
Graph equivalences and decompositions

definable in Monadic Second-Order logic

Circle Graphs

Bruno COURCELLE

LaBRI, Bordeaux 1 University

Graph Decompositions : 4 motivations

1. Context-free Graph Grammars

2. Algorithmic applications (FPT, preliminary steps)

3. Decidability of logical theories (Monadic 2nd order logic)

4. Graph Theory , structural descriptions :

 Tree-decompositions and the Graph Minor Theorem

 Extensions to matroids (in view of a Matroid Minor Theorem)

 Modular and "split" decompositions

Monadic Second-Order Logic

MSOL = First-order logic over subsets of the domain

Graph G = < V, edg(.,.) > = < Vertices, adjacency relation >

Logical expression of graph properties :

 Non connectivity : ∃ X (∃ u. u ∈ X ∧ ∃ v. v ∉ X

 ∧ [∀ u,v. edg(u,v) ⇒ (u ∈ X ⇔ v ∈ X)])

Typical Properties : k-colorability (fixed k)
to be a tree
planarity (by Kuratowsky's characterization)

but cannot express : equal cardinality of two sets ; bijections.

Why Monadic Second-Order Logic is interesting ?

Context-free Graph Grammars :

MS logic Recognizable sets of graphs
 Transductions (no automata)

Algorithmic applications :

MS logic Fixed Parameter Tractable problems
for tree-width and clique-width

 Query evaluation techniques
implementation of graphs ;
linear delay evaluation

Decidability of logical theories :

* MS2 decidability of graphs implies bounded tree-width,
* MS decidability of matroids implies bounded branch-width

Graph Theory : Decompositions and Monadic 2nd order logic

a) Non-canonical graph decompositions :
Tree-decompositions of width < k, fixed k, are MS constructible : this
gives Recognizability = CMS-definability for graphs of tree-width < k.

b) Canonical decompositions are easier to construct in M. 2nd o. logic:
3-Connected components
Modular decomposition
Split decomposition

General question : Which graph theoretical constructions are expressible
in MS logic ?

• Decompositions
• Intersection models (circle graphs)
• Geometrical models (surface embeddings)
• Extensions of these questions to matroids

Tree decompositions

A graph and a tree-decomposition
of width 3

Why interesting ?

1) Structure theorems for the theory of excluded minors
(Robertson and Seymour)

2) Inductive proofs and computations

Example : 3-colorability is NP-complete but testable in
linear time on graphs of tree-width < k , for each fixed k.

Thm : Every property expressible in Monadic 2nd order
Logic is linear on graphs of tree-width < k.

3) Can be constructed in linear time (for each fixed k)

Tool box

Graph grammars : they produce graphs with tree-
decompositions of bounded tree-width (defined by the grammar).

Algorithms for tree-decompositions and other types of
decompositions

Classes of graphs characterised by excluded
configurations (minors, induced subgraphs, vertex-minors)

Basic graph properties expressible in Monadic 2nd order
logic

 Transformations of graphs, trees, and other structures
formalised in Monadic 2nd order logic.

Monadic 2nd order transductions (or "interpretations")

Transformation τ of logical structures such that :

S T = τ (S)

where T is defined by monadic 2nd order formulas
inside the structure: S ⊕ S ⊕ ... ⊕ S

(fixed number of disjoint "marked" copies of S)
in terms of "parameters" i.e. subsets X1, …,Xp

of the domain of S

Proposition : The composition of two monadic 2nd order transductions
 is a monadic 2nd order transduction.

The inverse image of a monadic 2nd order definable set under
a monadic 2nd order transduction is monadic 2nd order definable

Examples of Monadic 2nd order transductions

The mappings from a graph to :
the forest of its biconnected components
the directed acyclic graph of its strongly connected

components

all its spanning trees
all its minors

(by using the incidence structure <V∪E, inc(.,.)>)

Modular decomposition of (finite) graphs (Gallai 1967)

Graph substitution : G[H/u] : H replaces u and all neighbours of u in G
are linked to all vertices of H

Module : M is a module of G if G = K[H/u] with M = Vertices(H).

 Modular decomposition : expression of a graph in terms of substitutions

Every graph is partitioned into maximal proper strong modules.

