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History : Four  independent research directions  now  intimately related : 

 

1. Polynomial  algorithms for NP-complete and other hard problems on particular 

classes of graphs, and especially hierarchically structured ones : series-parallel 

graphs, cographs, partial k-trees, graphs or hypergraphs of tree-width < k, graphs of 

clique-width < k. 

2. Excluded minors and related notions of forbidden configurations (matroid 

minors, « vertex-minors »). 

3. Decidability of Monadic Second-Order logic on classes  of  finite  graphs, and 

on infinite graphs. 

4. Extension to graphs and hypergraphs of the main concepts of Formal 

Language Theory : grammars, recognizability, transductions, decidability questions. 
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Two  key  words : 
 

Graph  structure  (main notions) :   

 hierarchical decompositions (tree-decomposition, modular decomposition,…) 

 embedding on surfaces 

 exclusion of a minor, a  vertex-minor  or an induced subgraph 

 existence  of  homomorphism  into a fixed graph  (generalized coloring) 

 

Logic : First-order, second-order, monadic second-order (MS)  

 for expressing graph properties (i.e., defining graph classes)  

 for  defining  graph transformations,  and  structures  of  above  types 
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Graph  structure  and  monadic  second-order  logic 

are  related  in  many  ways 

 
1) Monadic Second-order (MS)  logic and hierarchical decompositions yield fixed-

parameter tractable  algorithms (for tree-width and clique-width / rank-width ). 

2) Decidability of MS logic implies  bounded  tree-width  or  clique-width. 

3) Planarity, tree-width <k,exclusion of minors or vertex-minors are MS properties 

4) Modular decompositions, planar embeddings can be defined by MS formulas. 

5) Tree-width bounded and clique-width bounded classes have characterizations 

in  terms  of  images  of  trees  under  MS  graph transformations   that are 

independent of the initial combinatorial or algebraic definitions :  

 this shows the robustness of definitions and yields useful  stability properties 

 under MS  graph transformations. 
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Summary 
 

1.  Logical expression of  graph  properties  by MS formulas : graph minors  

and  related properties. 
 

2.  MS  transductions : Graph transformations  specified by  MS  formulas.   

3. Characterization  of  tree-width and clique-width bounded graph classes  

in terms  of   trees   and   MS   transductions. 
 

4.  New result : Comparing   encoding   powers   of graph classes  via  MS  

transductions.  (Uses  graph  minors) 
 

5.  Decidability of  monadic second-order  (MS) logic is strongly connected 

with  bounded tree-width or  bounded rank-width  (hence bounded clique-

width).  (Uses  minors  and  vertex-minors). 
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1.   Monadic Second-Order  (MS)  Logic  
 
=  First-order logic on power-set structures  
 
=  First-order logic extended with (quantified) variables  

denoting subsets  of the domains. 
 
 
Examples  of  formulas  for   G =  ( VG , edgG(.,.) ), undirected 

 
3-colorability : 

Let  ϕ  be   the  formula  
∃X,Y (”X,Y  are  disjoint”  ∧  ∀u,v { edg(u,v)   ⇒  
                    [(u ∈ X  ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧(u ∈V-(X∪Y)  ⇒ v ∉V-(X∪Y))]} ) 
 
G is 3-colorable     ⇔   G  ⎜=  ϕ    (read  :   ϕ  is true in G ) 
 
For each  k,  a  formula  expressing  k-colorability  can be constructed. 
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Non connectivity (whence  connectivity  by  negation, and  transitive  closure ) : 
∃X ( ∃x ∈ X  ∧  ∃y ∉ X  ∧  ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∈ X)  ) 
 
 One can write a formula  γ(Y)  with a free set variable Y such that,   for every set 

of vertices  Y  of  G : 

 
G  ⎜=  γ(Y)     ⇔     the  subgraph  of  G induced  on  Y  is connected 
 
 For each  simple  and  loop-free graph  H   one can write a  formula  μH  such that   

G  ⎜=  μH       ⇔      G   contains   H    as  a  minor. 

