

On several proofs of the

Recognizability Theorem

Bruno Courcelle

Université Bordeaux 1, LaBRI, and Institut Universitaire de France

Reference : Graph structure and monadic second-order logic,

book to be published by Cambridge University Press, readable on :

http://www.labri.fr/perso/courcell/ActSci.html

 2

 An overview chart

Graph "Context-free"

operations sets of graphs

Fixed parameter tractable

algorithms Language theory

 for graphs

 Recognizable

 sets of graphs

Monadic 2nd-order Monadic 2nd -order

logic transductions

 3

 Key concepts of Language Theory and their extensions

Languages Graphs

Algebraic structure :
monoid (X*,*,ε)

Algebras based on graph operations : ⊕, ⊗, //
quantifier-free definable operations

Algebras : HR, VR
Context-free languages :

Equational subsets of (X*,*,ε)
Equational sets of the

algebras HR, VR
Regular languages :
Finite automata ≡

Finite congruences ≡
Regular expressions ≡

Recognizable sets
of the algebras HR, VR

defined by finite congruences

≡ Monadic Second-order
definable sets of words or terms

∪
Monadic Second-order definable

sets of graphs
Rational and other types of

transductions
Monadic Second-order transductions

Recognizability Theorem : the inclusion ∪

 4

Summary

1. The graph algebra VR.

2. Recognizability : an algebraic notion

3. Monadic second-order logic

4. The Recognizability Theorem

5. The case of terms (proof by Büchi)

6. VRk- Recognizability after Büchi.

7. VR- Recognizability using the Feferman-Vaught paradigm

8. Extension of the Büchi-style proof after Engelfriet

9. Comparisons

 5

1. The graph algebra VR

Origin : Vertex Replacement context-free graph grammars

Associated complexity measure: clique-width.

 Graphs are defined in terms of very simple graph operations,

 giving easy inductive proofs.

Graphs are simple, loop-free, directed or not.

Vertex labels : 1 ,..., k. Each vertex has one and only one label.

One binary operation : disjoint union : ⊕

 Well-defined up to isomorphism : one takes disjoint copies ;

 G ⊕ G is not equal to G

 6

Unary operations: Edge addition denoted by Add-edga,b

Add-edga,b(G) is G augmented with undirected edges between

every a-labelled vertex and every b-labelled vertex

 H = Add-edga,b(G) ; only 5 new edges added

The number of added edges depends on the argument graph.

 The directed version of Add-edga,b adds directed edges from

every a-labelled vertex to every b-labelled vertex

 7

Vertex relabellings :
Relaba b(G) is G with every (vertex) label a changed into b

Basic graphs : a one vertex labelled by a.

Definition: A graph G has clique-width ≤ k

 ⇔ it can be constructed from basic graphs with the operations

 ⊕, Add-edga,b and Relaba b with labels a, b in 1,…,k.

 Its (exact) clique-width cwd(G) is the smallest such k.

 8

 Example : Cliques (a-labelled) have clique-width 2.

 Kn is defined by tn where t1 = a

 tn+1 = Relabb a(Add-edga,b(tn ⊕ b))

Example : Cographs (a-labelled) are generated by ⊕ and ⊗ defined by:

G ⊗ H = Relabb a(Add-edga,b (G ⊕ Relaba b(H)))

 = G ⊕ H with “all edges” between G and H.

 9

2. Recognizable sets : an algebraic notion

M = < M, (fM)f ∈ F > : an F-algebra where F is a finite signature.

 L ⊆ M is (M-)recognizable if it is a union of equivalence classes

for a finite congruence ≈ on M.

 Congruence = equivalence relation such that :

m ≈ m’ and p ≈ p’ ⇒ fM(m,p) ≈ fM(m’,p’).

 Finite means that M / ≈ is finite, i.e., ≈ has finitely many classes.

Equivalently, L = h-1(D) for a homomorphism h : M → A, where

A is a finite F-algebra and D ⊆ A.

 Rec(M) = the recognizable subsets of M .
 This notion is relative to the algebra M.