Strong module : does not overlap any other module

G = (u v w x)[H /u , L /w]

H = (y z)[(• •) /z]

L = (a• b• c•)[K3 / c]

It can be constructed from G and an arbitrary linear order < of its vertices
by fixed Monadic 2nd order formulas

Each module A, B, C, is represented by one of its elements ; each
vertex represents at most one module.

 For module M, Min(M) is its <-minimal element ;

 MinSubMod(M) is its son submodule containing Min(M) ;

 M is represented by xM = Min(M-MinSubMod(M))

Example : b = Min(B)

Split decomposition (Cunnigham 1982)
Based on a different graph composition

The canonical "split decomposition" is a tree of cliques, stars, prime graphs.

Circle graphs

Intersection graph of chords of a circle

Combinatorial description by double occurrence words : abcbedaedc

Word abcdabcd defining K4

Word abcdadcb defining the star S3

Theorem : 1) A graph is a circle graph iff the components of its split

decomposition are circle graphs.

2) If a circle graph is prime, it has a unique representation as a double

occurrence word (up to reversal and conjugacy) or as chords (up to

homeomorphism).

Theorem : 1) Circle graphs are characterized by 3 excluded vertex-

minors (Bouchet 1994).

2) This characterization is expressible in Monadic 2nd order logic with

even cardinality set predicate (Courcelle, Oum 2006)

Vertex-Minors (Oum)

G G\x : deletion of vertex x (and incident edges)

G G*x : local complementation at vertex x : one takes the edge

complementation of the subgraph induced by the neighbours of x.

H is a vertex-minor of G if G * H

Some classes are characterized by excluded vertex-minors : distance

hereditary, circle graphs, graphs of rank-width < k.

Question : Is vertex-minor inclusion a well-quasi order like is minor

inclusion ?

Vertex-minors of circle graphs ?

G\a : deletion of letter a in a word (of chord a in a chord) representation

G*a : replacing word anaw by word añaw ;

Theorem : There exists a Monadic 2nd order transduction that defines, for

every linearly ordered circle graph a representation of it by a double

occurrence word.

Method : 1) We prove the case of a prime circle graph by using the

unicity of the representation.

2) In the general case, we build the split decomposition of the given graph

G by a Monadic 2nd order transduction.

3) We combine the constructed representations of the components into

one of the graph G, again by a Monadic 2nd order transduction.

First step : We construct the unique representation of a prime CG

1) N(G) the neighbourhood graph is definable in G by C2MS formulas

2) The Eulerian trails of a 4-regular graph are also MS definable

Proof of 1) :

For a prime circle graph G, the graph G(a,b ; u,v) is a circle graph

iff a and b are neighbours in the unique representation of G.

Hence, "neighbourhood" is expressible by a formula of Monadic 2nd

order logic with even cardinality predicate by Courcelle-Oum.

Proof of 2) :

A 4-regular graph H has a 17 vertex-coloring such that vertices at

distance 1 or 2 have distinct colors.

Let v be a vertex with 4 neighbours colored by colors a,b,c,d :

 c

 a v b

 d

By attaching to v the 4-tuple (a,b,c,d) in {1,…,17}4 we may stipulate

that the Eulerian trail traverses v from a to b and from c to d ; by

attaching to v the 4-tuple (a,c,b,d) we may stipulate that the trail traverses

v from a to c and from b to d.

This can be done in Monadic 2nd order logic by existential set

quantifications. Hence, Eulerian trails can be specified.

The "good" one can be determined.

Second step : Constructing the canonical split decomposition.

Can be done (like for the modular decomposition).

For each circle graph that is a component of the split

decomposition, we construct a representation,

either by using the first step

or more easily (but with the help of the linear order)

for cliques (square words : ww)

and stars (words of the form anañ ; ñ is the reversal of word n).

Third step : It remains to combine the word representations of

components into a word representation of the considered graph.

Remark : Double occurrence word = Hamiltonian circuit + edges that

match positions with same letter.

Combining representations of circle graphs

Overview of this method which applies to other cases
Geometrical configurations
(coded by relational structures)

C1 forgets information

C2 Graph G

….

How can one reconstruct C1, C2, … from G ?

C1, C2, ….. Graph G

 MS transduction MS transduction

 (with "all" <) (with "some" <)

Decomposition of G :

tree of basic blocks B with unique CB

B CB : Monadic 2nd order transduction using the unicity

