Recognizable sets of graphs: algebraic and logical aspects

Bruno Courcelle

LaBRI \& Université de Bordeaux (ex-1!)
References:
B.C. and J. Engelfriet: Graph structure and monadic second-order logic, Cambridge University Press, 2012.
B.C. and I. Durand: Automata for the verification of monadic second-order graph properties. J. Applied Logic 10(4): 368-409 (2012)

Summary

1. Recognizable \& equational sets: an algebraic setting for language theory.
2. A graph algebra with infinitely many operations \& clique-width.
3. Monadic second-order logic, recognizability \& fixed-parameter tractable model-checking.
4. Constructing automata.

Two ways of considering graphs

A graph is a logical structure; graph properties can be expressed by logical formulas (FO = first-order, MSO = monadic second-order)

A graph is an algebraic object, an element of an algebra of graphs (similar to words as elements of monoids)

Graph algebras (finite graphs, up to isomorphism, as algebraic objects):
Equational sets \rightarrow context-free sets of graphs, without needing to define graph rewritings
Recognizable sets \rightarrow defined without automata
(there is no "good" notion of graph automaton)
Algebraic understanding of combinatorial notions:
tree-width, path-width, rank-width.
Clique-width: a width measure defined algebraically.
The two graph algebras that fit to MSO logic yield:
Hyperedge-replacement gragras, tree-width, FPT MSO_{2} modelchecking.

Vertex-replacement gragras, clique-width, FPT MSO-model-checking.

Below: the algebra \mathbf{G} that yields clique-width.

The automata for model-checking MSO formulas on graphs of bounded clique-width are easier to build than those for graphs of bounded tree-width.

And : all results about model-checking of MSO2 formulas (with edge set quantifications) for graphs of bounded tree-width follow from the ones for graphs of bounded clique-width : we replace a graph G by its incidence graph $\operatorname{Inc}(G)$, we use : $\operatorname{cwd}(\operatorname{Inc}(G)) \leq \operatorname{twd}(G)+3 \quad$ (T. Bouvier, LaBRI) and we note that MSO2 over G reduces to MSO over Inc(G).

1. Recognizable \& equational sets: an algebraic setting for Language Theory.

Equational sets (generalizing context-free languages)

Equation systems = Context-Free (Graph) Grammars

For words, the set of context-free rules

$$
X \rightarrow a X Y ; X \rightarrow b ; Y \rightarrow c Y Y X ; Y \rightarrow a
$$

is equivalent to the system of two equations:

$$
\begin{array}{lll}
X=a X Y & \cup & \{b\} \\
Y=c Y Y X & \cup & \{a\}
\end{array}
$$

where X is the language generated by X (idem for Y and Y).

In arbitrary algebras we consider equation systems like:

$$
\begin{array}{ll}
X=\mathrm{f}(\mathrm{k}(X), Y) & \cup\{\mathrm{b}\} \\
Y=\mathrm{f}(Y, \mathrm{f}(\mathrm{~g}(Y), \mathrm{m}(X))) & \cup\{\mathrm{a}\}
\end{array}
$$

where:
f is a binary operation,
$\mathrm{g}, \mathrm{k}, \mathrm{m}$ are unary operations,
a, b denote basic objects.
An equational set is a component of the least solution of such an equation system. This notion is well-defined in any algebra.

The general algebraic setting

F: a finite or countably infinite set of operation symbols with fixed arities, called a signature.

$$
\mathbf{M}=\left\langle M,\left(f_{M}\right)_{f \in F}\right\rangle \text { : an F-algebra. }
$$

All signatures and algebras are finite or countable and effectively given (that is : encoded by finite words in a computable way).

Examples : (words, trees and graphs will be finite).
Free monoid of words,
free algebra of terms,
algebra of terms with associative and/or commutative operations, monoid of traces (words with partial commutations).

Recognizable sets: finite signatures

$\mathbf{M}=<\mathrm{M},\left(\mathrm{f}_{\mathbf{M}}\right)_{\mathrm{f}} \in \mathrm{F}>$: an F -algebra where F is finite.
Definition : $\mathrm{L} \subseteq \mathrm{M}$ is (M -)recognizable if it is a union of equivalence classes of a finite congruence \approx on \mathbf{M}.

