Computations of graph polynomials
by \textit{fly-automata}

Bruno Courcelle

(joint work \textit{in progress} with Irène Durand)

Bordeaux University, LaBRI (CNRS laboratory)
Overview

We give algorithms based on MSO (Monadic Second-Order) logic and automata that will help to compute MSO-definable polynomials for graphs of bounded tree-width or clique-width.

We use infinite automata, called fly-automata, that compute their transitions. Their inputs are finite algebraic terms denoting graphs.
The functions to compute are, typically, for φ MSO:

\[
\text{#}(X,Y).\varphi(X,Y) := \text{number of pairs } (X,Y) \text{ that satisfy } \varphi(X,Y) \text{ in graph } G,
\]

\[
\text{Sp}(X,Y).\varphi(X,Y) := \text{set of pairs } (|X|, |Y|) \text{ for } (X,Y) \text{ satisfying } \varphi(X,Y) \text{ in graph } G,
\]

\[
\text{MSp}(X,Y).\varphi(X,Y) := \text{multiset of pairs } (|X|, |Y|) \text{ for } (X,Y) \text{ satisfying } \varphi(X,Y) \text{ in graph } G, \quad (1)
\]

\[
\text{Max}(X).\varphi(X) := \text{max cardinality of } X \text{ that satisfies } \varphi(X) \text{ in } G.
\]

\[
\text{Sat}(X,Y).\varphi(X,Y) := \text{set of pairs } (X,Y) \text{ that satisfy } \varphi(X,Y) \text{ in } G.
\]

(1) : Cf. counting generalized colorings (Kotek, Makowsky, Zilber).
FPT algorithms are known for the first 4 cases and FPT ones in the size of the result for the last one (Grohe et al.).

Contradicting a common statement, automata can be used for that: we give a theoretical framework and report about implementation.
Relevance to graph polynomials

All classical graph polynomials are, in some sense, MSO-definable (Makowsky).

Examples: Matching polynomial

\[M(G,u) := \sum m(G,k) \cdot u^k \]

\(m(G,k) \) is the number of \(k \)-matchings in \(G \) (sets of \(k \) pairwise disjoint edges) = \(\#(X) \cdot \varphi_k(X) \), where \(\varphi_k(X) \) says that \(X \) is a set of \(k \) pairwise disjoint edges (FO-definable for each \(k \)).
Sokal's multivariate polynomial, subsumes Tutte's.

\[Z(G,u,x_E) := \sum u^{k(A)} \cdot x_A \]

summation is over all sets of edges \(A = \{a_1, \ldots, ap\} \),
\(x_{ai} \) is an undeterminate indexed by edge \(ai \),
\(x_A := x_{a_1} \cdot \ldots \cdot x_{ap} \) (commutative product)
\(k(A) := \) number of connected components of \(G[A] \).

We have \(\{k(A)\} = \text{Sp}(X). \varphi(X,A) \) where
\(\varphi(X,A) \) says that \(X \) has 1 vertex in each con. comp. of \(G[A] \).

The chromatic polynomial of \(G \) is \(Z(G,u, x_e := -1) \)

For Tutte’s polynomial \(T(G,u,v), \) we have

\[(u-1)^{k(G)} \cdot (v-1)^n \cdot T(G,u,v) = Z(G,(u-1)(v-1), x_e := v-1) \]
Tutte’s polynomial

\[T(G,u,v) := \sum t_{i,j} \cdot u^i \cdot v^j \]

\(t_{i,j} \) is the number of spanning trees of \textit{internal activity} \(i \) and \textit{external activity} \(j \), relative to a linear order on edges (from each term defining \(G \), we have such an order).

An MSO formula \(\varphi(X,Y,Z) \), where \(X,Y \) are sets of edges, is such that, if

\[\text{MSp}(X,Y,Z).\varphi(X,Y,Z) = \ldots + p.(k,i,j) + \ldots \]

then:

\[T(G,u,v) = \ldots + p.u^i v^j + \ldots \]

\(\varphi(X,Y,Z) \) says that \(X \) is a spanning tree \(T \) and \(Y \), \textit{resp.} \(Z \) are the \textit{internally}, \textit{resp. externally} active edges of \(G \) \textit{wrt} \(T \). (This counting works because \(Y \) and \(Z \) are uniquely determined from \(X \).)
Multivariate interlace polynomial (B.C., 2008)

\[C(G, u, v, x_V, y_V) := \sum x_A \cdot y_B \cdot u^{f(A,B)} \cdot v^{g(A,B)} \]

\(G \Lambda B := G \) where the loops at the vertices in B are toggled,

\(f(A,B) := \text{rk}(G \Lambda B[A \cup B]) \) and \(g(A,B) := |A \cup B| - f(A,B) \),

\(\text{rk}(H) := \text{rank over GF(2) of the adjacency matrix of graph } H \).

