Special tree-width and the verification of monadic second-order graph properties with edge quantifications

Bruno Courcelle

Institut Universitaire de France & Université Bordeaux 1, LaBRI

References: Graph structure and monadic second-order logic, book to be published by Cambridge University Press, see: http://www.labri.fr/perso/courcell/ActSci.html

On the model-checking of monadic second-order formulas with edge set quantifications. Discrete Applied Maths, to appear
Main topics of the lecture

Fixed-parameter tractable model-checking algorithms for monadic second-order (MS) sentences on graphs with respect to clique-width and tree-width.

Review of the method and introduction of fly-automata.

Introduction of special tree-width, a variant of tree-width, motivated by the case of MS sentences using edge quantifications.
Two ways of considering graphs

1) A graph (finite, up to isomorphism) is an *algebraic object*,
 an element of an algebra of graphs
 (Similar to words, elements of monoids)

2) A graph is a *logical structure*;
 graph properties can be expressed by logical formulas
 (FO = first-order, MS = monadic second-order, SO = second-order)

Consequences:
 a) *Language Theory* concepts extend to graphs
 b) *Algorithmic meta-theorems*
An overview chart

Graph operations \rightarrow "Context-free" sets of graphs

Fixed-parameter tractable algorithms

Recognizable sets of graphs

Monadic 2nd-order logic

Language theory for graphs

Monadic 2nd-order transductions
Some algorithmic meta-theorems

<table>
<thead>
<tr>
<th>Language</th>
<th>Graphs</th>
<th>Complexity class</th>
</tr>
</thead>
<tbody>
<tr>
<td>FO</td>
<td>All</td>
<td>P</td>
</tr>
<tr>
<td>FO</td>
<td>Bounded expansion</td>
<td>Linear (2010)</td>
</tr>
<tr>
<td>∃SO</td>
<td>All</td>
<td>NP</td>
</tr>
<tr>
<td>MS<sub>2</sub> (edge quantif.)</td>
<td>Bounded tree-width</td>
<td>Linear</td>
</tr>
<tr>
<td></td>
<td>Bounded tree-width</td>
<td>LogSpace (2010)</td>
</tr>
<tr>
<td>MS</td>
<td>Bounded clique-width</td>
<td>Cubic</td>
</tr>
</tbody>
</table>

Other meta-theorems based on MS logic:

- Labelling schemes (or indexing), Enumeration
- Kernelization (for FPT algorithms)
Summary of lecture

1) Monadic second-order (MS) model checking;
 Expressive power of monadic second-order logic
2) Two graph algebras, tree-width and clique-width
3) Special tree-width (new)
4) Automata constructed from MS formulas
 Case of clique-width
 Case of special tree-width
 Difficulties with tree-width
5) Experiments with fly-automata (joint work with Irène Durand)
1. MS model-checking: the general scheme

Graph Analyzer \[\rightarrow \] t \[\rightarrow \] A(\varphi, k)

Automaton Constructor

\[k \quad \varphi \quad (MS \text{ formula}) \]

Steps done “once for all”, independent of G

Error: \[\text{wd}(G) > k \]

A(\varphi,k): finite automaton on terms (wd = tree-width or clique-width or equivalent)
FPT model-checking algorithms

MS formulas

MS₂ formulas
using edge quantifications

\[G = (V_G, \text{edg}_G(.,..)) \]
\[\text{Inc}(G) = (V_G \cup E_G, \text{inc}_G(.,..)) \]

for G undirected:
\[\text{inc}_G(e,v) \iff v \text{ is a vertex (in } V_G \text{) of edge } e \text{ (in } E_G \text{)} \]

FPT for clique-width

FPT for tree-width
Expressive powers of logical languages

(Typical examples)

FO: maximal degree = 4, diameter ≤ 6, outdegree ≤ 3.

MS properties that are not FO: 3-colorability

∃X,Y (“X,Y are disjoint” ∧ ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v \notin X) ∧ (u ∈ Y ⇒ v \notin Y) ∧ (u \notin X∪Y ⇒ v ∈ X∪Y)] })

Connectedness, negation of:

∃X (∃x ∈ X ∧ ∃y \notin X ∧ ∀u,v (u ∈ X ∧ edg(u,v) ⇒ v ∈ X))

Planarity (via two forbidden minors K_5 and K_{3,3})

Perfectness (via forbidden holes and anti-holes)

For a word or a term, membership in a fixed regular language

(FO property in certain cases)
Expressive powers of logical languages (continued)

MS$_2$ property that is \textit{not MS} : has a \textit{perfect matching} \ or \ a \ \textit{Hamiltonian circuit} \ or \ a \ \textit{spanning tree of degree} \leq 3

SO property that is \textit{not MS$_2$} : has a \textit{nontrivial automorphism}

For a word, is = $a^n b^n$ for some n \ (nonregular language).
2. Graph algebras and widths of graphs

Two (not one) and only two robust (in a precise sense) graph algebras:

the “HR” algebra → algebraic characterization of tree-width,
the “VR” algebra → definition of clique-width.

Note: “HR” refers to the “Hyperedge-Replacement (context-free) graph grammars”; they generate the equational sets of the “HR” algebra;
“VR” refers to the “context-free Vertex-Replacement graph grammars”; they generate the equational sets of the “VR” algebra.
The “HR” algebra and tree-width

Graphs with multiple edges, equipped with distinguished vertices called sources (or boundary vertices or terminals) pointed to by source labels from finite sets \{a, b, ..., d\}.