Congruence $=$ equivalence relation such that:

$$
m \approx m^{\prime} \quad \text { and } \quad p \approx p^{\prime} \Rightarrow f_{M}(m, p) \approx f_{M}\left(m^{\prime}, p^{\prime}\right)
$$

Finite means that \approx has finitely many classes $(M / \approx$ is finite $)$.
Equivalently, $L=h^{-1}(D)$ for a homomorphism $h: \mathbf{M} \rightarrow \mathbf{A}$, where
A is a finite F -algebra and $\mathrm{D} \subseteq \mathrm{A}$.
$\operatorname{REC}(\mathbf{M})=$ the recognizable subsets of \mathbf{M}. This notion is relative to \mathbf{M} (not only to the underlying set M). Well-defined in every algebra, without any automaton.

Property	EQ (finite sig.)	REC (finite sig.)		
closure for \cup	yes	yes		
closure for $\cap,-$	no	yes		
$L_{\text {eq }} \cap \mathrm{K}_{\text {rec }} \in \mathrm{EQ}$		yes		
closure for hom, operations of F	yes	no		
closure for hom ${ }^{-1}$			\quad no	yes
:---				
comparison				
membership (input given by a term)				
undecidable				
emptyness				

For graphs : The two robust (in a precise logical and algebraic sense) graph algebras have countably infinite signatures.

No problem for equational sets because each equation system uses a finite signature, hence they are equational in a finitely generated subalgebra.

Recognizability requires an adapted definition. Below in abstract form; the application to graphs will come soon.

Recognizable sets:infinite signatures

$$
\mathbf{M}=<M,\left(f_{M}\right)_{f} \in F>: \text { an } F \text {-algebra where } F \text { is countably infinite. }
$$

F, M, the functions f_{M} are effectively given (encoded by integers in a computable way).

Each $m \in M$ has a type $\pi(m)$ in a countable, effectively given set.
π is a homomorphism :

$$
\pi\left(f_{M}\left(m, m^{\prime}\right)\right)=\pi_{f}\left(\pi(m), \pi\left(m^{\prime}\right)\right) \text { for some function } \pi_{f} \text { on types. }
$$

For defining the recognizability of a set L, we require that \approx is
type preserving: $\quad \mathrm{m} \approx \mathrm{m}^{\prime} \Rightarrow \pi(\mathrm{m})=\pi\left(\mathrm{m}^{\prime}\right)$,
locally finite : it has finitely many classes of each type,
and L is a union of classes (possibly of different types).

Property	EQ	REC finite sign.	REC infinite sign.
closure \cup	yes	yes	yes
closure $\cap,-$	no	yes	yes
$\mathrm{L}_{\text {eq }} \cap \mathrm{K}_{\text {rec }} \in \mathrm{EQ}$		yes	yes
hom, ops of F	yes	no	no
hom $^{-1}$	no	yes	yes
comparison	undecidable	decidable	decidable
membership			
(given by a term)			with EQ

2. A graph algebra \& clique-width.

Cographs: Undirected graphs generated by:
\oplus (disjoint union) and \otimes (complete join) from
a : vertex without edges (up to isomorphism);
\otimes is defined by: $\mathrm{G} \otimes H=G \oplus H$ plus all undirected edges between G and H ,

Cographs are defined by the equation : $\mathrm{C}=\mathrm{C} \oplus \mathrm{C} \cup \mathrm{C} \otimes \mathrm{C} \cup\{\mathrm{a}\}$ Example :
$(\mathbf{a} \otimes \mathbf{a} \otimes$
a) \otimes $\otimes((\mathbf{a} \otimes$ a) \oplus a)

The graph algebra G (that yields clique-width)
Graphs are simple, directed or not.
We use labels: a, b, c, \ldots, d.
Each vertex has one label ; the labelling defines a partition of the vertex set.
A vertex labelled by a is an a-port.

One binary operation: disjoint union : \oplus

If G and H are not disjoint, we replace H by an isomorphic disjoint copy to define $\mathrm{G} \oplus \mathrm{H}$. Hence $\mathrm{G} \oplus \mathrm{H}$ is well-defined up to isomorphism.

No such problem in a "decomposition approach".

Unary operations: Edge-addition

Addition of undirected edges: Adda $_{a, b}(\mathrm{G})$ is G augmented with edges between every a-port and every b-port.

$$
\mathrm{H}=\operatorname{Adda}, b(\mathrm{G}) \text {; only } 5 \text { edges added }
$$

The number of added edges depends on the argument graph.