 
 
From the Graph  Minor  Theorem :   

 Every  minor-closed  class  of  graphs is  characterized by  a  monadic second-

order formula   (the obstruction set  must be known  for  an  effective  construction). 
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Edge  set  quantifications  increase  the  expressive power   
 

Incidence  graph  of  G  undirected,  Inc(G) = ( VG ∪ EG, incG(.,.).) 
 
incG(v,e)   ⇔   v  is  a  vertex  of  edge  e. 
 
Monadic second-order  (MS2)  formulas  written  with  inc   can use 

quantifications   on sets of edges.  
 

 The existence  of  a perfect matching  or  a  Hamiltonian circuit  is expressible  

       by an  MS2  formula, but  not   by   an   MS   formula. 

 
 Facts  :  MS2  formula are  more expessive  than   MS   formulas 

     MS2  logic   fits  well  with bounded tree-width 

     MS  logic   fits  well  with bounded clique-width / rank-width 
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Why  is   MS  logic  interesting ? 
 

1) Every  MS2  (MS)  property has an  O(n)  ( O(n3))   FPT  algorithm  

for parameter  tree-width ( clique-width / rank-width)  
     (n = number  of  vertices) 

 

2) If  a  class  of graphs  is  minor-closed  and  if we known an  MS2  

definition NOT using  excluded minors, and  a bound on the tree-widths 

of its obstructions, then the set of obstructions is  computable  (but 

not practically !). 
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Proof  sketch :   -  G(X,Y)  =  the  minor of G  obtained  by contracting the 

edges  of X  and deleting   vertices  and  edges   of   Y ; 

 -  μ(X,Y,u,v)   :  MS2  formula   expressing  that  u  and  v  are adjacent in  

G(X,Y) ; 

 -  If  a  minor-closed  class C is defined by an MS2  formula  ψ ,  then   

 Obst(C )  is   defined   by  the  MS2   formula   θ   expressing : 

    ψ  is false   and  for  every  X,Y  with X∪Y not empty, 
   the  minor G(X,Y)  of  G  satisfies  formula  ψ  (which  can be  
   written with the help of   μ(X,Y,u,v) )  ;  
 -  Since  Obst(C )   is  finite  with known  bound on tree-width, and defined 

by  an  MS2  formula ,  it can be enumerated  (see next slide)  
 

Application :  Apex  graphs  over   a  minor-closed  class  with  known 
obstructions  (Adler, Grohe, Kreutzer 2008). 



 11

Proposition  :  Let  ψ  be  an  MS2  formula  such that, for each k, the set L(k) 

of graphs of  tree-width at most k   that   satisfy   ψ  is finite. 

 1)    For  each  k, the set  L(k)  can  be  enumerated. 

 2)    The  maximal  size  of  G  in  L(k)  is bounded  by  f(k),  where f  is  an 

“elementary”  function  computable from  ψ   

  ( f(k) = exph(k) , iterated exponential, where  h depends only on   ψ). 

 
Proof sketch : -  For each k,  the graphs  of tree-width  at  most k  are defined 
by  algebraic  terms  written  with  a finite  set   Fk  of graph operations (Last 
slides of this presentation) 
-  The terms  over   Fk   that define  graphs satisfying  ψ  are those recognized 
by  a  finite automaton  with  f(k)  states,  constructible  from  ψ (the key  to FPT 
agorithms  for MS properties for parameter  tree-width ).  h = O(quantifier-height (ψ)).  
-   The  remaining  assertions  follow  from  results  of  automata  theory. 
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2.  Monadic  second-order  transductions 
 

 Transformations  of  graphs  specified  by  MS  (or by  MS2)  formulas. 