 10

Classical examples

Algebra Recognizable sets

<A* , ., ε , a,b,…,d> Regular languages
 (syntactic monoid)

<A* , ε , (λu∈A*.ua)a∈ A > Regular languages
 (Myhill-Nerode)

T(F), terms over F, (initial F-algebra) Regular sets of terms
On terms, h is the run of a finite deterministic bottom-up automaton

<Nk, + , (0,…,0), … (0,…,1,0,…,0) …> Finite unions of Cartesian

 products of k sets { u + n.v ⎜ n ∈ N } for u,v ∈ N

 11

The algebra VR has an infinite signature

We introduce a notion of type (or sort in a many-sorted framework).

The type of G is : π(G) = the set of vertex labels having an occurrence.

π has a homomorphic behaviour :

π(G ⊕ H) = π(G) U π(H) ; π(Add-edga,b(G)) = π(G) ;

 π(Relaba b(G)) = π(G)[b/a].

For defining the recognizability of set L we require that the congruence ≈

is type preserving : G ≈ H implies π(G) = π(H),

 locally finite : it has finitely many classes of each type,

 L is a union of classes (possibly of different types).

 12

 Properties of recognizable sets that follow from the algebraic setting :

 Closure under ∪, ∩ and - (difference),

 under inverse homomorphisms and

 under inverse unary derived operations.

 Filtering Theorem : The intersection of an equational

 (i.e., “context-free”) set and a recognizable one is equational

 With effective constructions.

 13

Properties of recognizable sets of graphs that do not follow “algebraically”

Closure under the binary operation ⊕,

under the unary relabelling operations.
(false for Add-edg but true if some “harmless” restriction of

the use of this operation is made.)

(Fact : It is more difficult to prove the closure under concatenation of regular

languages than their closure under Boolean operations ; this is reflected

by the sizes of syntactic monoids).

Properties that do not hold as we could wish or expect.

Emptiness is not decidable (because of infinite signatures).

 Rec and Equat are incomparable.

 Every set of square grids is VR-recognizable.

 There are uncountably many recognizable sets, hence
 no characterization by finite automata or logical formulas.

 14

Proposition : If F is finite and generates M, i.e., if every element of M

 is the value valM(t) of some term t in T(F), then :

 a subset L of M is M-recognizable
 if and only if

 the set of terms valM
-1(L) is T(F)-recognizable,

 if and only if

 valM
-1(L) is defined by a finite (deterministic) automaton.

 Two possible proofs that a set L is M-recognizable :

 Construction of a finite congruence on M that saturates L,

 Construction of an automaton that defines valM
-1(L).

 15

3. Monadic Second-Order (MS) Logic

= First-order logic on power-set structures

= First-order logic extended with (quantified) variables

denoting subsets of the domains.

MS properties : transitive closure, properties of paths, connectivity,

planarity (via Kuratowski, uses connectivity), k-colorability.

Examples of formulas for G = (VG , edgG(.,.)), undirected

3-colorability (NP-complete property)
∃X,Y (”X,Y are disjoint” ∧ ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧(u ∈V-(X∪Y) ⇒ v ∉V-(X∪Y)]})

 16

Non connectivity (whence connectivity, more generally transitive closure) :
∃X (∃x ∈ X ∧ ∃y ∉ X ∧ ∀u,v (u ∈ X ∧ edg(u,v) ⇒ v ∈ X))

Planarity : no K5 or K3,3 minor.

Having a K5 minor :

∃X1,…,X5 (“ the Xi’s are pairwise disjoint”
 ∧ “each Xi induces a connected graph”
 ∧ “for every i<j, there is an edge between some u in Xi and some v in Xj”)

 17

4. The recognizability theorem

 A set L of finite words, terms, graphs or relational structures is

Monadic Second-Order (MS) definable if it is the set of finite models of an

MS sentence ϕ (a formula without free variables) :

L = Models(ϕ) : = { S finite / S ⎜= ϕ } for a fixed MS sentence ϕ

The Recognizability Theorem :

 Every MS- definable set of graphs is VR-recognizable

 Every MS- definable set of relational structures is recognizable with respect

to an algebra that generalizes VR (using ⊕ and unary quantifier-free definable

operations generalizing edge addition, vertex relabelling, edge complement).