Addition of directed edges: $\overrightarrow{\operatorname{Adda}_{a}, b}(\mathrm{G})$ is G augmented with edges from every a-port to every b-port.

Vertex relabellings:
Relaba $\longrightarrow b(\mathrm{G}):=\mathrm{G}$ where each a-port is made into a b-port.
Nullary operations: basic graphs are those with a single vertex.

Every graph with n vertices is the value of a term using $\leq \mathrm{n}$ labels.

A graph G has clique-width $\leq k \Leftrightarrow$ it can be constructed from basic graphs with the operations $\oplus, A d d a, b$ (or $\overrightarrow{A d d a}, b$) and

Relaba $\longrightarrow b$ by using $\leq k$ labels.
Its clique-width $\operatorname{cwd}(\mathrm{G})$ is the smallest such k.

Example : Cliques have clique-width 2 (and unbounded tree-width)

K_{n} is defined by t_{n} where $\mathrm{t}_{\mathrm{n}+1}=$ Relabb $\rightarrow \boldsymbol{a}\left(\right.$ Adda, $b\left(\mathrm{t}_{\mathrm{n}} \oplus \mathbf{b}\right)$)

Cliques are defined by the equation:

$$
\mathrm{K}=\text { Relabb } \longrightarrow a(\text { Adda, } b(\mathrm{~K} \oplus \mathbf{b})) \cup \mathbf{a}
$$

Examples of graphs of bounded clique-width:

An undirected graph is a cograph \Leftrightarrow it has clique-width at most 2.
Distance hereditary graphs have clique-width at most 3. Cactuses (or cactii ?) : biconnected components are cycles.

Examples of graphs of unbounded clique-width:
Planar graphs (even of degree 3), Interval graphs.

Fact: Unlike tree-width, clique-width is sensible to edge directions:
Cliques have clique-width 2 but tournaments have unbounded clique-width.
3. Monadic second-order (MSO) logic \& recognizability.

Graphs as logical structures :

$$
\begin{aligned}
& G=\left(V_{G}, \operatorname{edg}_{G}(., .)\right) \\
& \operatorname{edg}_{G}(u, v) \Leftrightarrow \text { there is an edge } u \rightarrow v(\text { or } u-v) . \\
& \text { parallel edges are not distinguished. }
\end{aligned}
$$

Monadic second-order logic = First-order logic extended with (quantified) set variables denoting sets of vertices.
"A set of edges" is (here) a binary relation over V_{G}.
Typical MSO properties: k-colorability, transitive closure, properties of paths, connectivity, planarity

Examples : $\mathrm{G}=\left(\mathrm{V}_{\mathrm{G}}\right.$, edg $\left._{\mathrm{G}}(.,).\right)$, undirected
Syntax is clear; shorthands are used (example $\mathrm{X} \cap \mathrm{Y}=\varnothing$).
(1) G is 3 -colorable :NP-complete property.

$$
\begin{aligned}
& \exists X, Y(X \cap Y=\varnothing \wedge \\
& \forall u, v\{\text { edg(} u, v) \Rightarrow \\
& \quad[(u \in X \Rightarrow v \notin X) \wedge(u \in Y \Rightarrow v \notin Y) \wedge \\
& (u \notin X \cup Y \Rightarrow v \in X \cup Y)]
\end{aligned}
$$

(2) G is not connected:

$$
\exists Z(\exists x \in Z \wedge \exists y \notin Z \wedge(\forall u, v(u \in Z \wedge e d g(u, v) \Rightarrow v \in Z))
$$

(3) Transitive and reflexive closure : $\operatorname{TC}(\mathrm{R} ; \mathrm{x}, \mathrm{y})$:
$\forall X\{$ " X is R-closed" $\wedge x \in X \Rightarrow y \in X\}$
where " X is R-closed" is defined by:
$\forall u, v(u \in X \wedge R(u, v) \Rightarrow v \in X)$
The relation R can be defined by a formula. Here :
$\forall x, y(x \in Y \wedge y \in Y \Rightarrow T C(" u \in Y \wedge v \in Y \wedge e d g(u, v) " ; x, y)$
Y is free in R. This formula expresses that $G[Y]$ is connected.
(4) Minors: G contains a fixed graph H as a minor with $\mathrm{V}_{\mathrm{H}}=\{1, \ldots, \mathrm{p}\}$: there exist disjoint sets of vertices X_{1}, \ldots, X_{p} in G
such that each $G\left[X_{i}\right]$ is connected and, whenever $\mathrm{i}-\mathrm{j}$ in H , there is an edge between X_{i} and X_{j}.
(5) Planarity is expressible : no minor K_{5} or $\mathrm{K}_{3,3}$ (Kuratowski-Wagner).
(6) Has a cycle (for a graph without loops):
$\exists x, y, z[e d g(x, y) \wedge e d g(y, z) \wedge$ "there is a path from x to z avoiding $y "]$
(7) Is a tree: connected without cycles.