The rank of \(H \) is \(\text{Max}(X). \varphi(X) \) for an MSO formula \(\varphi(X) \) written with the even cardinality set predicate \(\text{Even}(Y) \). (As graphs are ordered, this predicate is MSO-definable).
Graphs are defined by algebraic terms and processed by automata on these terms.

Our graph parameter is *clique-width* (cwd(.)) and the terms denoting graphs are those from which clique-width is defined because:
- it is easier to handle than *(the very popular)* tree-width (twd(.)) for constructing automata, and it is more powerful: bounded tree-width implies bounded clique-width,
- it is defined in terms of *elementary graph* operations, hence is easier than the equivalent notion of *rank-width*,
- it works equally well on directed graphs.
We can handle edge quantifications via incidence graphs:

If \(G = (V_G, \text{edg}_G(.,..)) \) then \(\text{Inc}(G) := (V_G \cup E_G, \text{inc}_G(.,..)) \)

where: \(\text{inc}_G(u,e) : \iff u \) is an end of \(e \).

MSO formulas over \(\text{Inc}(G) \) can use quantifications on edge sets of \(G \) and express more properties.

Proposition (T.Bouvier): \(\text{twd}(G) \leq k \implies \text{cwd}(\text{Inc}(G)) \leq k+3. \)

Hence, no exponential jump.

The system AUTOGRAPH (by Irène Durand) and the corresponding theory [B.C.&I.D.: Automata for the verification of monadic second-order graph properties, J. Applied Logic, 10 (2012) 368-409] are based on clique-width.
Using automata

Theorem [B.C.]: For every k, every MSO graph property P can be checked by a finite automaton, which recognizes the terms that:

1. are written over the finite set F_k of operations that generate the graphs of clique-width at most k, and
2. define a graph satisfying P.

However, these automata are much much too large to be tabulated.

Our remedy: We use fly-automata (in French “automates programmés”), whose states and transitions are described and not tabulated. Only the transitions necessary for a particular input term are computed, “on the fly”.
As states are not listed, a fly-automaton can use an infinite set of states. It can recognize sets of words or terms that are not monadic second-order definable: the language $a^n b^n$, the terms of arbitrary clique-width defining regular graphs (all vertices of same degree).

It can compute values: the number of p-colorings, or of “acyclic” p-colorings of a graph (the graph induced by any two color classes is acyclic).

We can construct fly-automata in uniform ways from logical formulas. In this way, we develop a theory of (some aspects of) dynamic programming.
Review of definitions

Definition 1: Monadic Second-Order Logic

First-order logic extended with (quantified) variables denoting subsets of the domains.

MSO (expressible) properties: transitive closure, properties of paths, connectedness, planarity (via Kuratowski), p-colorability.

Examples of formulas for $G = (V_G, \text{edg}_G(.,.))$, undirected

G is 3-colorable:

$$
\exists X,Y \ (X \cap Y = \emptyset \ \land \\
\forall u,v \ \{ \ \text{edg}(u,v) \Rightarrow \\
\quad [(u \in X \Rightarrow v \notin X) \land (u \in Y \Rightarrow v \notin Y) \land \\
\quad (u \notin X \cup Y \Rightarrow v \in X \cup Y)] \\
\})
$$
G is not connected:

$$\exists Z \ (\exists x \in Z \land \exists y \not\in Z \land (\forall u,v (u \in Z \land \text{edg}(u,v) \Rightarrow v \in Z))$$

Transitive and reflexive closure: $\text{TC}(R, x, y)$:

$$\forall Z \{ \text{“Z is R-closed”} \land x \in Z \Rightarrow y \in Z \}$$

where “Z is R-closed” is defined by:

$$\forall u,v (u \in Z \land R(u,v) \Rightarrow v \in Z)$$

The relation R can be defined by a formula as in:

$$\forall x,y (x \in Y \land y \in Y \Rightarrow \text{TC(“u \in Y \land v \in Y \land \text{edg}(u,v)”, x, y})$$

expressing that $G[Y]$ is connected (Y is free in R).