 18

Consequences

Fixed Parameter Tractable algorithms for checking MS graph

properties, for clique-width (or tree-width) as parameter.

Filtering Theorem : if L is VR-equational (“context-free”),

the set L ∩ Models(ϕ) is (effectively) VR-equational for each MS

sentence ϕ.

Example : for ϕ expressing planarity, a direct proof would be unwritable.

 Decidability of monadic theories : given k and ϕ, one can decide if

ϕ is true in all graphs of tree-width or clique-width at most k.

 19

5. Büchi-style proof for the case of terms

Terms in T(F) where F is a finite signature

Logical representation S(t) of a term t :

 nodes of the syntactic tree, son binary relation,

 unary predicates labf for “my label is f ” and bri for “I am the i-th brother”.

Example : t = f1(g2(a3,b4),b5) (integers 1,2,…,5 designate nodes = occurrences)

S(t) has domain { 1,2,3,4,5 },

 son relation { (1,2), (1,5), (2,3), (2,4) },

 unary predicates : labf = {1}, labg = {2}, laba = {3}, labb = {4,5},

 br1 = {2,3}, br2 = {4,5}.

 20

Construction : for each sentence ϕ an automaton A(ϕ) that defines

Models(ϕ)∩T(F) by induction on the structure of sentence ϕ

 - Sentences are without first-order variables and ∀ .

 - For ∃ X. ϕ(X), we need A(ϕ(X)); more generally A(ϕ(X1,...,Xn)) :

 f in F is replaced by (f, (w1,...,wn)) in F x {0,1}n of same arity,

 a term t*ν in T(Fx{0,1}n) encodes a term t in T(F) and an

 assignment ν : { X1,..,Xn } P(Nodes(t))

 (if u is an occurrence of (f, (w1,..,wn)) then wi = 1 iff u ∈ Xi)

 - One constructs A(ϕ(X1,..,Xn)) that defines

 { t*ν ∈ T(Fx{0,1}n) / (t , ν) ⎜ = ϕ }

 21

 Then :

 L(A(∃ Xn+1 . ϕ(X1, ..., Xn+1)))= pr(L(A(ϕ(X1, ..., Xn+1)))

where pr is the projection that eliminates the last Boolean.

 One obtains a nondeterministic automaton.

 For ∧ and ∨ : product of two automata.

 For negation : exchange accepting/non-accepting states

 for a deterministic automaton.

 The case of atomic formulas is easy.

 The number of states is an h-iterated exponential,

where h = maximum nesting of negations. This is not avoidable.

 22

6. Büchi-style proof for VRk-recognizability

 We fix k, a bound on clique-width of the considered graphs

 Fk consists of binary operation ⊕ and the O(k2) unary operations

(Add-edga,b , Relaba b) , the constant 1 defining the vertex labelled 1.
 (1 can be changed into another label).

 A term t in T(Fk ∪{1}) defines a graph G(t) with vertex set

 = the set of occurrences of 1. For representing assignments

 ν: { X1,...,Xn } P(Vertices(G(t)))

 we replace 1 by constants (1, (w1,…,wn)) , wi ∈ {0,1} as for terms

 A term t*ν in T(Fk ∪({1}x{0,1}n)) defines the graph G(t) and

some assignment ν : { X1,...,Xn } P(Vertices(G(t))

 23

As in the case of terms, we construct for all relevant k, n and ϕ

a finite deterministic automaton A(ϕ(X1,…,Xn)) that defines

 { t*ν ∈ T(Fk ∪({1}x{0,1}n)) / (G(t), ν) ⎜ = ϕ }

 Inductive steps :

 ϕ ∧ ψ , ϕ ∨ ψ : product of two automata
 ¬ ϕ : exchange of accepting / non-accepting states of a deterministic
 automaton
 ∃ Xn+1 ϕ : “projection” pr : makes automata non-deterministic

 Basic cases : atomic formulas.

 24

 Example : The automaton A(edg(X1,X2)) with k2+k+3 states

 Graph labels are in [k] = {1,…,k}.