Non-expressible properties

- G is isomorphic to $K_{p, p}$ for some p :checking equal cardinality of two sets "needs" quantification over binary relations in order to find a bijection.
- G has a nontrivial automorphism, or has all vertices of same degree.
- Hamiltonicity needs edge-set quantifications.

Remark : Adding an equicardinality set predicate would spoil everything.

Two problems for a class C of finite graphs and a logic
Decidability : does a given sentence hold in some (or all) graphs of C ?
Model-checking is decidable : what is its time or space complexity ?

Language, class	Decidability	Model-checking
FO, all graphs	undecidable	polynomial time
MSO, clique-width $\leq k$	decidable	cubic time
MSO, unbounded cwd.	undecidable	Conjecture $:$ not FPT (${ }^{*}$)

(*) A related fact is proved by S. Kreutzer (LICS 2010) for unbounded treewidth and MSO formulas with edge quantifications. (The exact statement is very technical.)

Fixed-Parameter Tractability (FPT) for model-checking

An algorithm is FPT if it takes time $f(k) . n^{C}$ for some fixed function f and constant C . The size of the input is n . The value k is a parameter of the input :
degree, diameter, tree-width, clique-width, etc.
The "hard part" of the time complexity depends on some function f (arbitrary in the definition; in practice, it must be "limited"; the algorithm is then usable for small values of k).

Example : 3-colorability is NP-complete, even for planar graphs of degree ≤ 4 (Dailey, 1980). Degree is not a good parameter, but tree-width and cliquewidth are.

MSO logic \& recognizability : main results

For a sentence $\varphi, \operatorname{Mod}(\varphi)$ is the set of finite models of φ.

1. Recognizability theorem: For every MSO sentence φ, $\operatorname{Mod}(\varphi)$ is recognizable in the graph algebra \mathbf{G}. The type $\pi(\mathrm{G})$ of G is the set of its vertex labels.
2. Weak recognizability theorem : For every MSO sentence φ, for every $k, \operatorname{Mod}(\varphi) \cap \operatorname{CWD}(\leq k)$ is recognizable in $G\left[F_{k}\right]$, the subalgebra of G generated by the finite signature F_{k} of operations using labels $1, \ldots, k$.
3. The recognizability theorem is not a consequence of the weak one. (The set K of kytes, the nXn grids with a "tail" of length n, is not recognizable but $K \cap \operatorname{CWD}(\leq k)$ is finite for each k, hence, recognizable).
4. Every set of square grids is recognizable. As there are uncountably many such sets, there is no characterization of recognizable sets of graphs by logical formulas or automata.
5. For algorithmic purposes, the weak theorem is enough. Its "Büchi-style" proof is given below, in terms of finite, implementable automata.
6. Proofs of the full theorem:

- either a "Feferman-Vaught-Shelah-style" proof manipulating "theories" (the set of formulas of quantifierheight $\leq \mathrm{k}$ valid in a graph) from which a congruence is defined (two graphs have same theory).
- either a "Büchi-style" proof constructing infinite, "flyautomata" ("automates programmés") that are still implementable.

4. Construction and use of automata

Steps \longrightarrow are done "once for all", independently of G
$\mathrm{A}(\varphi, \mathrm{k})$: finite automaton on terms t .

Construction of $A(\varphi, k)$ ("Büchi-style" proof).

$\mathrm{k}=$ the number of vertex labels $=$ the bound on clique-width
$\mathrm{F}\left(=\mathrm{F}_{\mathrm{k}}\right)=$ the corresponding set of operations and constants : $\mathrm{a}, \varnothing, \oplus$, Add $_{a, b}, \overrightarrow{A_{d d}}, b$, Relab $a \longrightarrow b$
$\mathrm{G}(t)=$ the graph defined by a term t in $\mathbf{T}(\mathrm{F})$.
Its vertices are (in bijection with) the occurrences of the nullary symbols in t that are not \varnothing.