Definition 2: Clique-width

Defined from graph operations. Graphs are simple, directed or not, and labelled by \(a, b, c, \ldots \). A vertex labelled by \(a \) is called an \(a \)-vertex.

One binary operation: disjoint union : \(\oplus \)

Unary operations: (1) edge addition denoted by \(\text{Add}_{a,b} \)

\(\text{Add}_{a,b}(G) \) is \(G \) augmented with undirected edges between every \(a \)-vertex and every \(b \)-vertex. The number of added edges depends on the argument graph.

\[
G = \quad H = \quad H = \text{Add}_{a,b}(G) ; \text{only} \; 5 \; \text{new edges added}
\]
Directed edges can be defined similarly.

(2) Vertex relabellings:

\(\text{Relab}_a \rightarrow_b (G) \) is \(G \) with every \(a \)-vertex is made into a \(b \)-vertex

Nullary operations for basic graphs with a single vertex \(a \), labelled by \(a \).

Definition: A graph \(G \) has **clique-width** \(\leq k \) (denoted by \(\text{cwd}(G) \))

\(\iff G = G(t), \text{ defined by a term } t \text{ using } \leq k \text{ labels.} \)

Example: Cliques have clique-width 2.

\(K_n \) is defined by \(t_n \) where \(t_{n+1} = \)

\(\text{Relab}_b \rightarrow_a (\text{Add}_{a,b} (t_n \oplus b)) \)
New definition 3: Fly-automaton (FA)

\[A = \langle F, Q, \delta, \text{Out} \rangle \]

- \(F\): finite or countable (effective) signature (set of operations),
- \(Q\): finite or countable (effective) set of states (integers, pairs of integers, finite sets of integers: states are encoded by finite words, integers are in binary),
- \(\text{Out} : Q \rightarrow D\), computable (\(D\): effective domain, a recursive set of words),
- \(\delta\): computable (bottom-up) transition function.

Nondeterministic case: \(\delta\) is \textit{finitely multi-valued}.
This automaton defines a **computable function** \(T(F) \rightarrow D \)

(or \(T(F) \rightarrow P(D) \) if it is not deterministic)

If \(D = \{ \text{True, False} \} \), it defines a **decidable property**, equivalently, a **decidable subset** of \(T(F) \).

Deterministic computation of a nondeterministic FA:

bottom-up computation of **finite** sets of states (classical simulation of the determinized automaton): these states are the useful ones of the **determinized automaton**; these sets are **finite** because the transition function is **finitely multivalued**.

To be defined later: **Enumerating computation**.
Example: The number of accepting runs of a nondeterministic automaton.

Let $A = \langle F, Q, \delta, \text{Acc} \rangle$ be finite, nondeterministic.

Then $\#A := \langle F, [Q \rightarrow \mathbb{N}], \delta^#, \text{Out} \rangle$

$[Q \rightarrow \mathbb{N}]$ = the set of total functions: $Q \rightarrow \mathbb{N}$

$\delta^#$ is easy to define such that the state reached at position u in the input term is the function σ such that $\sigma(q)$ is the number of runs reaching q at u.

$\text{Out}(\sigma)$ is the sum of $\sigma(q)$ for q in Acc.

$\#A$ is a fly-automaton obtained by a generic construction that extends to the case of infinite fly-automata.
The algorithmic MSO meta-theorem through *fly-automata*

\[\varphi \text{ (MSO formula)} \]

Fly-automaton Constructor

\[A(\varphi) \]

\[t \]

\[G \rightarrow \text{Graph Analyzer} \rightarrow t \rightarrow A(\varphi) \]

- Yes
- No

\(A(\varphi) \) is an *infinite fly-automaton* over the countable set \(F \) of all graph operations that define clique-width. The time taken by \(A(\varphi) \) depends on the number of labels that occur in \(t \), not only on the size of \(G \) or \(t \).
Fly-automata that check graph properties

How to construct them?

(1) Direct construction for a well-understood graph property or

(2) Inductive construction based on the structure of an MSO formula;
 a direct construction is anyway needed for atomic formulas;
 logical connectives are handled by transformations of automata:
 products, projection (making them nondeterministic), determinization
 (for negation).
Example of a direct construction: Connectedness.

