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Four independent research directions associating Monadic Second-order 

logic  and graph decompositions are  now  intimately related : 

1. Polynomial  algorithms for NP-complete and other hard problems on 

particular classes of graphs, and especially hierarchically structured 

ones : series-parallel graphs, cographs, partial k-trees, graphs or hypergraphs of 

tree-width < k, graphs of clique-width < k.  Related algorithmic questions 

2. Excluded minors and related notions of forbidden configurations (matroid 

minors, vertex-minors). 

3. Decidability of Monadic Second-Order logic on classes of  finite  graphs, 

and on infinite graphs. 

4. Extension to graphs and hypergraphs of the main concepts of Formal 

Language Theory : grammars, recognizability, transductions, decidability 

questions. 
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Summary 

 

1. Tree-width, clique-width, graph algebras 

2. Monadic second-order logic,  fixed-parameter  tractable algorithms 

3. Labelling for efficient querying : Networks with obstacles (Courcelle-

Twigg, 2007) 

4. Labelling for efficient querying : A general method (Courcelle-Vanicat, 

2003). 

5. Linear delay enumeration (Courcelle, 2006, to appear, 2008 ?).  
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The  graph algebra  HR and  tree-width 
Tree-width  :  Tree-decomposition of  width  k : k+1 = maximum  size  of a  box 
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Tree-width : twd(G) = minimum  width of a  tree-decomposition 

 

* Trees  have tree-width 1,  

 * Kn  has tree-width n-1 

*  the n x n grid  has tree-width  =  n  
Planar  graphs  and  cliques  have  unbounded  tree-width. 

Outerplanar  graphs  have  tree-width  at  most  2.  

 

 

A characterization in terms of HR operations : (Hyperedge Replacement 

hypergraph grammars ; associated complexity measure : tree-width) 
 

 

Graphs have  distinguished vertices called sources,  pointed  to  by labels from  a  

set of size k :    {a, b, c,  ..., h}. 
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Binary operation(s)  :  Parallel  composition 

 
G // H     is    the  disjoint  union of  G  and  H and sources  with  same  label  are   

fused. (If  G  and  H are  not  disjoint, one  first  makes  a  copy of  H disjoint   from  G) . 
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Unary operations   :    Forget   a  source  label  

Forgeta(G)    is   G     without  a-source  : the  source  is  no longer 

                                   distinguished ; it is  made  "internal".  

Source renaming : 

Rena,b(G)  exchanges  source  names  a  and b     

(replaces  a  by  b   if  b is not the name  of a  source) 

Nullary operations denote  basic graphs :  the connected graphs with at most one 

edge. For dealing with hypergraphs one takes more nullary symbols for denoting hyperedges. 

 

 

Proposition:  A  graph  has  tree-width  ≤  k  if and only if  it  can  be  constructed   

from  basic  graphs  with   ≤  k+1  labels  by  using  the  operations    // , Rena,b  and  

Forgeta .  
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Example : Trees are of tree-width 1, constructed with two source labels, r  (root) and n  (new 

root):  Fusion of two trees at their roots  : 
 

 
Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root" as current root :  

E  =  r  •_________•  n 

Renn,r (Forgetr (G // E))  
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From  an algebraic  expression  to  a tree-decomposition 

Example :  cd // Rena,c (ab // Forgetb(ab // bc)) 

Constant  ab  denotes  a  directed edge from  a   to  b. 

 

 
 

The tree-decomposition associated  with this term. 
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VR  operations  and  clique-width   (m-clique-width) 
 

(Vertex Replacement graph grammars) 
 

 

Graphs are simple, directed or not.   

One  uses   k   labels  :  a , b , c,  ..., h.   

Each vertex has one and only  one label ; (none or several) 

a label p may label several vertices, called the   p-ports. 

 

 

One  binary operation:   disjoint  union    :   ⊕ 
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Unary  operations:  Edge addition denoted by Add-edga,b 
 

Add-edga,b(G)   is  G   augmented with (un)directed edges  from every   a-port   to 

every  b-port. 
 

 

                         G             Add-edga,b(G) 
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Vertex  relabellings :  

Relaba,b(G) is  G with every vertex labelled by a   relabelled into b 
 

Basic graphs  are those with a single vertex. 

 

Definition:  A  graph  G  has  clique-width  ≤ k  ⇔  it can be constructed  from basic 

graphs  by means  of  k  labels  and   the  operations ⊕, Add-edga,b   and   Relaba,b   

 

Its (exact) clique-width,  cwd(G),   is the   smallest  such  k. 
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Proposition :  (1) If  a  set of  simple graphs  has  bounded  tree-width, it has  

bounded  clique-width, but  not  vice-versa. 