 States : 0, Ok, a(1), a(2), ab, Error, for a,b in [k] , a ≠ b

 Meanings of states

 (at occurrence u in t ; its subterm t/u defines a graph G(t/u) ⊆ G(t)).

 0 : X1 = ∅ , X2 = ∅

 Ok : X1 = {v} , X2 = {w} , edg(v,w) in G(t/u)

 a(1) : X1 = {v} , X2 = ∅ , v has label a in G(t/u)

 a(2) : X1 = ∅ , X2 = {w} , w has label a in G(t/u)

 ab : X1 = {v} , X2 = {w} , v has label a, w has label b (hence v ≠ w)
 and ¬edg(v,w) in G(t/u),
 Error : all other cases.

 Accepting state : Ok

 25

 Transition rules

 For the constant 1 :

 (1,00) 0 ; (1,10) 1(1) ; (1,01) 1(2) , (1,11) Error

 For the binary operation ⊕: r

 p q

 If p = 0 then r := q

 If q = 0 then r := p

 If p = a(1), q = b(2) and a ≠ b then r := ab

 If p = b(2), q = a(1) and a ≠ b then r := ab

 Otherwise r : = Error

 26

 For unary operations Add-edgea,b r

 p

 If p = ab then r := Ok else r : = p

 For unary operations Relaba b

 If p = a(i) where i = 1 or 2 then r : = b(i)

 If p = ac where c ≠ a and c ≠ b then r : = bc

 If p = ca where c ≠ a and c ≠ b then r : = cb

 If p = Error or 0 or Ok or c(i) or cd or dc where c ≠ a

 then r : = p
 End of example ; end of proof sketch.

 27

 We have only proved that for every k and MS sentence ϕ

 1) { t ∈ T(Fk ∪{1}) / G(t) ⎜= ϕ } is T(Fk ∪{1})-recognizable

 2) The set of models of ϕ of clique-width < k, is VRk-recognizable

 This is NOT the Recognizability Theorem which needs a type-

preserving , locally finite congruence working on ALL graphs (of unbounded

clique-width).

 This weak form is sufficient for FPT algorithms and for the Filtering

Theorem because :

 - graphs of clique-width < k are genertated by Fk ∪{1}

 - VR-equational implies VRk-equational, for k = maximum label

occurring in the defining system.

 28

 Although the signature VR is the union of the signatures VRk,

we may have a set L that is not VR-recognizable, whereas :

L ∩ { G / cwd(G) < k} is VRk-recognizable for each k.

Example : The set of duplicated square grids Gm x m ⊕ Gm x m
is not VR-recognizable, but each of its restrictions to graphs of clique-width

< k is finite, hence MS-definable, whence VRk-recognizable (by the proved

special case of the Recognizability Theorem.)

 29

 VRk-recognizability proved with Backwards Translation:

 The mapping : t in T(Fk ∪{1}) ⎜ G(t) = valVR(t) is an MS

transduction.

 The set L of terms t in T(Fk ∪{1}) such that G(t) ⎜= ϕ is

defined by an MS formula ϕ# obtained by Backwards Translation.

 By the Recognizability Theorem for terms, L is recognizable in

T(Fk ∪{1}), hence definable by a finite automaton.

 Short proof, but ϕ# has larger quantifier-height than ϕ , hence

bad in view of a concrete implementation.

 30

The Feferman-Vaught paradigm yields VR-recognizability

The result of the query defined by ϕ is :

 Sat(G, ϕ, X1,…,Xn) = { (A1,…,An) / G ⎜= ϕ(A1,…,An) }

Lemma 1 : If f is a quantifier-free mapping on graphs (edge-addition,

vertex relabeling, edge complement) , every ϕ has a Backwards

Translation f #(ϕ) relative to f such that for all G :

 Sat(f (G), ϕ, X1,…,Xn) = Sat(G, f #(ϕ), X1,…,Xn)

f #(ϕ) has no larger quantifier-height than ϕ

Proof : Routine.

