
 

 

Recognizable  sets  of  graphs :  

algebraic  and  logical  aspects 
 

Bruno  Courcelle 
 

LaBRI  &  Université  de  Bordeaux  (ex -1 !)     
 

References:   

 B.C. and J. Engelfriet : Graph  structure  and  monadic second-order  logic,  

Cambridge University Press, 2012. 
 

  B.C. and I. Durand: Automata for the verification of monadic second-order  

    graph properties. J. Applied Logic 10(4): 368-409 (2012) 



 2

 

Summary 

 

1. Recognizable  &  equational sets :  

     an algebraic setting for language theory. 
 

2. A graph algebra with infinitely many operations & clique-width. 
 

3. Monadic second-order logic, recognizability & fixed-parameter 

tractable model-checking. 
 

4. Constructing automata. 



 3

Two  ways  of  considering  graphs       
 

 

 A  graph  is  a  logical  structure ; 

   graph  properties  can  be  expressed  by  logical  formulas 

   (FO = first-order, MSO = monadic second-order) 
 

 

 A  graph  is  an  algebraic object,  

   an  element  of  an  algebra  of  graphs  

   (similar  to  words as elements  of  monoids) 



 4

Graph  algebras (finite graphs, up to isomorphism, as algebraic objects): 

 Equational sets  �  context-free sets of graphs, without needing to  

      define graph rewritings 

 Recognizable sets  �  defined without automata  

      (there is no “good” notion of graph automaton) 

 Algebraic understanding of combinatorial notions:  

      tree-width, path-width, rank-width. 

 Clique-width:   a width measure defined algebraically. 
 

The two  graph algebras that fit to MSO logic yield: 

 Hyperedge-replacement gragras, tree-width, FPT MSO2 model-

checking. 

 Vertex-replacement gragras, clique-width, FPT MSO-model-checking. 



 5

 

Below:   the algebra   G  that yields  clique-width. 

 

 The automata for model-checking MSO formulas on graphs of 

bounded clique-width are easier to build than those for graphs of  bounded 

tree-width. 

 And : all results about model-checking of MSO2 formulas (with edge set 

quantifications) for graphs of bounded tree-width follow from the ones for 

graphs of bounded clique-width : we replace a graph G by its incidence 

graph  Inc(G), we use  :    cwd( Inc(G) )  <  twd(G) + 3       (T. Bouvier, LaBRI) 

and we  note that  MSO2 over G  reduces to MSO over Inc(G). 



 6

1. Recognizable  &  equational sets :  

     an algebraic setting for Language Theory. 
 

  Equational  sets  (generalizing  context-free  languages) 
 

  Equation  systems  =  Context-Free  (Graph)  Grammars   
 

  For   words,   the  set  of  context-free  rules  

X  → a X Y ;    X  → b  ;  Y  → c Y Y X ;   Y  → a 
 

  is  equivalent  to  the system  of  two  equations: 

    X  =  a X Y     ∪    { b }  

    Y  =  c Y Y X    ∪        { a } 
 

  where   X   is  the language generated  by   X  (idem for Y  and  Y). 



 7

 

 In  arbitrary  algebras  we consider  equation  systems  like: 

  X  =  f( k( X  ), Y  )     ∪   { b }  

  Y  =  f( Y , f( g(Y ), m( X )))   ∪   { a } 

where : 

 f      is  a  binary  operation,   

g, k, m    are  unary operations,   

a, b     denote  basic objects.  
 

An equational set  is  a component  of  the least  solution  of such  an  

equation system.   This notion  is  well-defined  in  any  algebra. 



 8

The  general  algebraic  setting 
 

F :  a  finite  or  countably  infinite  set  of  operation  symbols  with 

fixed arities, called  a  signature. 

M  = < M, (fM) f ∈ F >  :   an  F-algebra. 
 

All signatures and algebras are finite or countable and effectively given 

(that  is : encoded by finite words in a computable way). 

 

Examples : (words, trees and graphs will be finite). 

 Free monoid of words, 

 free algebra of terms, 

 algebra  of  terms with associative and/or  commutative operations, 

 monoid  of  traces (words with partial commutations). 
 