 

(2) Unlike tree-width, clique-width  is  sensible to edge directions :  Cliques have 

clique-width 2, tournaments have unbounded clique-width. 

 

(3) (a) Deciding  “Clique-width < 3” is a polynomial problem. (Habib et al.) 

     (b) The complexity (polynomial or NP-complete) of  “Clique-width = 4” is unknown. 

     (c ) It is  NP-complete  to  decide  for given k and G  if  cwd(G) < k. (Fellows et al.) 

     (d) There exists  a cubic approximation algorithm  that for given k and G  answers 

(correctly) :  

either  that cwd(G) >k, 

   or  produces  a  clique-width algebraic term  using  224k labels. (Oum) 

 This  yields  Fixed Parameter Tractable  algorithms  for many hard problems. 
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Example : Cliques have clique-width 2.  

 
 

Kn  is   defined  by   tn where  tn+1  =   Relabb,a( Add-edga,b(tn  ⊕  b)) 

Another  example :  Cographs  

Cographs  are generated  by  ⊕  and  ⊗  defined by : 

G ⊗ H     =   Relabb,a ( Add-edga,b (G ⊕ Relaba,b(H)) 

                = G ⊕ H  with  “all edges”  between  G and H. 
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Algorithmic  applications  
 

Fixed parameter  tractability  results  

Theorem (B.C.) :  1)  For  graphs  of  clique-width  ≤  k , 

each monadic  second-order  property, (ex. 3-colorability), 

each monadic  second-order optimization function, (ex. distance), 

each monadic  second-order  counting  function, (ex. #  of paths) 

       is  evaluable : 

in  linear  time  on graphs  given  by a term, 

in time  O(n3)  otherwise  (by  S. Oum, 2005). 
 

2) All  this  is  possible  in linear  time  on graphs  of tree-width ≤  k, for each  

fixed k  (by  Bodlaender, 1996) 
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Monadic Second-Order (MS) Logic  
 

=  First-order logic on power-set structures  
 
=  First-order logic extended with (quantified) variables  

denoting subsets  of the domains. 
 
MS properties :   transitive closure,  properties of paths, connectivity,  

 
planarity  (via Kuratowski, uses connectivity),   k-colorability. 
 
 

Examples  of formulas for   G =  < VG , edgG(.,.) >, undirected 
 

Non connectivity : 
∃X ( ∃x ∈ X  &  ∃y ∉ X  &  ∀u,v (u ∈ X  &  edg(u,v) ⇒ v ∈ X)  ) 

 
2-colorability (i.e.  G  is   bipartite) : 
∃X ( ∀u,v (u ∈ X  &  edg(u,v) ⇒ v ∉ X) &∀u,v (u ∉ X  &  edg(u,v) ⇒ v ∈ X) ) 
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Inductive  computations  
 

Example : Series-parallel graphs, defined  as graphs with sources 1 and 2,  

generated from  e   = 1             2    and the operations //  (parallel-composition)  and 

series-composition   defined  from other operations by : 

G • H =  Forget3(Ren2,3 (G) // Ren1,3 (H)) 

Example  :  

 

  1 •        G              •        H                            •  2 

        3 

 

   1   •                   • 2 
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Inductive  computation  :  Test  of 2-colorability  

1) Not all  series-parallel  graphs are  2-colorable  (see  K3)  
2) G, H  2-colorable does not imply that G//H is 2-colorable  (because  K3=P3//e). 
 
3) One can check 2-colorability  with 2 auxiliary  properties : 

Same(G) =  G is 2-colorable with sources of the same color, 
Diff(G) =  G is 2-colorable with sources  of different colors 

by  using rules :  Diff(e) =  True  ;  Same(e) = False 
Same(G//H)  ⇔ Same(G) ∧ Same(H) 
Diff(G//H) ⇔  Diff(G) ∧  Diff(H) 
Same(G•H)  ⇔  (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H)) 
Diff(G•H)  ⇔  (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧  Same(H)) 

 

 

We can compute for every SP-term t, by induction on the structure of  t the pair 

of Boolean values (Same(Val(t)) ,  Diff(Val(t)) ).   

 We  get  the answer  for  G = Val(t)  (the graph  that  is  the value  of t )  

regarding 2-colorability. 
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Important facts :  
a) The simultaneous computation of m inductive properties can be 

implemented by a "tree" automaton working on terms  t, with 2m  states. 