Example

Terms are equipped with Booleans that encode assignments of vertex sets $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$ to the free set variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ of MSO formulas (formulas are written without first-order variables):

1) we replace in Feach a by the nullary symbol
(a, $\left(w_{1}, \ldots, w_{n}\right)$) where $w_{i} \in\{0,1\}$: we get $F^{(n)}$
(only nullary symbols are modified);
2) a term s in $\mathbf{T}\left(\mathrm{F}^{(n)}\right)$ encodes a term t in $\mathbf{T}(\mathrm{F})$ and an assignment of sets $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$ to the set variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$:
if u is an occurrence of $\left(a,\left(w_{1}, . ., w_{n}\right)\right)$, then $w_{i}=1$ if and only if $u \in V_{i}$.
3) s is denoted by $t *\left(\mathrm{~V}_{1}, \ldots, \mathrm{~V}_{n}\right)$

Example (continued)

Term $\quad t *\left(\mathrm{~V}_{1}, \mathrm{~V}_{2}\right)$

By an induction on φ, we construct for each $\varphi\left(X_{1}, \ldots, X_{n}\right)$ a finite (bottom-up) deterministic automaton $\mathrm{A}\left(\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right), k\right)$ that recognizes:

$$
\mathrm{L}\left(\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)\right):=\left\{t *\left(\mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right) \in \mathbf{T}\left(\mathrm{F}^{(\mathrm{n})}\right) /\left(\mathrm{G}(t), \mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right) \mid=\varphi\right\}
$$

Theorem : For each sentence φ, the automaton $A(\varphi, k)$ accepts in time $\mathrm{f}(\varphi, \mathrm{k}) .|t|$ the terms t in $\mathbf{T}(\mathrm{F})$ such that $\mathrm{G}(t) \mid=\varphi$

It gives a fixed-parameter linear model-checking algorithm for input t, and a fixed-parameter cubic one if the graph has to be parsed.

The inductive construction of $\mathrm{A}(\varphi, \mathrm{k})$

Atomic formulas : discussed below.

For \wedge : product of two automata (deterministic or not)

For \vee : union of two automata (or product of two complete automata; product preserves determinism)

For negation: exchange accepting / non-accepting states for a complete deterministic automaton

Quantifications: Formulas are written without \forall

$$
\begin{aligned}
& L\left(\exists X_{n+1} \cdot \varphi\left(X_{1}, \ldots, X_{n+1}\right)\right)=\operatorname{pr}\left(L\left(\varphi\left(X_{1}, \ldots, X_{n+1}\right)\right)\right. \\
& A\left(\exists X_{n+1} \cdot \varphi\left(X_{1}, \ldots, X_{n+1}\right), k\right)=\operatorname{pr}\left(A\left(\varphi\left(X_{1}, \ldots, X_{n+1}\right), k\right)\right.
\end{aligned}
$$

where pr is the projection that eliminates the last Boolean; \rightarrow a non-deterministic automaton.

Tools using inverse homomorphisms of automata: from $A\left(\varphi\left(X_{1}, X_{2}\right), k\right)$, we get $A\left(\varphi\left(X_{4}, X_{3}\right), k\right)$, from $A\left(\varphi\left(X_{1}, X_{2}\right), k\right)$, we get $A\left(\varphi\left(X_{3}, X_{1} \cup\left(X_{2} \backslash X_{4}\right)\right), k\right)$, from $A(\varphi, k))$, we get $A\left(\varphi\left[X_{1}\right], k\right)$.

Some tools for constructing automata
Substitutions and inverse images (cylindrifications).

1) If we know $A\left(\varphi\left(X_{1}, X_{2}\right), k\right)$, we get $A\left(\varphi\left(X_{4}, X_{3}\right), k\right)$ because :

$$
L\left(\varphi\left(X_{4}, X_{3}\right)\right)=h^{-1}\left(L\left(\varphi\left(X_{1}, X_{2}\right)\right)\right) \quad \text { where }
$$

h maps $\left(a,\left(w_{1}, w_{2}, w_{3}, w_{4}\right)\right)$ to $\left(a,\left(w_{4}, w_{3}\right)\right)$. We take

$$
A\left(\varphi\left(X_{4}, X_{3}\right), k\right)=h^{-1}\left(A\left(\varphi\left(X_{1}, X_{2}\right)\right), k\right)
$$

This construction preserves determinism and the number of states.
 with h mapping $\left(a,\left(w_{1}, w_{2}, w_{3}, w_{4}\right)\right)$ to $\left(a,\left(w_{3}, w_{1} \vee\left(w_{2} \wedge \neg w_{4}\right)\right)\right)$

Relativization to subsets by inverse images.

