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Formal Language Theory extends to graphs

1. Recognizable sets : an algebraic notion based on finite
congruences, well-defined in every algebra.
They generalize regular languages.

Automata : tools for implementation and theoretical study.

Good for words, terms and trees, not for graphs.

Monadic Second-order logic : a specification language for

recognizable sets of words, terms, trees and graphs.

MS-definable = Recognizable for words, terms, trees

MS-definable Recognizable for graphs
(two results for two algebras and two MS-definability notions).




2. Equational sets : least solutions of systems of
recursive set equations, well-defined in every algebra.
They generalize context-free languages. For graphs,
they have equivalent characterizations by grammars

with context-free rewriting rules.

3. Transductions of structures (words, terms, graphs) can be
specified by :

automata with outputs (many notions) for words, terms

Monadic Second-order formulas, for all structures



Main relationships

Recognizable sets of graphs (“generalized regular”),
Monadic second-order definable sets of graphs,
Equational sets of graphs (“generalized context-free”) and

Monadic second-order transductions (MST) are related :
L N K LJEQUAT if L Ll EQUAT and K Ll REC
EQUAT = MST(Trees) = MST(EQUAT)
MS-definable [1 REC = MST (REC)

= L N KL EQUAT if L [l EQUAT and K is MS-definable.



Monadic Second-order Transductions

Deterministic (parameterless) DetMST:

G : word, term, tree, labelled graph.
G-2>T(G)=H
G -2 copyk(G) = H, specified inside copyk(G) by MS-definable

domain restriction and redefinition of edge and labelling relations.

copys(G) SO T S W
Red lines relate identical / \\// \

nodes (vertices) in the different copies.



A nondeterministic MST is defined by using an MS-constrained

choice V of auxiliary node (or vertex) labels.

Properties :

1. Linear size increase property : | Vert(t(G,v))| < k.| Vert(G)|.

2. DetMST and MST are closed under composition

but not under inverse (because of property 1).

These notions extend to relational structures.



We now consider words and terms

Transductions of words and terms have been studied
extensively since 1973 by Joost Engelfriet and his coauthors:
Roderick Bloem,
Frank Drewes,
Hendrik Jan Hoogeboom,
Andreas Maletti,
Sebastian Maneth,
Grzegorz Rozenberg,
Vincent van Oostrom,

Heiko Vogler and those | am forgetting.



Words as labelled graphs (directed paths).

Several (essentially equivalent) representations :

Word abbc: * 2 « 2% 2« 2« (edge labelled graph)
a b b C

or : £ D x D x D x (vertex labelled graph)
a b b C

or, with endmarkers : #abbc$ (works for the empty word) :

«=2+ 2x 2+ 2+ > (vertex labelled graph)
# a b b c $



Terms as labelled graphs (rooted trees).

Term f( g(a, b), a, ¢)

f

N

a C

7
A

2
*b
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Words (handled as graphs)

Equational sets properly include context-free languages:

{anbncn In>2 } is (linear) equational but not context-free.

d a d
— _Z
—_— b _—— b S ?
U S — - S

The start symbol is U.

Because equation systems are written with other operations than

concatenation. For graphs, these operations yield tree-width and clique-width.

Recognizable sets are the regular languages, as in the

free monoid.
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Transductions

1. DetMST and MST are incomparable with rational

transductions (the square mapping u - uu is a DetMST).

2. A rational transduction is an MST < it has finite images.

3. An MST isa DetMST < it Is a function.

Hence, every DGSM : Deterministic Generalized Sequential
Mapping (i.e., DFA with output) is a DetMST.

12



Theorem (Engelfriet & Hoogeboom, 2001) :
DetMST = 2DGSM : Deterministic 2-way Generalized
Sequential Mappings

2DGSM recognize regular languages and are closed under
composition (Chytil & Jakl, 1977)

Proof: 2DGSM C DetMST

13



2DGSM C DetMST. We consider the 2DGSM that transforms

a'ba"ba’...> a'b"'a"b"a’...