 Two  types :  MS-transductions   for  graphs =  

           (vertices, adjacency relation) 

   MS2-transductions   for  graphs represented by   their   

   incidence   graphs = (vertices and edges, incidence relation) 

 Results :  

  MS-transductions  preserve  bounded  clique-width   

  MS2-transductions  preserve  bounded  tree-width   

  They  preserve  the  decidability  of  MS-  (or MS2-) theories. 
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Examples  of  MS  and MS2 transductions : 
 
G   ⎜            H,  its edge  complement  edgH(x,y ) ⇔   x ≠ y and  ¬ (edgG(x,y)) 
 
G    ⎜           H =  G(2)  defined by  :  
      edgH (x,y ) ⇔ edgG(x,y) ∨ ∃z (edgG(x,z) ∧  edgG(z,y)) 
 
(G, {u})  ⎜            the connected  component  containing vertex  u. 
 
 

(G,X,Y)  ⎜            G(X,Y)   the  minor  of   G  resulting from  contracting  the  

 edges of  X  and  deleting the edges and vertices  of Y  (MS2-transduction). 

 

G  planar  3-connected graph   ⎜           its  unique  plane  embedding 
   (formalized  as  a  circular ordering of edges around each  vertex). 
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Informal  definition   
 

MS  transductions are  multivalued mappings  τ   from  relational  
structures  to  relational  structures  
 

               S   ⎜              T  =  τ (S)         
 

 

Basic case : T  is  defined  inside  S  by  MS  formulas,  in  terms  of 
parameters  : subsets  X1, …,Xp   of  the  domain  of  S 
 

(Examples  of  parameters   :  X,Y   in  the  definition  of  G(X,Y) ) 
 
τ     is  multivalued  because  of  parameters  
 
The  general   definition  makes  it possible  to define  T  “larger”  than  S. 
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General case :    T  is  defined   in  this  way   inside  
S ⊕ S ⊕ ... ⊕ S :   disjoint  copies of  S  with  "marked"   

  equalities  of  copied   elements  
 
      1,2      2,3 
   *   *   * 
 
   *   *   * 
 
   *   *   * 
 
 
   *   *   * 
 
     S ⊕ S ⊕ S 
  
Proposition  :  The  composition  of  two   MS  transductions  is  an  MS  

transduction. 
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The fundamental property  of   MS   transductions  (“reduction  tool”) :  

 
     S   ⎜             τ (S) 
 

     τ #(ψ)             ⎜  ψ 
 

Every  MS  formula  ψ  has  an effectively  computable   
backwards  translation  τ #(ψ), an MS formula, such that : 

 

S   ⎜=  τ #(ψ)    if   and  only  if    τ(S)   ⎜=  ψ 
 

 The verification of ψ  in  the object structure τ(S)  reduces  to  the  
verification  of  τ #(ψ)   in  the  given structure S    (because  S  contain what 
is necessary  to  determine   τ(S) ;  the MS properties  of  τ(S)  are  expressible  
by  MS  formulas  in  S ).  
 

Consequence : If   L   has a decidable  MS  theory,  so has  its image  
under  an MS  transduction.  
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 MS - transductions  and  MS2 - transductions  are  incomparable  
 
 For  expressing  graph  properties,  MS logic  over incidence graphs 
(MS2  logic  in short)   is more  powerful  than “ordinary”  MS  logic 
 
 For  building graphs  with  MS2 - transductions, we have more  
possibilities  on the  input graph, but we want  to  specify each edge from 
some vertex or  some  edge of the input graph. 
 
 Transitive  closure  is  an  MS-transduction    that   is   not  MS2  
 
 Edge  subdivision   is  an  MS2 – transduction   that  is  not  MS. 
 
 
Proofs  of  negative facts  are  based  on the  observation   that   
  if  S  is  transformed  into  T  by  an  MS-transduction, then  : 
 
        ⎜domain(T)⎜  =  O( ⎜domain(S)⎜)  
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3. Robustness  results : Preservation of “widths” and  generation 
 
For   every  class of graphs  C  : 

 1)   If  C has tree-width  <  k  and  τ  is  an   MS2 – transduction,  
     then  τ (C)  has tree-width  < fτ(k) 
   Follows from  : 

 C  has bounded  tree-width  iff   C  ⊆ τ(Trees) for some    MS2 – 
transduction  τ   (the  proof is constructive in both directions) 
              

  2)  If  C has clique-width  <  k  and  τ  is  an   MS – transduction,  
     then  τ (C)  has clique-width   <  gτ(k).    