If φ is a closed formula expressing a graph property P, its relativization $\varphi\left[\mathrm{X}_{1}\right]$ to X_{1} expresses that the subgraph induced on X_{1} satisfies P. To construct it, we replace recursively

$$
\exists \mathrm{y.} \theta \text { by } \exists \mathrm{y} . \mathrm{y} \in \mathrm{X}_{1} \wedge \theta, \text { etc } \ldots
$$

However, there is an easy transformation of automata:
Let h map $(a, 0)$ to \varnothing and $(a, 1)$ to a.

$$
L\left(\varphi\left[X_{1}\right]\right)=h^{-1}(L(\varphi))
$$

Hence:

$$
A\left(\varphi\left[X_{1}\right], k\right):=h^{-1}(A(\varphi, k))
$$

The inductive construction (continued) :

For atomic formulas and basic graph properties $\varphi\left(X_{1}, \ldots, X_{n}\right)$, we build complete deterministic automata over $F^{(n)}$ for recognizing the set of terms: $\quad t *\left(\mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right)$ in $\mathrm{L}\left(\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)\right)$.

Intuition: in all cases, the state reached at node u represents a finite information $\mathrm{q}(\mathrm{u})$ about the graph $\mathrm{G}(t / \mathrm{u})$ and the restriction of $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$ to the vertices below $\mathrm{u} \quad$ (vertices = leaves)

1) if $u=f(v, w)$, we want that $q(u)$ is defined from $q(v)$ and $q(w)$ by a fixed function: $\quad \rightarrow$ the transition function;
2) whether $\left(G(t), V_{1}, \ldots, V_{n}\right)$ satisfies $\varphi\left(X_{1}, \ldots, X_{n}\right)$ must be checkable from $\mathrm{q}($ root $) \quad \rightarrow$ the accepting states.

Atomic and basic formulas :
$X_{1} \subseteq X_{2}, \quad X_{1}=\varnothing, \quad \operatorname{Single}\left(X_{1}\right)$,
$\operatorname{Card}_{\mathrm{p}, \mathrm{q}}\left(\mathrm{X}_{1}\right)$: cardinality of X_{1} is $=\mathrm{p}$ mod. q ,
Card ${ }_{<q}\left(X_{1}\right)$: cardinality of X_{1} is $<q$.
\rightarrow Easy constructions of automata with few states:
respectively $2,2,3, q, q+1$ states.
Example : for $\mathrm{X}_{1} \subseteq \mathrm{X}_{2}$, the term must have no constant (a, 10).

Atomic formula : edg $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ for directed edges
edg $\left(X_{1}, X_{2}\right)$ means: $X_{1}=\{x\} \wedge X_{2}=\{y\} \wedge$ edg (x, y)
Vertex labels belong to a set C of k labels.
$k^{2}+k+3$ states: $0, O k, a(1), a(2), a b$, Error, for $a, b \in C, a \neq b$
Meaning of states (at node u of t; its subterm t / u defines $G(t / u) \subseteq G(t)$).
$0 \quad: x_{1}=\varnothing, x_{2}=\varnothing$
Ok Accepting state: $X_{1}=\{v\}, X_{2}=\{w\}$, edg (v, w) in $G(t / u)$
$\mathrm{a}(1) \quad: \mathrm{X}_{1}=\{\mathrm{v}\}, \mathrm{X}_{2}=\varnothing$, v has label a in $\mathrm{G}(\mathrm{t} / \mathrm{u})$
$a(2) \quad: X_{1}=\varnothing, X_{2}=\{w\}$, w has label a in $G(t / u)$
$a b: X_{1}=\{v\}, X_{2}=\{w\}$, v has label a, w has label b (hence $v \neq w$) and $\neg e d g(v, w)$ in $G(t / u)$
Error : all other cases

Transition rules

For the constants based on a:
$(a, 00) \rightarrow 0 ;(a, 10) \rightarrow \mathrm{a}(1) ;(\mathrm{a}, 01) \rightarrow \mathrm{a}(2) ;(\mathrm{a}, 11) \rightarrow$ Error

For the binary operation \oplus : ($\mathrm{p}, \mathrm{q}, \mathrm{r}$ are states)