Some rules :
-b b+
. iyl o B S’A—Z z

The Input word aaabbaba (with end markers in the example below)

Is transformed into a computation board
by a first k-copying DetMST ( k = number of states):

14
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Another DetMST extracts the output word (aaabbbaba) by deleting

some parts and contracting the edges with empty output.
We conclude with closure of DetMST under composition.
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Other direction : DetMST C 2DGSM'VIS C 2DGSM

2DGSM™® : finite state 2-way transducers with global tests

and moves (jumps) specified by MS formulas ¢(u) and ¢ (ug,uy).

A k-copying DetMST Is easily translated into a
2DGSM™®  (with k+2 states).

4
Example : k =3 9 f&
i, f new initial and 3~ i i

final states. . s
—t— o—o—o "'l
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Last (more technical) step : 2DGSM"® C 2DGSM

Basic tool : MS-definability = finite automata

Theories: Fix integer p. For w L1 A*, x andy, positions in w :

Th(w ; x,y) = the set of MS formulas ¢ (uy,uy) of quantifier-height < p
such thatw | = d(x,y); this set is finite up to (decidable) equivalence.
Similar notions: Th(w ; x) and Th(w) with ¢(uy) and ¢.

Lemma l:Let w=wiawbws and X,y be the positions of a,b. Then :
Th(w ; x,y) = Fab(Th(wi), Th(wz), Th(wsz)),

Th(w ; X) = F'3(Th(wq), Th(wobws)),

Th(w) = F"3(Th(wy), Th(w2 bws)), for functions F; p, F'a, F'a.

17



Lemma 2 : Th(wia) = F’3(Th(wq), Th(E)).
Hence, Th(wq) is computable by a DFA (as a state).
Definition : Annotated word : w L A* & Ann(w).

Each letter a is replaced by [a, Th(w1), Th(w2)] if w = wpaws
(The replacement depends on the position).
Lemma 3 : Ann is a 2DGSM.

Proof : By Lemma 2, a first DGSM computes the middle components
Th(wq). Then, a “right to left” DGSM computes the last components

Th(w2) but produces an output that must be reversed by another

“right to left” DGSM. Their composition gives a 2DGSM (2-way

because of reversals of computation direction).

18



We now prove . 2DGSMM® C 2DGSM

1.Given w, we compute Ann(w) by a 2DGSM, for large enough p.

The computations of the given 2DGSM™® will be simulated by a

2DGSM on Ann(w).

2.MS tests. Since Th(wy aws ; X) = F'a(Th(wq), Th(ws2))

(by Lemma 1), the MS “global tests” by formulas ¢ (u) of quantifier-

height < p to be checked In w can be replaced by “local tests” on

the “rich” letters [a, Th(wq), Th(w>)].
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3. MS jumps simulated by walks.
Jumps are deterministic. At any position X, an MS test can check if

the unique position y where to jump is before or after or equal to x.

If after, the jump from x to y can be replaced by a forward walk:

X =2 ... Z ... =2 Y that maintains the information Th(w;X,z): this is

possible by Lemma 1 from the annotation and by computing Th(w>)
where w» is the subword of w between x and z. Thus we can

find the first (and unique) z that satisfies with x the formula ¢ (uz,uy)

that specifies the jump fromx to V.

If before, the jump from x to y is replaced by a backward walk.

If equal, no move.

20



Theorem :

(1) 2DGSM(Regular Languages)
= DetMST(Regular Languages)
= MST({0,1}*)

Linear equational sets of words.

(2) This class is closed under 2DGSM, DetMST and MST.

Linear (cf. the a'b'c" language, slide 11) means that every

righthand side of arule of the context-free graph grammar has at

most one nonterminal.
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Terms

We generalize 2DGSM'™ into DTWT"®

Deterministic MS Tree-Walking Transducer T:T(F) 2> T(H)
- global test at node x specified by MS formula ¢(u),

- jump from node x to y specified by MS formula P(u1,uy),
T(t) := T(t, ginit, root ) L1 T(H) (for t L] T(F)),

Tt g, x) =Tt q,y) if t = o) O Wxy), (unique g, y)

or
T(t, g, x) =h(T(t g, y1), T(t, ", y2) ) if
tl=px) O PYux, y1) O Pa(x, y2), (unique h, d, y1, 9", ¥2).
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Special cases:
- no jumps : only walking steps up, down-to-i-th-son or stay.
- local tests : labelled-by-f ?, is-root ?, is-i-th-son ?