This  computation  takes  time  O( ⎜t ⎜).  

b) An inductive set of properties can be constructed (at least 

theoretically)  from every monadic-second order formula. 

c) This  result extends  to the computation of values  (integers)  defined  

by monadic-second order formulas. 

d) Application  to  graphs  depends  on  two things  : Parsing  algorithms  

building  terms  from the given graphs :  
1) results by Bodlaender for constructing tree-decompositions (in linear 

time), whence terms representing them, 

2) results by Oum and Seymour  for  constructing (non-optimal)  terms for 

graphs  of  clique-width at most  k. (Cubic time algorithm)
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A language  L , i.e., a set  of  words or terms is  Monadic Second-Order  
(MS)  definable  if : 
 

L  =  { t   /    t  ⎜=  ϕ }  for an MS formula  ϕ 
 
 
 

Theorem  : A  language is  MS  definable   iff   it is recognizable  (by a 
deterministic finite automaton). 
 
 

Two of the results  to be presented are based on this theorem. 
 

The third one (presented first) is a  direct  construction, NOT  
using MS logic and automata. 
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Background: distance labelling

Distance labelling problem: given graph G, compute labels J(x) for x ∈ V
s.t. given labels J(x), J(y), we can compute the distance d(x, y) in G.

Main results in the area:

⋆ Exact distance labeling for general graphs: Θ̃(n) bits [Peleg, Gavoille, ...]
⋆ Stretch-3 scheme for general graphs using Õ(n1/2) bits [Thorup]
⋆ For treewidth k graphs, exact scheme using Θ(k log2 n) bits.
⋆ For graphs excluding a fixed minor, Õ(1) bits [Thorup, Gavoille, ...]

Most of these can be obtained as compact routing schemes: given J(x), J(y),
determine the next-hop on the path x→ y.
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“Distance labelling with obstacles”

Forbidden-set distance labelling problem: given labels {J(x) : x ∈ X} for
X ⊆ V , what is the distance with no intermediate nodes in X?
i.e dG\(X\{x,y})(x, y) for x, y ∈ X?

Theorem 1 For graphs of cliquewidth and treewidth ≤ k, we can use labels of

size O(k2 log2 n) bits. Only a factor k larger than pure distance labelling.

⋆ WHY?? E.g. Internet routers can specify routing policies; not known if
they can be satisfied using small collections of trees.
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Shortcut graph G+[X]

Given the labels {J(x) : x ∈ X}, we can compute the graph

G+[X] = G[X] + {shortest detours outside X between x, y ∈ X}.

Then we can answer distance queries with forbidden vertices and edges in X.
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Algebraic representations: Cographs

Graphs defined by terms on two binary operations:

⋆ G⊕H : disjoint union of G,H
⋆ G⊗H = G⊕H plus all edges between G,H

For example, adjacency labels:
A(x) = ⊗1⊕ 1⊗ 2
A(y) = ⊗2⊗ 1⊕ 2⊗ 1⊗ 1

G[X] can be constructed from {A(u) : u ∈ X}.

Fact 1 |A(u)| ≤ 2.ht(t)

More powerful graph operations to be defined next.
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Useful class of graphs: mcwd

G H

{2}

{1}{3}

{1, 2}

⋆ R = {(1, 2), (3, 1)} is a set of pairs of colours
⋆ No edges are created inside G,H
⋆ g, h are independent recolourings of G,H : g, h : [k]→ P([k])

⋆ A variant of clique width; each node can have several colours, drawn from
a set L of k colours.

⋆ Graph G can be represented by a term with constants (leaves) in bijection
to vertices of G and internal nodes are binary operations ⊗R,g,h:
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Representation of mcwd terms

Represents two 

real edges in G, 

including {x,y}

⋆ term t: ⊗ and blue edges
⋆ ↑: relabellings by g, h in ⊗R,g,h

and initial labelling of vertices
⋆ red edges: pairs of labels in sets R.

Each produces a set of real edges of G.

e.g. Can see that d(x, y) = 1
What if we delete edge {x, y} ?
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Forbidden edges
For shortest paths leaving a set X, we replace their corresponding subterms

with shortcut edges in the graph representation of a term, and stored in labels
assigned to vertices of G.

d(x, y) = 4 if {x, y} is forbidden
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Forbidden vertices

We can do a similar thing for deleted vertices. The ellipse touches all edges
of G that are adjacent to vertex y of G. E.g. x, y and y, z are adjacent but
d(x, z) = 3 if y is forbidden.
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m-clique width

Definition 1 mcwd(G) = min{k : G = val(t) for a term t with colours ∈ [k]}

Proposition 1

mcwd(G) ≤ cwd(G) ≤ 2mcwd(G)+1

mcwd(G) ≤ twd(G) + 3

The adjacency labelling scheme for cographs extends to graphs defined by mcwd
terms.