Follows from  : 

 C  has bounded  clique-width  iff   C  ⊆ τ(Trees) for some    MS– 
transduction  τ  (the proof is constructive ) 
 
 Characterizations  in  terms  of   trees  and   MS   logic.  
 No relation  with  excluded  minors, vertex-minors or induced subgraphs.
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    Gives easy proofs  (but no good bounds) of  facts like : 
 
 
  1)  If  C has bounded tree-width,  its line graphs  have bounded clique-
width. 
 
  2)  If  C has bounded tree-width or clique-width, the transitive closures of 
its graphs have bounded clique-width. 
 
  3)  If  C has bounded clique-width, the transitive reductions of its graphs 
have bounded clique-width. 
 
  4)  The  set  of  chordal  graphs  has unbounded clique-width   
  (because an MS transduction can define all graphs from chordal graphs, 
  and  graphs  have unbounded clique-width). 
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     How can one prove these results ?      What  is  clique-width ? 
 
  

 Idea  for  :  if C  has bounded  tree-width  then   C  ⊆ τ(Trees) for some    
MS2 – transduction  τ  (the converse  is  much more technical). 
 
 1) A  graph  can be described  by  the   tree  T  of some tree-

decomposition, with node  labels  encoding  edges  and equalities of 

vertices in the different boxes.  

 2) For tree-width < k,   a bounded number N(k) of  labels is sufficient. 

 3) N(k)  parameters  (sets of nodes of the tree  T) of  an MS 

transduction  can “guess”  the possible  labellings. 

 4) MS  formulas can “decode” : that is, they can define the graph from 

T  and  its  labels. 
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Clique-width  a  “more powerful”  graph  complexity  measure  than 

tree-width. 
 

Defined  in terms of  simple  graph operations  that construct graphs. 

Equivalent notion: rank-width (Oum and Seymour) with better structural and 

algorithmic properties (characterization by excluded vertex-minors,  

          exact cubic decomposition algorithm). 
 

Graphs  are  loop-free,  simple, directed or not.   

Labels  :  1,…,k.   Each vertex has one label ; labels define a partition of the 

vertex set.  
 

 One  binary operation   disjoint  union    :   ⊕ 
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 Unary  operations :  Edge addition denoted  by  Add-edga,b 

 Indexed by  labels a,b 

 Add-edga,b(G)   is  G augmented with undirected edges  from every 

       a-labelled vertex    to every  b-labelled  vertex. 

 

 

      H = Add-edga,b(G) ; only 5  new edges added  

The  number  of added edges  depends  on  the  argument graph. 
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The similar  operation    Add-edga,b    adds directed edges  from a to b. 

 

Vertex  relabellings :  
Relaba       b(G)  is  G with every vertex  labelled by a   relabelled into b 

 

Basic graphs   are those with a single vertex. 

 

Definition: A  graph  G has  clique-width ≤ k ⇔ it can be constructed from basic 

graphs  with the  operations ⊕, Add-edga,b  (or the directed variants)  

and  Relaba      b  with  labels  1,…,k. 

Its  clique-width  cwd(G)  is the   smallest  such  k. 
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 Cliques have clique-width 2.  

 
 

Kn  is   defined  by   tn   where  tn+1   =   Relabb      a( Add-edga,b(tn ⊕ b)) 

Cographs  are generated  by  ⊕  and  by  ⊗  defined by : 

G ⊗ H  =  Relabb      a( Add-edga,b (G ⊕ Relaba      b(H))) 

            = G ⊕ H  with  “all edges”  between  G  and  H. 
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 Proposition : (1) Bounded   tree-width  implies  bounded  clique-width, but  not  

conversely. 
 