- single-use : T(t, q, X) Is never called twice in the computation of T(t).

Example : The “homomorphism” defined by f(x) = h(x,x), that
transforms f(f(a)) into h(h(a,a),h(a,a)) is a top-down DTWT thatis

not single-use. It is not a DetMST (not of linear size increase).

23



Proposition 1 : For terms, DetMST = single-use DTWT"®,

As for words.

Proposition 2 : Jumps can be replaced by walking steps (keeping

global tests).

As for words, with MS tests instead of annotation.

Theorem (Bojanczyk & Colcombet, 2006) : Not every regular set of

terms is recognized by a tree-walking automaton.

Hence, the class of single-use DTWT" is notincluded in DTWT.

This shows a difference between the cases of words and terms.

Regular sets are recognized by DTWT' " : with a pushdown.

24



Proposition 3 : Global tests can be made local by adding a

pushdown. We have DetMST DTWT' " and loose single-use.

Pushdown : at node x, its length is the distance of x to the root.

It stores information attached to the ancestors y of x.

In the proof, it stores the theories Th(tty), where tt1y is the

context of y in t, the part of t outside of the subterm t/y.

Each time Th(t/x) is needed, it is recomputed by a depth-first

traversal of t/x, in which the pushdown is also used.
We have Th(t; x) = F(Th(t1 x), Th(t/x1), Th(t/x2))
where X1, Xo are the two sons of x. Cf. Lemma 1 for words.

25



Theorem :

A transduction of terms is in DetMST

oL PD . . .
< Jtis in DTWT and of linear size Increase.

It IS decidable whether a DTWTPD IS of linear size increase.

Remark : DTWT ° = DMTT (Deterministic Macro Tree Transducer)
(Engelfriet and Vogler, 1986)

26



Instead of using a pushdown, the input tree can be annotated with all
theories Th(t/x) and Th(tt x) by the composition of a bottom-up and

a top-down finite automaton (with output). Then a single-use DTWT

can be used, which works in linear time.

Corollary : Let T be a DetMST expressed as a composition of two

automata with output and a single-use DTWT. Then T(t) is

computed in linear time.

Alternative proof of a result valid for DetMST on graphs of

bounded clique-width or tree-width.

27



Implementation of a DetMST on graphs of bounded tree-width

or cliqgue-width by a DTWT " on terms.

Fo= {0, relabj_j, addjj, x / 1 <i,j <k}
These operations generate the graphs of clique-width < k.

val : T(Fx) — Graphs is a DetMST.

Theorem (The Book,2012): If T: T(H) — Graphs is a DetMST,

then T=valo O for some DetMST O:T(H) —» T(Fx) and some k.

28



Corollary :

Given a DetMST W : Graphs — Graphs and p, there exist
kK, and a DetMST O such that:
val

T(F,) - TR T 7.
0]

val T

Hence, if a graph G is given by a term t L T(Fp),

a term O (t) for U(G) can be computed by a DTWT' ° (and in

linear time when annotation is used).

Finding t if the cligue-width of G has a given upper-bound can be

done in time O(n3). (val is computable in linear time).
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Theorem :

A language of terms is equational < itis the image of a regular

language of terms under a single-use DTWT.

A language of words is equational < itis the image of a regular

language of terms under a DTWT (necessarily single-use).

It Is linear equational < itis the image of a regular set of words

under a 2DGSM.
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Conclusion

The equivalence of MS definability and recognizability by
deterministic finite automata on words and terms Is extended to

deterministic MS transductions.

Other results : equivalence problems for transducers:
Decidable for DetMST on words and terms.
for DetMST from terms to graphs.
for DTWT.
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A problem arising in Computational Linguistics :

The language of words w over {a, b, c} that have the same
numbers of a, b and c is equational: it is definable by a Multiple
Context-Free Grammar on words, hence, by a Hyper-edge
Replacement Graph Grammar (difficult “geometric” proof by Salvati,
2011).

What about the similar language over 4 letters ?

Can we show it is not by techniques based on MST ?
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