If $p=0$ then $r:=q$
If $q=0$ then $r:=p$
If $p=a(1), q=b(2)$ and $a \neq b$ then $r:=a b$
If $p=b(2), q=a(1)$ and $a \neq b$ then $r:=a b$
Otherwise r := Error

For unary operations $\overrightarrow{A d d}_{\mathrm{a}, \mathrm{b}}$

If $p=a b$ then $r:=O k$ else $r:=p$

For unary operations Relab $\mathrm{a}_{\mathrm{a}} \longrightarrow \mathrm{b}$

$$
\begin{array}{lll}
\text { If } p=a(i) \text { where } i=1 \text { or } 2 & \text { then } r:=b(i) \\
\text { If } p=a c \text { where } c \neq a \text { and } c \neq b & \text { then } r:=b c \\
\text { If } p=c a \text { where } c \neq a \text { and } c \neq b & \text { then } r:=c b
\end{array}
$$

If $\mathrm{p}=$ Error or O or Ok or $\mathrm{c}(\mathrm{i})$ or cd or dc where $\mathrm{c} \neq \mathrm{a}$ then $\quad r:=p$

We get also the Recognizability Theorem:

$A(\varphi, k)$ is a subautomaton of $A(\varphi, k+1)$. The deterministic automata $A(\varphi, k)$ can be merged into a single infinite deterministic automaton $A(\varphi)$ over F (the countable signature of all graph operations).

The state $\mathrm{q}(\mathrm{t})$ reached by $\mathrm{A}(\varphi)$ on any $\mathrm{t} \in \mathrm{T}(\mathrm{F})$ belongs to a finite set built from $\pi(G(t))$, the type of the graph $G(t)$ defined by t.

$$
\text { Example of such a set : }\{O k, \text { Error }\} \cup P(\pi(\mathrm{G}(\mathrm{t})) \times \pi(\mathrm{G}(\mathrm{t}))) \text {. }
$$

If t and t^{\prime} define isomorphic graphs, then $q(t)=q\left(t^{\prime}\right)$.
The (global) congruence proving recognizability can be taken:

$$
\mathrm{G} \approx \mathrm{G}^{\prime} \quad \leftrightarrow \mathrm{q}(\mathrm{t})=\mathrm{q}\left(\mathrm{t}^{\prime}\right) \text { where } \mathrm{G}=\mathrm{G}(\mathrm{t}) \text { and } \mathrm{G}^{\prime}=\mathrm{G}\left(\mathrm{t}^{\prime}\right)
$$

Practical difficulties and remedies.

Parsing: 1. Checking if a graph has clique-width $\leq k$ is NP-complete (with k in the input ; Fellows et al.)
2. The cubic approximate parsing algorithm (by Oum et al.) based on rank-width is difficult to implement.
3. Szeider and Heule reduce to SAT the computation of cliquewidth and get exact values (and the corresponding terms) for graphs with at most 30 vertices and clique-width at most 12.
4. For certain classes of graphs of bounded clique-width defined by forbidden induced subgraphs, optimal clique-width terms can be constructed in polynomial time, by using, in many cases, modular decomposition.
5. Heuristics remain to be found.

Sizes of automata:

1. The number of states of $A(\varphi, k)$ is bounded by an h-iterated exponential where h is the number of quantifier alternations of φ.
2. There is no alternative construction giving a fixed bound on nestings of exponentiations (Meyer \& Stockmeyer, Frick \& Grohe).
3. The construction by induction on the structure of φ may need intermediate automata of huge size, even if the unique minimal deterministic automaton equivalent to $A(\varphi, \mathrm{k})$ has a manageable number of states.

An issue : Fly-automata (to be presented by Irène Durand)

States and transitions are not listed in huge tables:
they are specified (in uniform ways for all k) by "small" programs. These automata can be nondeterministic.

Example of a state for connectedness:

$$
q=\{\{a\},\{a, b\},\{b, c, d\},\{b, d, f\}\},
$$

$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}$ are vertex labels; q is the set of types of the connected components of the current graph. (type $(\mathrm{H})=$ set of labels of its vertices)

Some transitions:

$$
\begin{aligned}
& \text { Add }_{\mathrm{a}, \mathrm{c}}: \quad \mathrm{q} \longrightarrow\{\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\},\{\mathrm{b}, \mathrm{~d}, \mathrm{f}\}\}, \\
& \text { Relab }_{\mathrm{a}} \rightarrow \mathrm{~b}: \mathrm{q} \longrightarrow\{\{\mathrm{~b}\},\{\mathrm{b}, \mathrm{c}, \mathrm{~d}\},\{\mathrm{b}, \mathrm{~d}, \mathrm{f}\}\}
\end{aligned}
$$

Transitions for \oplus : union of sets of types.