The state at position u in term t is the set of types (sets of labels) of the connected components of the graph $G(t/u)$. For k labels ($k = \text{bound on clique-width}$), the set of states has size $\leq 2^k$. Proved lower bound: $2^\frac{k}{2}$.

\rightarrow Impossible to compile the automaton (to list its transitions).

Example of a state: $q = \{ \{a\}, \{a,b\}, \{b,c,d\}, \{b,d,f\} \}$, ($a,b,c,d,f : \text{labels}$).

Some transitions:

$Add_{a,c} : \quad q \quad \xrightarrow{} \quad \{ \{a,b,c,d\}, \{b,d,f\} \}$,

$Relab_{b} : \quad q \quad \xrightarrow{} \quad \{ \{b\}, \{b,c,d\}, \{b,d,f\} \}$

Transitions for \oplus: union of sets of types.

Note: Also state (p,p) if $G(t/u)$ has > 2 connected components, all of type p.
We can allow fly-automata with *infinitely* many states and, also, with *outputs* : numbers, finite sets of tuples of numbers, etc.

Example continued : For computing the number of connected components, we use states such as :

\[
q = \{ (\{a\}, 4), (\{a,b\}, 2), (\{b,c,d\},2), (\{b,d,f \},3) \},
\]

where 4, 2, 2, 3 are the numbers of connected components of respective types \{a\}, \{a,b\}, \{b,c,d\}, \{b,d,f \}.
Computation time of a fly-automaton

F : all \((\texttt{cwd})\) graph operations, \(F_k\) : those using labels 1, \(\ldots\), \(k\).

On term \(t \in T(F_k)\) defining \(G(t)\) with \(n\) vertices, if a fly-automaton takes time bounded by:

\[(k + n)^c \rightarrow\text{it is a P-FA (a polynomial-time FA)},\]

\[f(k).n^c \rightarrow\text{it is an FPT-FA},\]

\[a.n^{g(k)} \rightarrow\text{it is an XP-FA}.

The associated algorithm is, respectively, polynomial-time, FPT or XP for clique-width as parameter.
Recognizability Theorem [B.C & I.D.]: For each MSO property P, one can construct a single infinite FPT-FA over F (the operations that generate all graphs) that recognizes the terms $t \in T(F)$ such that $P(G(t))$ holds.

For each k, its restriction to the finite signature F_k (the operations that generate graphs of $cwd \leq k$) is a finite automaton.

Consequences: (1) The same automaton (the same model-checking program) can be used for all graphs (of any clique-width).

(2) It can be implemented in non-trivial cases.
Some experiments using FA (by Irène Durand)

Number of 3-colorings of the 6 x 90 “modified” grid of clique-width 8 in 1 min. 9 sec. (modified with diagonals on the squares of the first column).

For the similar 6 x 250 grid : < 6 min. ; for 6 x 360 : < 9 min.

4-acyclic-colorability of the Petersen graph (clique-width 5) in 1.5 min., from a term in T(F₆).
(3-colorable but not acyclically; red and green vertices induce a cycle).
Existential quantifications and nondeterminism

Graph $G(t)$

Term t over F
Term $t \ast (V_1, V_2)$ over $F^{[2]}$ ($[2]$ because of 2 Booleans).

$V_1 = \{1,3,4\}, \ V_2 = \{2,3\}$
Consider a property $\exists X,Y. \varphi(X,Y)$ to be checked on graph $G(t)$.

We construct a deterministic automaton A over $F^{[2]}$ recognizing the terms $t^* (X,Y)$ such that $G(t^* (X,Y)) \neq \varphi(X,Y)$.

We delete the Booleans in the nullary symbols of $F^{[2]}$: we obtain a nondeterministic automaton B over F (called a projection: $A \rightarrow B$).

The different runs of B correspond to trying the different possible pairs (X,Y) when looking for a satisfying one.