 31

Splitting Theorem : One can construct formulas ψi, θi , i = 1,…,p,

of no larger quantifier-height than ϕ such that for all disjoint G and H:

Sat(G⊕H, ϕ, X1,…,Xn) is the disjoint union of the sets

Sat(G, ψi, X1,…,Xn) ◊ Sat(H, θi, X1,…,Xn), i = 1,…,p,

where ◊ combines “partial answers” as follows :

A ◊ B = { (A1∪ B1,…,An∪Bn) / (A1,…,An) ∈ A , (B1,…,Bn) ∈ B }

Proof : Induction on the structure of ϕ and set manipulations.

Lemma 2 : For each n and h there are finitely many formulas

ϕ(X1,…,Xn) of quantifier-height < h, up to a decidable and sound

equivalence. Proof sketch : ϕ ~ ψ iff ψ is obtained from ϕ by Boolean laws

and renamings of bound variables.

 32

Proof of the Recognizability Theorem (general form) :

For each h , the equivalence relation such that

 G ≈ H ⇔ Sat(G, ψ) = Sat(H, ψ) (= ∅ or () , the empty sequence)

 for every sentence ψ of quantifier-height < h

is a type-preserving, locally finite congruence on VR that saturates

Models(ϕ) for each every sentence ϕ of quantifier-height < h

 (The same proof works for the algebra of relational structures).

 33

 For each k and MS sentence ϕ one obtains an automata that reco-

gnizes the set of terms in T(Fk ∪{1}) that define graphs satisfying ϕ.

 Its states are theories : finite sets of reduced sentences of

quantifier-height < h that are true in some structure.

 (Reduced in some canonical form, using Boolean laws and

renamings of bound variables, cf. Lemma 2, slide 31)

 No good bound on automata sizes and no possible implemen-

tation can be obtained from this proof.

 34

Extensions of the proof :

1) For counting valid assignments, i.e., for computing, for a fixed MS

formula ϕ and a given G, the cardinality of Sat(G, ϕ, X1,…,Xn), the

Splitting Theorem gives (because of disjoint unions) the recursion :

 ⎜Sat(G⊕H, ϕ, X1,…,Xn) ⎜ =

 Σ i = 1,…,p ⎜Sat(G, ψi, X1,…,Xn) ⎜. ⎜Sat(H, θi, X1,…,Xn) ⎜

2) Similar fact for optimizing functions , defined by :

 MaxSat(G, ϕ, X) = Max { ⎜A ⎜ / G ⎜= ϕ(A) }

Remark : In these two cases, one could also use the deterministic

automata constructed during the Büchi-style proof, with better

practical perspectives.

 35

8. A Büchi-style proof of The Theorem,
based on J. Engelfriet : A regular characterization of MS definable graph

languages, Theor. Comput. Sci. Vol. 88 (1991) 139-150

 For set of labels A : G(A) = { graphs with vertices labelled in A }

 For graph G and ν: { X1,...,Xn } P(Vertices(G)),

 the graph G*ν in G({ 0,1 }n) encodes G and ν as in the “Büchi-style”

proof.

 For ϕ(X1,…,Xn) MS formula, we define :

 L(ϕ(X1,…,Xn)) = the set of G*ν such that (G, ν) ⎜= ϕ

 36

Proposition : These sets are defined by regular expressions

constructed from certain local sets by Boolean operations and

relabellings (analogous to the “projections” of the “Büchi-style” proof).

Local sets are associated with atomic formulas

L(Xi ⊆ Xj) = graphs without label (w1,…, wn) such that wi=1, wj=0

L(edg(Xi,Xj)) = graphs with at least one edge between a vertex labelled

 in Bi and a vertex labelled in Bj, where

 Bi = set of labels (w1,…, wn) such that wi = 1.

Relabelling based on h : A B, replaces every label a by h(a).

Useful to define L(∃Xn.ϕ(X1,…,Xn))) = h(L(ϕ(X1,…,Xn))) where h

deletes the last Boolean in each label.

 37

Boolean (set) operations give the cases of ∧ , ∨ , ¬.

Proof of the Recognizability Theorem :

 1) Each local set is recognizable : not hard to construct

congruences witnessing this fact.