 9

 

Recognizable  sets : finite signatures 

M = < M, (fM)f ∈ F > :  an  F-algebra  where  F  is  finite . 

Definition :  L  ⊆ M   is  (M-)recognizable  if  it  is  a  union  of  equivalence  

  classes  of  a  finite  congruence   ≈   on  M. 

  Congruence   =  equivalence  relation  such  that : 

m ≈ m’   and     p ≈ p’     ⇒   fM(m,p) ≈ fM(m’,p’).   

  Finite  means  that  ≈  has  finitely  many  classes (M / ≈  is  finite ). 

Equivalently, L = h-1(D)  for  a  homomorphism  h :  M → A,  where  

 A  is  a  finite  F-algebra  and  D ⊆  A.  

   

REC(M)  =  the  recognizable  subsets  of  M.  This  notion  is  relative  to  M  (not  

only to the  underlying  set  M). Well-defined in every algebra, without any automaton. 



 10

 

Property EQ  (finite  sig.) REC  (finite sig.) 

closure  for  ∪ yes yes 

closure  for  ∩,  - no yes 

Leq ∩ Krec ∈ EQ  yes 

closure for hom,   

operations  of  F  

yes no 

closure for hom-1 no yes 

comparison   ⊆   EQ (algebra generated by F) 

membership (input  

given  by  a  term) 

undecidable decidable 

emptyness decidable decidable 



 11

 For  graphs : The  two  robust (in a precise logical and algebraic sense)  

graph  algebras  have  countably  infinite  signatures. 

 

 No problem for equational sets  because  each  equation system uses 

a  finite signature, hence  they are  equational in a   finitely generated 

subalgebra. 

 

 Recognizability requires an adapted definition. Below in abstract form; the 

application to graphs will come soon. 



 12

Recognizable  sets : infinite signatures 
 

M = < M, (fM)f ∈ F >  : an  F-algebra  where  F  is  countably infinite. 

F, M, the functions fM are effectively given (encoded by integers in a computable 

way).  

 Each m ∈ M  has  a  type  π(m)  in a countable, effectively given set. 

 π is a homomorphism :  

   π(fM(m,m’))  =  
π
f(π(m), π(m’))  for some  function  

π
f  on types. 

 For defining the recognizability of a  set   L, we  require  that   ≈  is   

 type  preserving  :    m ≈ m’    ⇒  π(m)  =  π(m’), 

 locally  finite  :  it  has  finitely  many  classes  of  each  type, 

 and  L  is  a  union  of  classes      (possibly  of  different  types). 



 13

 

Property EQ REC finite sign. REC infinite sign. 

closure   ∪ yes yes yes 

closure   ∩,  - no yes yes 

Leq ∩Krec ∈ EQ  yes yes 

hom,   ops  of  F yes no no 

hom-1 no yes yes 

comparison  ⊆ EQ incomparable 

with   EQ 

membership  

(given by a term) 

undecidable decidable decidable 

emptyness decidable decidable undecidable 



 14

2.  A  graph  algebra  &  clique-width. 
 
 
 

Cographs :  Undirected  graphs  generated  by: 

 ⊕  (disjoint  union)  and  ⊗ (complete  join)  from   

 a  :  vertex without edges  (up  to  isomorphism);    

  ⊗   is  defined  by : G ⊗ H  = G ⊕ H  plus  all     

  undirected  edges  between  G  and  H, 
 

Cographs are defined  by the equation  :  C  =  C ⊕ C   ∪   C ⊗  C   ∪  { a } 

Example :  
 
 
(a ⊗ a ⊗ a) ⊗ ((a ⊗ a) ⊕ a) 

 
 



 15

The graph  algebra  G  (that yields  clique-width ) 
 

 Graphs  are  simple, directed  or  not.   

 We use labels:  a, b, c, ..., d.   

 Each vertex has  one  label ; the labelling defines a partition of the vertex set. 

 A vertex labelled  by a  is an  a-port.      

 

One  binary  operation :  disjoint  union  :   ⊕ 

 

 If  G  and  H  are not disjoint, we replace  H  by  an  isomorphic  disjoint  copy  

to  define  G ⊕ H.   Hence   G ⊕ H  is  well-defined  up  to  isomorphism.   