B recognizes the terms t such that $G(t) \neq \exists X,Y. \varphi(X,Y)$.
By an induction on φ, we construct for each $\varphi(X_1,\ldots,X_n)$ a

FA $A(\varphi(X_1,\ldots,X_n))$ that recognizes:

$$L(\varphi(X_1,\ldots,X_n)) := \{ t \star (V_1,\ldots,V_n) \in T(F^{(n)}) / (G(t), V_1,\ldots,V_n) \models \varphi \}$$

Quantifications: Formulas are written without \forall

$$L(\exists X_{n+1}. \varphi(X_1,\ldots,X_{n+1})) = \text{pr}(L(\varphi(X_1,\ldots,X_{n+1}))$$

$$A(\exists X_{n+1}. \varphi(X_1,\ldots,X_{n+1})) = \text{pr}(A(\varphi(X_1,\ldots,X_{n+1}))$$

where pr is the *projection* that eliminates the last Boolean;

\Rightarrow a *non-deterministic* automaton $B = \text{pr}(A(\varphi(X_1,\ldots,X_{n+1}))$.

30
Determinized runs of B defined by deterministic FAs C

For $\exists X. P(X)$: the state of C at position u is

$$\{ \text{state } q \text{ of } B / \text{some run reaches } q \text{ at position } u \}$$

For $\# X. P(X)$: the state of C at position u is

$$\{ (q,m) / m = \text{the number of runs that reach } q \text{ at } u \}$$
equivalently, the corresponding multiset of states q, cf. $\exists X. P(X)$

For $SpX. P(X)$: the state of C at position u is

$$\{ (q,S) / S = \text{the set of tuples of cardinalities of } \text{the “components of } X \text{ below } u \text{” that yield } q \text{ at } u \}.$$}

For $MspX. P(X)$: S is the corresponding multiset.
For MinCard X.P(X) : the state of C at position u is

\{ (q, s) / s = \text{the minimum cardinality of } \text{“} X \text{ below } u \text{” that yields } q \text{ at } u \}.

SatX.P(X) := the set of all tuples X that satisfy P(X),
the state of C at position u is

\{ (q, S) / S = \text{the set of all tuples below } u \text{ that yield } q \}\}
A common presentation for all this cases:

We call the component s in a state (q, s) is an attribute of q.

An attribute s of q at u collects certain information about all the runs that yield q at u. Computations of attributes correspond to variants of the basic determinization: they use, according to the cases:

- Set union (for basic determinization)
- Union of multisets, (for counting runs)
- Selection of minimal number or minimal set (e.g. for inclusion),
- $A + B$ where A and B are sets of numbers,
- etc…

Optimizations: How to avoid intermediate computations that do not contribute to the final result.

Theorem (Flum and Grohe): One can compute $\text{Sat}_X.P(X)$ in time $f(k). (n + \text{size of the result})$ where $\text{cwd}(G) \leq k$ and n is the size of the term.

The bottom-up inductive computation must “know” that certain states will not belong to any accepting run on the considered term.

Method: 3 pass algorithm

1: determinized bottom-up run keeping pointers showing how states are obtained from others,

2: top-down run starting from the accepting states at the root and marking the useful states,

3: bottom-up computation of attributes only for the useful states.
\[\oplus[p, q, r] \rightarrow p \]
\[\oplus[p, s] \rightarrow p \]
\[\oplus[q, v] \rightarrow q \]
\[\oplus[r, s] \rightarrow 2 \]
This 3-pass algorithm is applicable for all our computations of attributes.

Example: Checking that a graph has a unique 3-coloring.

1st method: expressing that in MSO: possible but cumbersome.

2nd method: computing the total number of 3-colorings: we want result 6 (assume the graph is not 2-colorable): OK but lengthy.

3rd method: “optimized” counting with reporting Failure if a useful intermediate result shows that more than 6 coloring will be found.

This is applicable to: \(\exists ! X. P(X) \) for every MSO property \(P \).
Enumeration techniques

Enumeration of accepting states

- stopping as soon as one is obtained
- less space but more time for checking negation (failure to recognition),
- listing the assignments \mathbf{X} satisfying $\varphi(\mathbf{X})$: we maintain with each state, at each position, its “origin”: the partial assignment that produced it.

If an Error state is found in a partially constructed run, we abort its completion.
Enumerators

An *enumerator* is a triple $E = (D, \text{reset}, \text{next})$ where D is an effective (countable) set, reset and next are two programs guaranteed to terminate. E defines a *finite list* $\text{List}(E)$ of elements of D. $\text{List}(E)$ may contain repetitions, next produces one more element or reports “end of list”, reset reinitializes the program next.

Remark: Enumerators can be extended to produce infinite lists.
Basic enumerators: For each nullary a, E_a produces the list of states q (not Error) arising from a (by the nondeterministic automaton B that checks $\exists X.\varphi(X)$ and that is obtained from the deterministic automaton A checking $\varphi(X)$, by deleting the sequences of Booleans w in the nullary symbols (a,w) of the signature $F^{[p]}$ of A).