Using fly-automata works for formulas without quantifier alternation but that can use "new" atomic formulas for "basic" properties

Examples: p-acyclic colorability
$\exists X_{1}, \ldots, X_{p}\left(\right.$ Partition $\left(X_{1}, \ldots, X_{p}\right) \wedge \operatorname{NoEdge}\left(X_{1}\right) \wedge \ldots \ldots \wedge \operatorname{NoEdge}\left(X_{p}\right) \wedge \ldots$
$\left.\ldots \ldots . \wedge \operatorname{NoCycle}\left(X_{i} \cup X_{j}\right) \wedge \ldots\right)$
$\quad\left(\right.$ all $i<j ;$ set terms $X_{i} \cup X_{j}$ avoid some quantifications $)$.

Minor inclusion : H simple, loop-free. Vertices $(H)=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{p}}\right\}$

$$
\begin{aligned}
& \exists X_{1}, \ldots, X_{p}\left(\operatorname{Disjoint}\left(X_{1}, \ldots, X_{p}\right) \wedge \operatorname{Conn}\left(X_{1}\right) \wedge \ldots \wedge \operatorname{Conn}\left(X_{p}\right) \wedge \ldots\right. \\
& \left.\quad \ldots \wedge \operatorname{Link}\left(X_{i}, X_{j}\right) \wedge \ldots\right)
\end{aligned}
$$

Existence of "holes" : odd induced cycles (to check perfectness; one checks "anti-holes" on the edge-complement of the given graph).

Skip : Only for questions.

Appendix: Graph operations that characterize tree-width
Graphs have distinguished vertices called sources, (or terminals or boundary vertices) pointed to by source labels from a finite set : $\{a, b, c, \ldots, d\}$.

Binary operation(s) : Parallel composition
$\mathrm{G} / / \mathrm{H}$ is the disjoint union of G and H and sources with same label are fused.
(If G and H are not disjoint, we use a copy of H disjoint from G).

G

H

Unary operations :

Forget a source label
Forgeta (G) is G without a-source: the source is no longer distinguished (it is made "internal").
Source renaming :
Ren $a \leftrightarrow b(\mathrm{G})$ exchanges source labels a and b (replaces a by b if b is not the label of any source)

Nullary operations denote basic graphs :1-edge graphs, isolated vertices.
Terms over these operations define (or denote) graphs (with or without sources). They can have parallel edges.

Example: Trees

Constructed with two source labels, r (root) and n (new root).
Fusion of two trees at their roots :

H

G // H

Extension of a tree by parallel composition with a new edge, forgetting the old root, making the "new root" as current root :

$$
\mathrm{e}=r \bullet \longrightarrow n
$$

Ren $_{n} \longleftrightarrow r\left(\right.$ Forgetr $\left._{r}(\mathrm{G} / / \mathrm{e})\right)$

G

Trees are defined by : $\mathrm{T}=\mathrm{T} / / \mathrm{T} \cup$ extension $(\mathrm{T}) \cup r$

Relation to tree-decompositions and tree-width

Dotted lines ---- link copies of a same vertex.
Width = max. size of a box -1 . Tree-width $=$ min. width of a tree-dec.

Proposition: A graph has tree-width $\leq \mathrm{k} \Leftrightarrow$ it can be constructed from edges by using the operations $/ /$, Ren $a_{\leftrightarrow} b$ and Forgeta with $\leq k+1$ labels a,b,....

Proposition: Bounded tree-width implies bounded clique-width

$$
\left(\mathrm{cwd}(\mathrm{G}) \leq 2^{2 \mathrm{twd}(\mathrm{G})+1} \text { for } \mathrm{G}\right. \text { directed), but not conversely. }
$$

From an algebraic expression to a tree-decomposition
Example : cd // Ren $\operatorname{Rasc} \mathrm{c}\left(\mathrm{ab} / /\right.$ Forget $\left._{\mathrm{b}}(\mathrm{ab} / / \mathrm{bc})\right)$
(ab denotes an edge from a to b)

The tree-decomposition associated with this term.