 No such  problem  in  a  “decomposition  approach”. 



 16

Unary  operations:  Edge-addition   
 

 Addition of undirected edges:  Adda,b(G) is  G  augmented  with  edges  

between   every  a-port  and   every  b-port. 

 

 

      H = Adda,b(G) ; only  5  edges added  

The   number  of  added  edges  depends  on  the  argument graph. 



 17

 Addition of directed edges:  Adda,b(G)  is  G  augmented  with  edges  from  

every  a-port  to  every  b-port. 
 

Vertex  relabellings :  

Relaba       b(G) : =  G  where  each a -port  is made  into  a  b-port. 

 

Nullary  operations:  basic graphs are those  with  a  single  vertex. 

 

Every graph with n vertices is the value of a  term  using  < n labels. 
 

A graph  G  has  clique-width ≤  k  ⇔  it can be constructed from  basic  

graphs  with  the  operations ⊕, Adda,b  (or  Adda,b)  and   

Relaba      b by using  < k  labels.   

Its clique-width cwd(G)  is  the   smallest  such  k. 



 18

 Example  : Cliques  have  clique-width  2   (and   unbounded  tree-width) 

 

 

Kn  is   defined  by  tn  where  tn+1  =   Relabb      a( Adda,b(tn ⊕ b)) 

 

Cliques  are  defined  by  the  equation : 

K =  Relabb        a( Adda,b( K ⊕ b ) )  ∪  a  

 
 



 19

Examples  of  graphs  of  bounded  clique-width:  
 

 An  undirected  graph  is  a  cograph   ⇔    it  has   clique-width  at  most 2. 

  Distance  hereditary  graphs  have  clique-width  at  most  3.   

 Cactuses (or  cactii ?)  : biconnected  components  are  cycles. 

 

Examples  of  graphs  of  unbounded  clique-width:  
 

 Planar  graphs  (even  of  degree  3),  

 Interval graphs. 

 

Fact :   Unlike  tree-width, clique-width  is  sensible  to  edge directions :  

 Cliques have clique-width  2  but  tournaments  have unbounded  clique-width. 

 



 20

3.  Monadic second-order (MSO)  logic  &  recognizability. 
 

 

Graphs as  logical  structures  :  
 

  G  =  ( VG , edgG(.,.) )  

  edgG(u,v) ⇔  there is an edge  u � v (or u – v). 

  parallel  edges  are  not  distinguished.  

 
Monadic  second-order  logic  =  First-order  logic  extended  with  

(quantified)  set  variables denoting sets of vertices. 

“A  set  of  edges”  is  (here)  a  binary  relation  over  VG. 
 

Typical  MSO  properties : k-colorability, transitive closure,  properties of 

paths,  connectivity,  planarity   



 21

Examples  : G  =  ( VG , edgG(.,.) ),  undirected 
 

 Syntax  is  clear ; shorthands  are  used  (example  X ∩ Y = ∅ ). 
 
 
(1)  G  is  3-colorable  : NP-complete property. 

 

∃X,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  

    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 
      } ) 
 
 

(2)  G  is  not  connected : 
 
∃ Z ( ∃x ∈ Z  ∧  ∃y ∉ Z  ∧  (∀u,v (u ∈ Z  ∧  edg(u,v)  ⇒  v ∈ Z)  ) 
 



 22

(3)  Transitive  and  reflexive  closure  :   TC(R ; x, y) :   
 

 ∀ X { “X is R-closed”  ∧  x ∈ X  ⇒ y ∈ X  } 
 

       where   “X is R-closed”    is defined  by :   
  ∀u,v (u ∈ X  ∧  R(u,v) ⇒ v ∈ X)  
 

The  relation  R  can  be  defined   by  a   formula. Here : 
 

∀x,y (x ∈ Y  ∧  y ∈ Y ⇒   TC(“u ∈ Y  ∧ v ∈ Y ∧ edg(u,v)” ; x, y) 
 

Y  is  free in R. This  formula  expresses  that  G[Y]  is  connected.     