Alternatively, E_a produces the list of pairs (q,w): we keep track of the w that produced q (its “origin”).
Transforming and combining enumerators.

Making a copy of $E : \text{copy}_u(E)$ indexed by u, a position of the given term.

Making E into $\text{nr}(E)$, nonredundant: produces the same elements without repetitions ($\text{nr}(E)$ uses the list of already generated elements).

Applying a unary function $h : D \rightarrow D'$

If E enumerates elements of D, then $h \circ E$ produces the images by h of the elements of List(E).
Cartesian product.

If E enumerates elements of D, E' elements of D', we want to list the pairs (d,d') where $d \in \text{List}(E) = d_1, \ldots, d' \in \text{List}(E') = d'_1, \ldots$

Possible orders:

“Line order” (lexico) : $(d_1, d'_1), (d_1, d'_2), \ldots, (d_2, d'_1), (d_2, d'_2), \ldots$

“Column order” : $(d_1, d'_1), (d_2, d'_1), \ldots, (d_1, d'_2), (d_2, d'_2), \ldots$

“Diagonal order” : $(d_1, d'_1), (d_1, d'_2), (d_2, d'_1),$

$(d_1, d'_3), (d_2, d'_2), (d_3, d'_1), \ldots$

$\mathbf{E \times_{\text{Line}} E'}, \quad \mathbf{E \times_{\text{Col}} E'}, \quad \mathbf{E \times_{\text{Diag}} E'}$ realize these enumerations.
Given a term \(t \) and an automaton \(A \) that checks \(\varphi(X) \), one builds a (big) enumerator \(E_t \) by combining basic ones with Cartesian compositions, \(ho(.) \) and possibly \(nr(.) \).

If \(t = f(s) \), then \(E_t = ho(E_s) \) where \(h \) is based on transitions for \(f \).

If \(t = f(s,s') \), then \(E_t = ho(E_s \times E_{s'}) \) where \(h \) is similar.

Running \(E_t \) by calling its \textit{next} component iteratively produces the desired list (unless the system lacks of memory).
The system AUTOGRAPH (by I. Durand)

(1) Fly-automata for basic graph properties:
 Clique, Stable (no edge), Link(X,Y), NoCycle,
 Connectedness, Regularity, Partition(X, Y, Z), etc…

and functions:
 \#Link(X,Y) = number of edges between X and Y,
 Maximum degree.

Procedures for combining fly-automata, corresponding to logical
constructions: \(\land \), \(\lor \), negation, \(\exists X. \varphi(X) \).
Procedures to build automata that compute functions:

$\#X.\varphi(X)$: the number of tuples X that satisfy $\varphi(X)$ in the input term (hence, in the associated graph),

$Sp_X.\varphi(X)$: the spectrum = the set of tuples of cardinalities of the components of the X that satisfy $\varphi(X)$, etc…

Enumeration: construction of an enumerator from a term and a fly-automaton.

These constructions are “uniform” with respect to the input automata.
Some tests

Checking colorability of grids $6 \times M$ of clique-width 8.

<table>
<thead>
<tr>
<th>M</th>
<th>2-col. det</th>
<th>2-col. enum</th>
<th>3-col. det</th>
<th>3-col. enum</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0.03 s</td>
<td>6 s</td>
<td>10 s</td>
<td>6 s</td>
</tr>
<tr>
<td>8</td>
<td>0.03 s</td>
<td>9 s</td>
<td>Fails</td>
<td>9 s</td>
</tr>
<tr>
<td>20</td>
<td>0.2 s</td>
<td>3 min</td>
<td>Fails</td>
<td>3 min</td>
</tr>
</tbody>
</table>

Counting 2-colorings: for $M = 200$, in 2 seconds (2).
Counting 3-colorings: for $M = 5$, in 3 seconds (6 204 438).
Fails for $M = 6$.
Works for $M = 360$ for modified grids.
Enumerating 3-colorings:

M = 20: Construction of enumerator in 3 minutes
Then, first result in 0.5 second.
Conclusion

These algorithms are based on fly-automata, that can be quickly constructed from logical descriptions (and basic automata)

⇒ flexibility.

The system AUTOGRAPH implements these constructions. Tests have been made for colorability and connectedness problems.