies  to other  cases
Geometrical  configurations
(coded by relational  structures) 

C1 forgets  information

C2       Graph  G

….

How can one reconstruct   C1, C2, …  from  G   ?

C1, C2, …..                                      Graph  G

 MS transduction                MS transduction

   (with "all" < )       (with "some" <)

Decomposition of G :

tree of  basic blocks B with unique CB

B    CB :  Monadic  2nd order  transduction  using  the   unicity