(4)  Minors :  G   contains  a  fixed  graph  H  as  a  minor  with  VH = {1,…,p} :  

 there  exist  disjoint  sets  of   vertices  X1,…, Xp  in  G    

  such   that   each   G[Xi]  is  connected  and,   

  whenever  i – j  in  H,  there  is  an  edge  between  Xi  and  Xj. 

(5)  Planarity  is  expressible :  no minor  K5  or  K3,3   (Kuratowski - Wagner). 



 23

(6)  Has  a  cycle  (for  a graph  without  loops) :  
   
 ∃x,y,z [edg(x,y)  ∧  edg(y,z)  ∧ “there  is  a  path  from  x  to  z  avoiding  y” ]     
 
(7)  Is  a  tree : connected  without  cycles. 
 

 
Non-expressible  properties  
 

-  G  is  isomorphic  to  Kp,p  for  some  p : checking  equal cardinality of  two sets 

“needs”  quantification  over  binary relations in order  to  find  a  bijection. 
 

-  G  has  a  nontrivial  automorphism,  or  has  all  vertices  of  same degree.   
 

-  Hamiltonicity  needs  edge-set quantifications. 
 

 

Remark : Adding an equicardinality  set  predicate  would  spoil  everything. 



 24

Two  problems  for  a  class  C  of  finite  graphs  and  a  logic  
 

Decidability : does a given sentence hold in some (or all) graphs of C ?      
 

Model-checking is decidable : what is its time or space  complexity ? 
  

Language,          class Decidability Model-checking 

FO,             all  graphs undecidable polynomial  time 

MSO,  clique-width < k decidable  cubic  time 

MSO,  unbounded cwd. undecidable Conjecture : not FPT (*) 
 

 

(*) A  related  fact  is  proved  by S. Kreutzer (LICS 2010)  for  unbounded tree-

width and  MSO  formulas with  edge quantifications. (The  exact statement is very  

technical.) 



 25

 

Fixed-Parameter  Tractability  (FPT)  for  model-checking  
 

An  algorithm is  FPT  if it takes  time  f(k).n
c
  for  some  fixed  function  f  and  

constant  c.  The  size  of  the  input  is  n.  The  value  k  is  a  parameter of 

the input : 

  degree, diameter, tree-width, clique-width, etc.  

 The  “hard part”  of  the  time  complexity depends  on  some  function  

f  (arbitrary in  the  definition; in  practice, it  must  be  “limited”; the  

algorithm  is  then  usable  for small values of  k). 
 

Example : 3-colorability is NP-complete, even for planar graphs of degree < 4    

(Dailey, 1980). Degree  is  not  a  good  parameter, but tree-width  and  clique-

width are. 



 26

MSO  logic  &  recognizability : main results 
 

 For a sentence  ϕ,  Mod(ϕ) is  the  set  of  finite  models of  ϕ. 

 1. Recognizability theorem :        For every MSO sentence ϕ,   

Mod(ϕ) is  recognizable  in  the  graph algebra  G. The type  π(G) of 

G  is the set of its vertex labels.  
 

 2. Weak recognizability theorem : For every MSO sentence ϕ,  

for every k,  Mod(ϕ) ∩ CWD(< k)  is recognizable in  G[Fk], the 

subalgebra of  G  generated  by  the  finite  signature  Fk  of 

operations  using  labels  1, …, k. 
 



 27

 3. The recognizability theorem is not a consequence of the weak 

one. (The set K of kytes, the nxn  grids with a “tail”  of length  n,  is not 

recognizable but  K ∩ CWD(< k)  is finite for each k, hence, recognizable). 
 

 4. Every  set of square grids is recognizable. As  there are 

uncountably many such sets, there is no characterization of 

recognizable sets of graphs by logical formulas  or  automata. 
  

 5. For algorithmic purposes, the weak theorem is enough. Its 

“Büchi-style” proof is given below, in terms of  finite, implementable 

automata. 



 28

 6. Proofs  of  the  full  theorem:  

-  either a “Feferman-Vaught-Shelah-style” proof  

manipulating “theories”  (the set of formulas of quantifier- 

height <  k valid in a graph) from which a congruence is  

defined (two graphs have same theory). 

- either a “Büchi-style” proof constructing infinite, “fly-

automata” (“automates programmés”) that are still  

implementable. 