(2) Unlike tree-width, clique-width is  sensible to edge directions: Cliques have 

clique-width  2,  tournaments have unbounded clique-width. 
 

 

Classes of unbounded tree-width and  bounded clique-width: 

 Cliques (2), Complete bipartite graphs (2), Distance hereditary graphs (3),  

 Graphs without P5 and 1⊗P4 (5), or 1⊕P4 and 1⊗P4 (16) as induced 
 subgraphs. (many similar results for exclusion of induced subgraphs  
              with 4 and 5 vertices).  
 
 

Classes of unbounded clique-width : 

 Planar graphs of degree 3, Tournaments, Interval graphs,  

 Graphs   without   induced   P5.                     (Pn = path with n vertices). 
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Logical  Characterization  of  bounded clique-width : 
 

1)  A  k-bounded clique-width  term  is a  rooted binary tree  with nodes labelled  by the 

finitely many  operations  symbols  using labels 1,…,k. 

 

2)  For each k, an MS-transduction  can  construct  the defined graph  from  this labelled 

tree. 

Hence : If a graph class  C  has  clique-width  <  k  then  C  ⊆ τk(Trees) for some    

MS– transduction  τk. 

 
3)  As  for  tree-width  the  converse is quite technical  (both proofs use the same  logical 

tools). 
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Proof   idea  of   2)   for k= 2 , i.e., for cographs, defined by terms written with  ⊕  

(disjoint union),  ⊗  (complete join)  constants denoting  vertices. 

 

 

 

 

 

 

 

 Vertices  =  {x,y,z,u,v,w } =  occurrences  of constants  in the term 

 Two vertices  are  adjacent if and only if their least  common  ancestor is labelled by ⊗  

 (like  y and z , or  u  and w). 

 These  conditions  can  be expressed by  MS  formulas  on the  labelled  tree. 
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Application  :   Encoding a directed graph  G   

by a vertex-labelled  undirected  graph  B(G) 
 

Each  vertex  of G   is split  into  2 vertices  labelled by 1 and 2  in B(G) : 

  

 

                 1               2  

 

 

The  clique-widths  of   G  and   B(G)  are related by fixed functions. 

(Because the mapping  B  and  its  inverse  are  MS-transductions, actually first-order  

ones, hence  they preserve  bounded  clique-width.) 

Algorithms  for recognizing  rank-width  of  undirected  graphs  can be used to build 

approximation algorithms   for  clique-width  of directed graphs (Oum, Hlineny, Seymour) 

because  rank-width  and  clique-width  are  related by fixed functions. 
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 4.  Encoding  powers  of  graph  classes via  MS  transductions 

 
 An   MS-transduction  τ  defines  a  graph  H  inside  a graph G   

with  help  of  parameters  (sets of  vertices (also edges)   of  G).   

 Say  H  is  encoded  in  G : the encoding is represented by the 

parameters and  τ  is the  decoding   function.  

 

 The encoding  powers  of graph classes  C   and   D   can be 

compared as follows : 

 
  C  <  D   if   C   ⊆  τ( D)    for some  MS  transduction  τ  
 
 We  get  a  quasi-order  on  graph  classes. 
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 We   consider   MS2 transductions :  formulas  use  edge  set  
quantifications  and  must  construct  incidence  graphs  as  outputs. 
 

 

 For  graph  classes  C   and   D   we   let : 
 
 C  <  D if   C   ⊆   τ( D)  for  some  MS2 -transduction  τ  
 
 C  ≡ D  if  C  <  D  and  D  <  C  
 
 C  <  D if   C  <  D   and    C  ≡ D   
 C  <c  D if  C  <  D  and  there is  no  E   with   C  <  E  <  D 
 
 What   can   we  say  about  <c   (the covering relation of  < )  ? 
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With help of  Robertson and Seymour (GM1, GM5) : 
   { • }  <  Paths  <c  Trees <c  Grids   
 
These    classes encode   respectively   (by  MS2  transductions) : 

finite sets,   
sets of graphs  of  bounded path-width,  
sets of graphs  of  bounded tree-width,   
all  sets  of   graphs . 
 