But: Labels for x ∈ X give G[X] but to construct G+[X] we need knowledge
of paths outside X
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Construction of labels

Let G have mcwd(G) ≤ k. The shortcut edges are represented by a (k × k)
matrix of integers at each occurrence in the term tree. We enrich A(u) into
J(u) by inserting at each position corresponding to an occurrence in the term,
the associated shortcut matrix.

Lemma 1 We have forbidden-set distance labels J(x) of size O(k2ht(t) logn)
bits.

Q: How to replace the height ht(t) by logn ?
A: Using balanced terms
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We need balanced terms

Definition 1 A term t is a-balanced if ht(t) ≤ a log |t|.

If f is associative then we can make terms balanced by simple reorganization:

n+ 22n + 1
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Contexts and terms

A context is a term with a special variable u. For nonassociative f , use an
explicit substitution operation • on context c and term t where c • t = c[t/u] :

Idea: Choose c, t almost equal in size and recurse
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Balanced terms II

n+ 22n + 1

Let • be substitution of terms into contexts, ◦ be substitution of contexts into
contexts and Id the special identity context Id with c ◦ Id = Id ◦ c = c.
(◦ is associative with unit element Id)

Recursively cut terms using • and contexts using ◦
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Balanced terms III

Proposition 1 (Courcelle-Vanicat) Every term in T (F,C) is equivalent to

a 3-balanced term in T (F ∪ {◦, •}, C ∪ {Id}).

But this is no longer a cwd term! To get a balanced cwd term has exponential
blowup in cwd. For mcwd, we get only a constant blowup:

Lemma 1 If mcwd(G) ≤ k then G can be defined by a 3-balanced mcwd term

of width ≤ 2k
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Balanced terms III

Proposition 1 (Courcelle-Vanicat) Every term in T (F,C) is equivalent to

a 3-balanced term in T (F ∪ {◦, •}, C ∪ {Id}).

But this is no longer a cwd term! To get a balanced cwd term has exponential
blowup in cwd. For mcwd, we get only a constant blowup:

Lemma 1 If mcwd(G) ≤ k then G can be defined by a 3-balanced mcwd term

of width ≤ 2k

Proof. Given mcwd term t of width ≤ k, use above proposition to obtain a
3-balanced term using ◦, •. Interpret ◦, • as mcwd operations on 2k labels:

c • tH ≡ Gc ⊗R,g,hc H

Where tH ∈ T (Fk, Ck) defines the graph H, Gc is a graph with labels in [k] ∪
{k+1, . . . , 2k}. Applying this recursively to c and tH we get a 6-balanced term
in T (F2k, C2k). The construction is compositional:

Gc◦d = Gc ⊗Gd and hc◦d = hc ◦ hd
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Main result

The balancing lemma allows us to use ht(t) = O(logn), hence we get

Theorem 1 For G having mcwd ≤ k and n vertices, given {J(x) : x ∈ X} we

can compute the shortcut graph G+[X], where |J(x)| = O(k2 log2 n) bits.

Since mcwd is more powerful than cwd and twd, we get labels of size O(k2 log2 n)
for graphs having cwd, twd ≤ k.
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Conclusion

� Forbidden-set distance labelling for mcwd
graphs
� “Distance labelling with obstacles”

� Can obtain a compact routing scheme

� Techniques
� Use algebraic representation of graphs

� Better describes how the graph is connected

� Mcwd terms have good balancing properties

Open problems
� Planar graphs??
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A generalization  to MS  definable  queries (Courcelle and Vanicat, Discrete 

Applied Maths, 2003) 
 

Theorem :  

1) Given k, given an MS graph property P(X1, …, Xm) : 

For every graph G defined by a clique-width (or m-clique-width) expression of 

width k , on can compute for each  vertex  x of G a label J(x) such that : 

for sets  of vertices A1, …, Am,  from the labels  J(y) for every y in A1, …, 

Am, one can determine if   P(A1, …, Am)   is true. 

Size of J(y) :    O(log(n)) 

Preprocessing time  :  O(n.log(n)) 

Answer to query  :  O(a.log(n))      where is the a = ⎜A1 ∪…∪Am ⎜ 

2) For  MS optimization functions (distance) replace  log(n)  by   log2(n) 
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The  basic result : 
For  graph  G  defined as val(t)  for a term  t  in T(F,C)  (binary operations and 

constants), in such a way  that  V(G)  =  the set of occurrences  of constants  in t , 

then  every  MS  formula  ϕ(X1, …, Xm)  can  be translated  into  a deterministic finite 

automaton A for the  signature  F ∪ Cx{0,1}m   such that A  accepts  a term  t  in 

T(F,Cx{0,1}m)  iff  

G ⎜= ϕ(A1, …, Am) 

where  G  is the  graph defined  by t = t  without the {0,1}m  elements 

and Ai  is  the  set of vertices  u  of G  such that  u is an occurrence of some (c,w) in 

Cx{0,1}m  such that   w[i]   = 1. 