 29

4.    Construction  and  use  of  automata  
 

       k            ϕ    (MSO  formula)   

      

             Automaton Constructor  

                  Yes  

G                   Graph Analyzer                 t              A(ϕ, k)           

                  No  

       Error : cwd(G) > k  

Steps       are  done  “once  for  all”, independently  of  G   

A(ϕ,k):  finite  automaton  on  terms  t.  



 30

Construction  of  A(ϕ, k)    (“Büchi-style”  proof). 
 

 

k  =  the number  of  vertex  labels  =  the  bound  on  clique-width 

 

F  ( = Fk) =  the  corresponding  set  of  operations  and  constants : 

       a , ∅ ,  ⊕ , Adda,b , Adda,b ,  Relab a          b  

 

G(t)  =  the  graph  defined  by  a  term  t  in  T(F).   
 

Its  vertices  are  (in  bijection  with)  the  occurrences  of  the  nullary  

symbols  in  t   that  are  not  ∅. 
  



 31

Example  

 

 

 

 

 

 

             

                         Graph  G(t)    

 

 

 

       

      Term   t      



 32

 Terms  are  equipped  with  Booleans  that  encode  assignments  of  

vertex  sets  V1,…,Vn  to  the  free  set  variables  X1,…,Xn  of   MSO 

formulas   (formulas   are   written   without   first-order  variables): 

  1)  we   replace  in  F each  a   by  the nullary  symbol  

  (a, (w1,…,wn))  where   wi ∈ {0,1}  :   we   get   F(n)    

        (only  nullary symbols  are  modified); 

  2)  a  term   s  in  T(F(n) )  encodes  a   term  t   in  T(F)  and  an  

 assignment  of  sets  V1,…,Vn   to  the  set  variables  X1,…,Xn :   

   if   u  is  an  occurrence  of  (a, (w1,..,wn)),  then    

   wi  =  1  if  and  only  if    u  ∈  Vi . 

  3)  s   is  denoted  by  t * (V1,…,Vn)    



 33

Example   (continued)  

 

 

 

 

 

               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

 

 

   Term   t * (V1,V2)       



 34

 By  an  induction  on  ϕ,  we  construct  for  each  ϕ(X1,…,Xn)   a  finite  

(bottom-up)  deterministic   automaton   A(ϕ(X1,…,Xn), k)  that  recognizes: 

L(ϕ(X1,…,Xn)) : =  { t * (V1,…,Vn) ∈ T(F(n) )  /  ( G( t ), V1,…,Vn )   =  ϕ } 

 

Theorem : For  each  sentence  ϕ,  the  automaton  A(ϕ, k)  accepts  in 

time  f(ϕ, k).  t     the  terms  t  in  T(F)   such that    G(t)   =  ϕ    
 

 

 It gives  a  fixed-parameter  linear  model-checking  algorithm  for  

input  t, and  a  fixed-parameter  cubic  one  if  the  graph  has  to  be  

parsed.  



 35

 

The   inductive   construction   of   A(ϕ, k)  

  

 Atomic   formulas  :  discussed  below.  

 

 For   ∧  :   product   of   two  automata       (deterministic  or  not) 

 

 For   ∨  :   union  of  two  automata   (or  product  of   two  complete  

automata;  product   preserves   determinism) 

 

 For  negation : exchange  accepting / non-accepting  states  

       for   a   complete   deterministic   automaton 

  



 36

 

 Quantifications:  Formulas   are   written   without   ∀  
 

  L(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( L ( ϕ(X1, ..., Xn+1)  ) 

  A(  ∃ Xn+1 . ϕ(X1, ..., Xn+1),  k )   = pr( A ( ϕ(X1, ..., Xn+1),  k ) 
 

where   pr  is  the  projection   that  eliminates   the  last  Boolean;         

�    a   non-deterministic   automaton. 
 

 Tools using  inverse  homomorphisms  of automata: 

from  A( ϕ(X1, X2),  k) , we  get  A( ϕ(X4, X3), k), 

from  A( ϕ(X1, X2),k), we  get  A(  ϕ ( X3, X1∪ (X2 \ X4 )),k),   

from  A( ϕ, k)),  we  get  A( ϕ [X1] , k). 