Proof   :  Trees <c  Grids.   
 
If  a graph class C  has  bounded tree-width, it  is   <   Trees. 
 
If C   has unbounded tree-width, it contains  all  grids as minors, 

hence :  Grids  <  C  and  Grids ≡  C,  because  Graphs   <   Grids 
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Proof   :  All  graphs   <   Grids  
 
 
 
 
 
 
 
 
 
 
 
 

A monadic  second-order  transduction  using  parameters X,Y,Z  

can  transform  all  grids  into  all  incidence  graphs  Inc(G).
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More  difficult :   What  is  below    Paths ? 
       
 
Answer  (A. Blumensath  and  B. C., Logic Colloq. 2008, submitted) 
 
 

{ • }  <c T2   <c  … Tn  <c  Tn+1<c … < Paths  <c Trees <c Square  grids   
 
 
where  Tn  is the class of rooted trees  of  height  at  most  n  (and 
unbounded  degree). 
 
 
Idea :   Tn   encodes   the classes  of  graphs having tree-decompositions  

of  height  at  most  n  and  width  at  most k   (for all   k). 
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New definition :   n-depth tree-width  of G  =  twdn(G) =  minimal width  of a 

tree-decomposition  of  G   of   height  at   most   n. 
 

Clearly  :  

twd(G)  <  …  <  twdn+1(G)  <  twdn(G)  < … <  twd1(G) =  ⎜V(G) ⎜-1 
 

Combinatorial  properties  of  this variant  of tree-width. 

 1) pwd(G)  <  n.twdn(G) 

 2) If  G  is  a  minor  of  H  then  twdn(G)  <  twdn(H) 

 3) twdn(Pm)   is   ≈   m 1/n         (Pm  = path with m vertices). 
4) Excluded Path Theorem  (cf.  Excluded Tree  and  Grid  Thms, GM1, GM5) 

  A  set of  graphs C excludes  some  path  as  a minor  

  if and only if,   for some n ,  twdn   is   bounded   on  C   
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Questions : 

 

 1) What is the  minimal  integer  n = N(m)  such   that  twdn  is  

bounded  on  the  class  of  graphs  without  Pm  as  minor  ?   

 2) What is  the  corresponding  least  upper  bound  of   twdN(m)  on  

this  class  ? 

 3) How   can  one  compute  n-depth  tree-width ?  



 36

Logical  properties  of  n-depth  tree-width. 
 

Proposition  :   For each  n  and   k, there exists  an   MS2-transduction that  

maps  every  graph  of  n-depth  tree-width  at  most k  to  all  its   strict 

tree-decompositions  of height at most  n  and  width at most k   
(strict =  with  certain  connectivity properties ; every  tree-decomposition  can be made  

strict  without increasing  height  and width). 
 

Remark 1 :   For  tree-width, there is  a  difficult  (unpublished), weaker  result : 

For each  k  there  is  an  MS2-transduction  that  maps  every graph of tree-width 

< k  to  one  of  its  tree-decompositions  of  width at most k. (Impossible  to  get  all  

strict decompositions). 

Remark 2  :  The  obstruction set  of gra phs  for  n-depth  tree-width  <  k  is 

computable  from  k (because  we have a monadic second-order characterization and  a  

bound on the tree-widths of the obstructions). 
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In  the  hierarchy : 

{ • }  <c T2   <c  … <c Tn  <c … < Paths  <c Trees <c Grids 
 

each  level  Tn  encodes  the sets of graphs  of  bounded  n-depth tree-width. 

 

Proofs to be done  : 

1) Tn   <   Paths 

 Trees  of  height  n  can be encoded  as  sequences over [n]  and  

decoded  by  MS-transductions. 