(Intuition  : u  occurrence  of   (c,0,1)  means that the vertex  u  is X2 and not  in X1. 

The  set of terms  accepted  by A encodes  all graphs  of, say m-cwd at most k and 

the m-tuples  of sets  of vertices  that satisfy ϕ  in  these  graphs.) 
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The  method  for  ϕ(X,Y)  (m=2). 

Assuming   A  constructed   and   G  defined  by a balanced  term  t  in T(F,C)  

(for  m-cwd at most  k) : 

We run A on t  with  each c  replaced by (c,0,0)  (i.e. for empty  sets X,Y), 

we mark each node with the  corresponding  “basic” states : p,q,r,s, …  

If X∪Y is not empty, we modify accordingly some leaves. The new  run  will only  

modify  the states  on the  branches from these  leaves to the root. 
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 These new states can be obtained from the “basic” states on nodes  at distance  

one  of these branches (because  the new run is the same on the corresponding 

subterms. This  information  for  a branch from x  to the root can be stored  into  a 

word J(x)  like : [f,0,p] [g,1,s] [h,0,p] [f,1,r] [g,0,q] [h,0,p]c   of size proportional to the 

length of the branch (which gives  O(log(n))  for balanced terms   and   n vertices).  

 



Linear  delay  enumeration (Discrete Applied Maths, to appear) 
The  problem  is now to enumerate  (to list)  the set  : 

Sat(G,ϕ,(X1, …, Xm ) = { (A1, …, Am)  / G ⎜= ϕ(A1, …, Am)} 

in linear  delay  : the next output is produced  in time  proportional to its size. 

 A data structure is built from G of m-cwd k, given by a (balanced) term, and the 

MS formula ϕ. It  gives also    ⎜Sat(G,ϕ,(X1, …, Xm ) ⎜. 

Background : For  ϕ  first-order and G of degree < d  the set  

Sat(G,ϕ,(x1, …,xm )  can be enumerated with constant delay between two outputs. 

(A. Durand, E. Grandjean). 

Applications  (examples from WG 2007) 
1) Transversal hypergraphs generation : H=(A,B,E),  bipartite  graph. 

Wanted : the inclusion-minimal subsets X of A that have at least vertex adjacent to each b in B. 

No “output-polynomial” algorithm is known. There is one for H of clique-width < k. 

2) Counting and enumerating configurations : e.g. Eulerian orientations or bipolar orientations in 

planar graphs. This is possible in polynomial time  for outerplanar or Halin graphs (twd < 3). 
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The case of graphs reduces to that of terms denoting graphs. 

Example  concerning  words 

For a word w over letter a, find triples of occurrences (x,y,z)  such that  x<y<z.  

For given w, one constructs  the automaton generating the finite set of all “good” 

configurations.  Here  we  take w = a6. 

 

where α = (a,1,0,0), β = (a,0,1,0), γ =( a,0,0,1), ε = (a,0,0,0). 

We can enumerate the paths from entry to exit with linear delay. But these paths 

contain a lot of useless information: not linear delay w.r.t. the answers  to the query. 

It suffices to eliminate  ε-transitions. 
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Enumerating the trees  embedded in an AND/OR  DAG 
 

     
 

Value of a node : the number of trees  issued  from that node. Computable bottom-
up. 
 
Determination of the i-th tree  issued from  a node : 
OR-node with sons  valued n1 and n2  :  go left if i < n1 otherwise  go right with i- n1 
AND-node with  sons  valued n1, n2, n3  :  find i1, i2, i3   such that : 

i  = i1 + (i2-1) n1 + (i3-1) n1. n2 
 

and go to all sons with respective values   i1, i2, i3 . 
Gives  a  linear  delay  enumeration of  the trees  embedded  in an AND/OR  DAG. 
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AND/OR  DAG  associated  with  a term  and  a deterministic automaton  
on terms  in   T(F,Cx{0,1}m)   
 
 

 
 

 
 
It remains to extract  the embedded 
trees starting from the  accepting root 
nodes. 
 
“Dead” subtrees that do not contribute 
to the result  can be avoided  with help 
of a kind  of  ε-reduction. 
 
One uses the previous result. 
 
This takes time O(n.log(n))  where  
n = number of vertices = number of  
occurrences  of constants   and   
the term is assumed  balanced. 