 37

 

Skip 2 slides 

Some   tools   for   constructing   automata 
 

 Substitutions   and   inverse  images  (cylindrifications). 
 

 1) If   we   know  A( ϕ(X1, X2),  k) , we  get  A( ϕ(X4, X3),  k) because : 

   L( ϕ(X4, X3) ) =  h-1 ( L( ϕ(X1, X2))  )     where  

 h   maps  (a , (w1, w2 , w3, w4))   to   (a , (w4, w3)).      We   take   

    A( ϕ(X4, X3),  k) =  h-1 ( A( ϕ(X1, X2)),  k  )  

 This  construction preserves  determinism  and  the number  of  states.  

                         Set   term    

     2)  From  A( ϕ(X1, X2),k), we  get  A(  ϕ ( X3, X1∪ (X2 \ X4 )),k)  by h-1 

 with  h  mapping  (a , (w1, w2 , w3, w4))  to  (a , (w3, w1 ∨(w2 ∧ ¬w4 )))   



 38

   Relativization   to    subsets   by   inverse   images. 

 

 If   ϕ  is  a  closed  formula  expressing  a  graph  property  P, its 

relativization  ϕ [X1]   to  X1  expresses  that  the  subgraph  induced  on  

X1   satisfies  P.   To  construct  it,  we  replace  recursively  

     ∃ y. θ   by    ∃ y. y ∈ X1  ∧ θ,  etc… 

 However,   there   is  an  easy  transformation  of  automata :   

 Let   h   map  (a , 0)   to   ∅    and   (a ,1)   to   a.   

L( ϕ [X1] ) =  h-1 ( L( ϕ) )  

 Hence:   

A( ϕ [X1] , k) : =  h-1 ( A( ϕ, k))  



 39

The   inductive   construction  (continued) :   
 

 For  atomic  formulas  and  basic  graph  properties ϕ(X1,…,Xn), we 

build  complete   deterministic  automata  over  F(n)  for recognizing  the  

set of  terms :      t * (V1,…,Vn)   in   L(ϕ(X1,…,Xn)). 
 

 Intuition :  in all cases,  the  state  reached  at  node  u  represents  a  

finite  information   q(u)   about  the  graph  G(t / u)  and  the restriction of 

V1,…,Vn   to   the   vertices   below   u     (vertices  =  leaves) 

 1)  if  u =  f(v,w),   we  want  that  q(u)  is  defined  from  q(v)  and  q(w)  

by   a   fixed   function  :   �  the  transition  function ;  

 2)  whether  (G(t), V1,…,Vn)   satisfies   ϕ(X1,…,Xn)  must   be  

checkable  from  q(root) :   �   the accepting states.  



 40

Atomic  and   basic  formulas   :   
 

X1  ⊆  X2 ,    X1 = ∅ ,    Single(X1), 

 

Card p,q (X1) :  cardinality of  X1  is  =  p   mod.  q, 
 

Card < q (X1) :  cardinality of  X1  is   <  q. 
 

 

� Easy constructions of automata with  few  states :  

     respectively  2,  2,  3,  q,  q+1 states. 
 

Example :  for  X1  ⊆  X2 ,  the term  must  have  no  constant  (a, 10).



 41

Atomic  formula  :   edg(X1,X2)   for  directed  edges    
 

 edg(X1,X2)  means :   X1  = { x }  ∧  X2 = { y }    ∧   edg(x, y) 

 Vertex  labels  belong  to  a   set   C   of   k   labels.  

 k2+k+3   states  :  0, Ok, a(1), a(2), ab, Error,      for a,b ∈   C , a  ≠  b 

Meaning  of  states  (at   node  u  of  t ; its  subterm  t/u   defines    G(t/u)  ⊆  G(t) ).  