 2) Rec(VR) is closed under Boolean operations (general fact),

 3) and under relabellings h : G(A) G(B) :

 if L ⊆ G(A) is recognizable for congruence ~ ,

 then h(L) ⊆ G(B) is recognizable for congruence ≈ such that :

 G ≈ H ⇔ k(G) = k(H) where k(G) = { [G’]~ ⎜ h(G') = G }

 The number of classes may increase exponentially from ~ to ≈.

 38

9. Comparing the proofs
E(ngelfriet’s) extends B(üchi’s); F-V = Feferman-Vaught paradigm

 B E F-V

Rec Thm for VR

NO YES YES

Rec Thm for STR NO Technical YES

Implementability YES
“Small” cases

as for B NO

Extension to counting YES NO YES

Other algo. applications YES NO ??

Teachability Easy Technical Doable

 39

About implementation: The automaton constructed from ϕ and k may be

too large for being practically compiled.
Problems with size of memory for intermediate automata, even if the unique

minimal deterministic automaton has manageable number of states.

Hopes come from precomputed automata for subformulas.

 Soguet et al., using MONA, have constructed automata for the following cases :

 Clique-width 2 Clique-width 3

 MaxDegree<3 91 states Space-Out

 Degree<4(x) 48 states 233 states

 Path(x,y)in(X) 26 states Space-Out

 Connectedness 11 states Space-Out

 IsConnComp(X) 48 states Space-Out

 Has<4-VertCov 111 states 1037 states

 HasClique>4 21 states 153 states

 2-colorable 11 states 57 states

 40

Open questions :

 To what extent can one overcome the difficulties that come

from state explosion of the constructed automata ?

 Another difficulty : the parsing problem : construction of an

appropriate term witnessing clique-width < k (also arise for graphs

of bounded tree-width).

 41

Bonus : Monadic Second-order logic with edge set

quantifications and the graph algebra HR

Edge set quantifications increase the expressive power of MS

 logic

Incidence graph of G undirected, Inc(G) = (VG ∪ EG, incG(.,.).)

incG(v,e) ⇔ v is a vertex (in VG) of edge e (in EG).

Monadic second-order (MS2) formulas written with inc can use

 quantifications on sets of edges.

 The existence of a perfect matching or a Hamiltonian circuit is expressible

 by an MS2 formula, but not by an MS formula.

 42

The Recognizability Theorem :

 Every MS- definable set of finite graphs is VR-recognizable

 Every MS2- definable set of finite graphs is HR-recognizable

where HR- is another graph algebra defined below

 43

HR operations : Origin : Hyperedge Replacement hypergraph grammars ; associated complexity
measure : tree-width

Graphs have distinguished vertices called sources, (or terminals or boundary vertices)

pointed to by source labels from a finite set : {a, b, c, ..., h}.

Binary operation(s) : Parallel composition

G // H is the disjoint union of G and H and sources with same label are fused.

(If G and H are not disjoint, one first makes a copy of H disjoint from G).

 44

Unary operations : Forget a source label
 Forgeta(G) is G without a-source: the source is no longer distinguished ;

(it is made "internal").

 Source renaming :
Rena b(G) exchanges source labels a and b

(replaces a by b if b is not the label of a source)

Nullary operations denote basic graphs : the connected graphs with at most one edge.

For dealing with hypergraphs one takes more nullary symbols for denoting

hyperedges.

Each graph G has type τ(G) = the set of labels of its sources.

The type function has a homomorphic behaviour :

 τ(G//H) = τ(G) U τ(G) ; τ(Forgeta(G)) = τ(G) - {a} ; τ(Rena b(G)) = τ(G)[a/b, b/a].

 45

Tree-decompositions

 46

Proposition: A graph has tree-width ≤ k if and only if it can be constructed from

basic graphs with ≤ k+1 labels by using the operations // , Rena b and Forgeta.

Example : Trees are of tree-width 1, constructed with two source labels, r (root) and n (new

root): Fusion of two trees at their roots :

Extension of a tree by parallel composition

with a new edge, forgetting the old root,

making the "new root" as current root :

e = r •_________• n

Renn r (Forgetr (G // e))

 47

From an algebraic expression to a tree-decomposition

Example : cd // Rena c (ab // Forgetb(ab // bc)) (Constant ab denotes an edge from a to b)

 The tree-decomposition associated with this term.