1 2 333 2 33 2 2 33   encodes  the  tree : 

1 

2        2       2       2 

3 3 3  3  3            3   3 
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2) Tn   <  Tn+1   
One cannot  define  by an MS-transduction  all  trees  of height  n+1  from  all  trees  of 

height  n. 

The (technical) proof uses  analysis of  MS definable relations on trees  and some counting 

arguments. 
Case  n = 2.  

Trees of height  2  correspond  (via MS transductions)  to sets  (without relations).  

If  a k-copying MS-transduction  with p parameters  transforms  sets  into  trees, these trees have less  

than  k.2p  internal nodes. We cannot get all trees of height 3  from sets  by  a single  MS-transduction. 

 

3) Hence, we  cannot  have    Tn  ≡  Paths 
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“Dichotomy arguments” : 

1) Let  C   be a  set  of  bounded  pathwidth  (i.e.,  C  <  Paths ): 

 Either : it contains all  paths as minors,  then  C  ≡  Paths 

 Or : (Excluded Path Thm)  twdn (C) is bounded  and  C  <  Tn   for some n  
 

 

2) Let  C   be a  set  of  n-depth  tree-width  <   k  (C  <  Tn ): 

 Either : for all m, there is  G  in  C  s.t., for each  n-depth  tree-dec. U 

   of width  k  of  G , the tree U contains  T(n,m)   (T(n,m) = the m-ary   

   complete tree  of  height n)  and then  Tn  <  C      (because  n-depth tree-

    decompositions  of   width  k  are  definable  by   MS transductions) 

      Or :  for  some m, every G  in  C   has an n-depth  tree-dec.  U of width 

k, s.t. U does not contain T(n,m).  By  contracting  some  edges of U, one  

gets  an (n-1)-depth  tree-dec. of G of width  m.(k+1), hence  C  <  Tn-1.
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5.  Graph classes with decidable MS theories  (or  satisfiability  

problems) 
 

Theorem (Seese 1991): If a set of graphs has a decidable MS2 satisfiability 

problem, it has  bounded tree-width. 
 

Theorem (B.C., Oum 2004): If a set of graphs has a decidable C2MS 

satisfiability problem, it has  bounded clique-width. 
 

Answering a question by Seese : If a set of graphs has a decidable MS 

satisfiability problem, is it the  image of a set of trees under an MS  transduction, 

equivalently, has it bounded clique-width ? 
MS2 = MS logic with  edge  quantifications ; C2MS = MS logic with even cardinality set 
predicates.  A set C  has  a  decidable L-satisfiability  problem  if one can decide whether 
any  given  formula  in   L  is  satisfied  by  some  graph  in  C 
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Proof  of  Seese’s  Theorem : 
 

A) If  a  set  of  graphs  C  has unbounded  tree-width, the set of its  minors  includes  

all k x k-grids  (Robertson, Seymour, GM5) 
 

B) If  a  set  of  graphs   contains  all  kxk-grids,  its MS2 satisfiability  problem is 

undecidable  
 

C) If C has  decidable MS2 satisfiability  problem, so has Minors(C), 

                because   C            Minors(C)  is an  MS2 transduction. 
  

Hence, if   C  has unbounded  tree-width and a decidable MS2 satisfiability  

problem, we have a contradiction  for the decidability of the  MS2 satisfiability  problem 

of Minors(C). 
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       Proof  of  Courcelle-Oum’s  Theorem : 
 

D) Equivalence  between  the cases  of all  (directed and undirected) graphs  and 

bipartite  undirected graphs. 
 

A’)  If a  set  of  bipartite graphs  C  has unbounded  clique-width, the set of its  vertex-

minors  contains  all  “Sk“  graphs  
 

C’)  If C has  decidable C2MS satisfiability  problem, so has Vertex-Minors(C), 

because  C                  Vertex-Minors(C)  is a   C2MS transduction. 
 

E)  An   MS transduction  transforms  Sk  into the kxk-grid.  
 

Hence  A' + B + C' + E   gives the result for bipartite undirected graphs.  