 0   : X1 = ∅  , X2 = ∅   

 Ok        Accepting   state :    X1 = {v}  , X2 = {w}  ,  edg(v,w)  in  G(t/u)   

 a(1) : X1 = {v}  , X2 = ∅ ,  v  has  label  a  in  G(t/u)   

 a(2)  : X1 = ∅  , X2 = {w}  ,  w  has  label  a  in  G(t/u)   

 ab  : X1 = {v}  , X2 = {w}  , v  has  label  a, w  has  label  b  (hence v ≠  w) 

             and  ¬edg(v,w)   in  G(t/u)    

 Error   : all  other  cases



 42

 Transition  rules  

 For  the  constants  based  on    a : 

 (a,00)  � 0  ;  (a,10) �  a(1)  ;  (a,01)  �  a(2)  ;    (a,11)  �  Error 

 

 For  the  binary  operation  ⊕:           ⊕                     r     
 (p,q,r  are  states)        p               q  

 

  If  p = 0  then  r := q  

  If  q = 0  then  r := p 

  If  p = a(1),  q =  b(2)  and  a  ≠  b   then   r  := ab 

  If  p = b(2),  q =  a(1)  and  a  ≠  b   then   r  := ab 

  Otherwise  r  : =  Error 

 



 43

 

 For  unary  operations   Adda,b       Adda,b                 r      
 

                        p     

  If  p = ab   then  r  :=  Ok   else  r  : =  p 

 

 For  unary  operations   Relaba         b  

 

  If   p = a(i) where   i = 1 or 2       then     r : = b(i)  

  If   p =  ac   where  c ≠ a  and  c  ≠  b    then     r : =  bc      

  If   p =  ca   where  c ≠ a  and  c  ≠  b   then     r : =  cb       

  If   p =  Error  or  0  or  Ok  or  c(i)  or  cd   or  dc   where   c ≠ a   

            then     r : = p   



 44

We  get  also  the  Recognizability  Theorem: 
 

A( ϕ, k)  is  a  subautomaton of  A( ϕ, k+1).  The deterministic 

automata  A( ϕ, k)  can be merged into a single infinite  deterministic 

automaton A( ϕ)  over  F  (the  countable  signature of all graph operations). 
 

The state q(t) reached by A( ϕ) on any t ∈T(F)  belongs to a finite 

set built from π(G(t)), the  type of the graph G(t) defined by t.  

Example  of  such  a  set : {Ok, Error}  ∪  P( π(G(t)) X π(G(t)) ). 

If  t  and  t’  define  isomorphic graphs, then  q(t) = q(t’). 

The (global)  congruence proving recognizability can be taken: 

G  ≈ G’    �� q(t) = q(t’)  where G = G(t) and G’ = G(t’) 



 45

Practical   difficulties   and  remedies. 

Parsing :  1. Checking  if  a  graph  has  clique-width <  k  is  NP-complete  

(with k  in  the  input ; Fellows  et  al.)  

  2. The  cubic  approximate  parsing  algorithm  (by  Oum et al.) based  

on  rank-width   is  difficult  to  implement. 

  3. Szeider and Heule reduce to SAT the computation of clique-

width  and  get exact values (and the corresponding terms) for graphs with 

at  most  30 vertices  and  clique-width at  most 12. 

  4. For certain classes  of  graphs  of  bounded  clique-width  

defined  by  forbidden  induced  subgraphs,  optimal  clique-width  terms  

can  be  constructed  in  polynomial  time, by  using,  in many cases,  

modular  decomposition. 

  5.  Heuristics remain to be found. 



 46

Sizes   of   automata : 

 1. The  number  of  states  of  A(ϕ, k)   is  bounded  by  an  h-iterated  

exponential  where  h  is  the  number  of  quantifier alternations  of  ϕ .  

 

 2. There  is  no  alternative  construction  giving  a  fixed bound  on  

nestings  of  exponentiations   (Meyer & Stockmeyer, Frick & Grohe). 

 

    3. The  construction  by  induction  on  the  structure  of  ϕ  may  need  

intermediate  automata  of  huge  size,  even  if   the  unique   minimal  

deterministic   automaton  equivalent   to   A(ϕ ,k)   has  a  manageable  

number of  states.  



 47

 An  issue  : Fly-automata    (to  be  presented  by  Irène  Durand) 
  

 States  and  transitions  are  not  listed  in  huge  tables :    

they  are  specified  (in uniform ways for all  k) by  “small”  programs.  These 

automata can be nondeterministic.   
  