The  general result  follows with the encoding  D). 
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Definitions  and  facts   
 

Local  complementation  of  G  at vertex  v  

G * v   =  G  with edge complementation of  G[nG(v)], 

         the subgraph induced  by the neighbours of v 
 

Local equivalence  ( ≈ loc )  = transitive closure of local  complementation  

(at  all  vertices) 
 

Vertex-minor  relation : 

H  <VM  G  : ⇔  H  is an induced  subgraph  of  some G’ ≈ loc G. 
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Proposition (Courcelle and Oum 2004) :  The  mapping  that  associates   

with  G  its locally  equivalent  graphs  is  a   C2MS  transduction.  

 

Why is  the  even cardinality  set predicate  necessary ? 
 

    u                               Consider G * X for X ⊆ Y : 

                    

                                    u  is  linked  to  v  in G * X 

    v                                     ⇔    Card(X)  is even 

       G      Y    

(G * X =  composition of local complementations at all vertices from X) 
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Definition of   Sk , bipartite : A = {1,…,(k+1)(k-1)} , B =  {1,…,k(k-1)}  
From Sk  to  Gridk x k   by an MS transduction  

                            S3                    (folded)  Grid3x4 

The orderings of A and B : x, y  are  consecutive   ⇔   Card(nG(x) Δ nG(y)) = 2 

One recognizes the edges from i  ∈ B  to  i   ∈ A, and from i ∈ B to i+k-1 ∈ A (thick 
edges on the left drawing) 

One creates edges (e.g. from  1 ∈ A to 2 ∈ A, from  2 ∈ A to 3 ∈ A etc…and similarly 
for B, and from  1 ∈ B to 4 ∈ A, etc…)  one deletes others (from 4 ∈ B to 6 ∈ A   etc…), 
and vertices like 7,8 in A, to get  a grid containing Gridkxk           
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Open  questions 
 

 The  most  difficult  one : Is  it true  that if a set of relational  structures  

has a decidable CMS-theory,  then it  is  the  image  of  a set  of  trees  

under an MS-transduction ?  (CMS   =  MS  logic with modulo cardinality  

set predicates, generalizing Even(X) ) 
 Remark  :  Some results like the Blatter-Specker Theorem  do not extend from 

graphs  to  relational structures. (See  works by Fischer and Makowsky). 

  

 What  should be the clique-width or rank-width of hypergraphs (or 

relational structures) ?  

 

 Properties  of  n-depth  tree-width. 
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Bonus :  Graph operations  characterizing   tree-width 
 

Graphs have  distinguished vertices called sources, (or terminals or boundary vertices) 

pointed  to  by source  labels from a finite set :    {a, b, c,  ..., h}. 

Binary operation(s)  :  Parallel  composition 

G // H     is  the  disjoint  union of  G  and  H  and sources  with  same  label  are   fused.  

(If G  and  H are  not disjoint, one  first  makes  a  copy of  H disjoint from  G). 
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Unary operations   :    Forget   a  source  label  
       Forgeta(G)   is  G  without  a-source: the  source  is  no longer distinguished ;  

(it is  made  "internal"). 

 

 

       Source renaming : 
Rena     b(G)  exchanges  source  labels  a  and b     

(replaces  a  by  b   if  b is not the label of a  source) 

 

 
 

Nullary operations denote basic graphs : the connected graphs with at most one edge.  
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Tree-decompositions 
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Proposition:  A  graph  has  tree-width  ≤  k  if and only if  it  can  be  constructed   from  

basic  graphs  with   ≤  k+1  labels  by  using  the  operations    // , Rena     b  and  Forgeta.  
 

Example : Trees are of tree-width 1, constructed with two source labels, r  (root) and n  (new 

root):  Fusion of two trees at their roots  :  

 

Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root" as current root :  

e  =  r  •_________•  n 

Renn      r  (Forgetr (G // e )) 
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From  an algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc)) (Constant  ab  denotes  an edge from  a   to  b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                         The  tree-decomposition  associated  with  this term. 