 Example  of  a  state  for  connectedness : 

  q = { {a}, {a,b}, {b,c,d}, {b,d,f} },                    

  a,b,c,d,f  are  vertex labels; q  is  the  set  of  types  of  the  connected 

  components  of  the  current  graph.  (type(H)  =  set of labels of its vertices) 

 Some  transitions :               

  Adda,c :    q            { {a,b,c,d}, {b,d,f } },                    

  Relaba       b: q            { {b}, {b,c,d}, {b,d,f } }   

  Transitions   for   ⊕ :  union  of  sets  of  types.  



 48

 Using  fly-automata  works  for  formulas  without   quantifier  altern-

ation but that can use  “new”  atomic   formulas   for  “basic”  properties 
 

 Examples :  p-acyclic  colorability   
 

 ∃ X1,…,Xp (Partition(X1,…,Xp)  ∧  NoEdge(X1)  ∧ ..... ∧  NoEdge(Xp)  ∧ ... 
   ...... ∧  NoCycle(Xi ∪ Xj)  ∧ ...)      
      (all  i < j ; set terms Xi ∪ Xj  avoid  some  quantifications). 

  

Minor  inclusion : H  simple, loop-free.  Vertices(H)  =  { v1,…,vp }  
 

 ∃X1,…,Xp (Disjoint(X1,…,Xp)  ∧  Conn(X1)  ∧ ... ∧  Conn(Xp)  ∧ ... 
   ...  ∧  Link(Xi , Xj)  ∧ ...  ) 
      

 Existence   of  “holes”   :  odd  induced  cycles  (to  check  perfectness ; one 

checks  “anti-holes”  on  the  edge-complement  of  the  given  graph).



 49

Skip : Only for questions. 

   Appendix : Graph  operations  that  characterize   tree-width 
 

 

Graphs have  distinguished vertices called sources, (or terminals or boundary 

vertices) pointed  to  by  source  labels  from  a  finite set  :    {a, b, c,  ..., d}. 
 

Binary operation(s)  : Parallel  composition 

G // H   is  the  disjoint  union of  G  and  H  and sources  with  same  label  are   

fused.  
 

(If  G  and  H  are  not  

disjoint,  we  use  

a  copy  of  H 

disjoint  from  G). 

 



 50

 

Unary operations   :     

 Forget   a   source   label  
     

    Forgeta(G)  is  G  without  a-source:  the  source  is  no  longer  distinguished  

(it  is  made  "internal"). 

       Source renaming : 
 

Rena      b(G)  exchanges  source  labels  a  and b     

(replaces  a  by  b   if  b  is not  the label of any source) 
 

Nullary operations   denote   basic graphs  : 1-edge  graphs,  isolated  vertices. 

 

Terms  over  these  operations  define  (or denote)  graphs  (with or without 

sources). They   can  have  parallel  edges. 
 



 51

Example : Trees  

Constructed  with  two  source  labels, r  (root)  and   n  (new root).  

Fusion   of   two   trees   

at  their  roots  :  

 

 

 

 

 

 

 

 

 

Trees   are  defined  by  :    T =  T // T  ∪  extension(T)  ∪  r  

 

Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root"  as  current  root :  

e  =  r  •_________•  n 

Renn         r  (Forgetr (G // e ))  



 52

 Relation   to   tree-decompositions   and    tree-width 

 

 

                                                  Tree   T 

 

         Graph  G                                                                                 Tree-decomposition  

                   (T,f)   of   G  

Dotted  lines  - - - -   link  copies  of  a  same  vertex.  

Width  = max. size  of  a  box  -1.      Tree-width    =  min.  width  of   a  tree-dec. 



 53

Proposition:    A  graph  has   tree-width  ≤  k    ⇔   it  can  be  constructed   from  

edges   by   using   the  operations  // , Rena     b  and  Forgeta   with  ≤  k+1  

labels  a,b,….   

 

Proposition :   Bounded   tree-width   implies   bounded   clique-width  

        (cwd(G) < 22twd(G)+1  for   G   directed), but   not   conversely. 

 

 



 54

From  an  algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc))            (ab  denotes  an edge from  a   to  b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                         The   tree-decomposition  associated  with  this  term. 