Binary operation : Parallel composition

\[G \parallel H \] is the disjoint union of \(G \) and \(H \), where sources with same name are fused (If \(G \) and \(H \) are not disjoint, one takes a copy of \(H \) disjoint from \(G \)).
 Unary operations : \textit{Forget a source label}

\textit{Forget}_a(G) \text{ is } G \text{ without } a\text{-source: the source is no longer a distinguished vertex: it is made "internal".}

Source renaming :

\textit{Rena}_a \leftrightarrow b(G) \text{ exchanges source labels } a \text{ and } b

(replaces } a \text{ by } b \text{ if } b \text{ is not the label of a source)

Nullary operations denote the most \textit{elementary graphs}:

the connected graphs with at most one edge.
Tree-decompositions

a decomposition of width 3
Proposition: A graph has tree-width $\leq k \iff$ it can be constructed from basic graphs with $\leq k+1$ labels by using the operations $//$, $Rena \leftrightarrow b$ and $Forget a$

From an algebraic expression to a tree-decomposition

Example: $cd // Ren_a \leftrightarrow c (ab // Forget_b(ab // bc))$

(the constant ab denotes an edge from source a to source b)

The tree-decomposition associated with this term
The “VR” algebra and clique-width.

Clique-width was originally defined for *simple* graphs, but we extend the definitions to graphs with *multiple edges*.

Graphs are loop-free (just to simplify notation).

They have vertex labels: \(a, b, c, \ldots\) Each vertex has a single label, and each label designates a *set of vertices* (not a unique one as in HR)

Binary operation: disjoint union: \(\oplus\)

Well-defined up to isomorphism; one takes disjoint copies

\[G \oplus G \text{ is } not \text{ equal to } G \]
Unary operations: *Edge addition* denoted by \(\text{Add}_{a,b} \):

\(\text{Add}_{a,b}(G) \) is \(G \) augmented with undirected edges between every \(a \)-labelled vertex and every \(b \)-labelled vertex.

Multiple edges may be created.

The directed version of \(\text{Add}_{a,b} \) adds directed edges *from* every \(a \)-labelled vertex *to* every \(b \)-labelled vertex.
Vertex relabellings

\[\text{Relab}_a \rightarrow b(G) \] is \(G \) with every label \(a \) changed into \(b \)

Variant: \(\text{Relab } h (G) \) is \(G \) with every label \(a \) changed into \(h(a) \) for some function \(h : C \rightarrow C \); \(C \) is the *finite* set of labels.

Basic graphs

- \(a \) : one vertex labelled by \(a \), for each \(a \) in \(C \)

\(\emptyset \) : the empty graph (yes, it will be useful!)
Definition: A graph G (not necessarily simple) has **clique-width** $\leq k$ if and only if it can be constructed from basic graphs with the operations Θ, $\overrightarrow{Adda,b}$, $Adda,b$, $Relaba \rightarrow b$ and constants a with labels a, b in a set C of k labels.

Its (exact) **clique-width** $cwd(G)$ is the smallest such k.

Note: It is NP-complete to check if $cwd(G)=k$ (input : (G,k)) (Fellows et al.)

Cubic approximation algorithms have been given (Oum, Hlineny, Seymour).

Bounded clique-width: cliques, cographs, distance hereditary graphs, every class of bounded tree-width

Unbounded clique-width: tournaments, planar graphs (even square grids).
Comparison with tree-width

For G undirected (Corneil and Rotics):
\[\text{cwd}(G) \leq 3 \cdot 2^{\text{twd}(G) - 1} \]

For G directed:
\[\text{cwd}(G) \leq 7 \cdot 4^{\text{twd}(G) - 1} - 3 \cdot \text{twd}(G) < 2^{2 \cdot \text{twd}(G) + 1} \]

No polynomial bound: \[\text{cwd}(G) \leq \text{poly}(\text{twd}(G)) \]

In both cases:
\[\text{cwd}(G) \leq \text{pwd}(G) + 2 \]

\(\text{pwd} = \text{path-width} = \text{tree-width with paths instead of trees} \)
FPT model-checking algorithms

For MS properties, the parameter is clique-width.

For MS$_2$ properties, the parameter is tree-width and cannot be clique-width.

By Kreutzer, Makowsky et al. MS$_2$ model-checking needs restriction to bounded tree-width unless P=NP, ETH, Exptime=NExptime etc...

The case of MS$_2$ formulas reduces to that of MS ones:

G of tree-width k $\geq 2 \Rightarrow$ Inc(G) has tree-width k,

hence, clique-width $\leq 2^{O(k)}$ (exponential blow-up)

every MS$_2$ property of G is an MS property of Inc(G)
3. Special tree-width

Tree-decompositions

a decomposition of width 3 (= 4 – 1).
Definition: *Special tree-width* is the minimal width of a *special tree-decomposition* \((T,f)\) where:

(a) \(T\) is a rooted tree,
(b) the set of nodes whose boxes contain any vertex is a *directed path*

Motivations:
(1) Comparison with clique-width (no exp. blow-up)

(2) The automata for checking adjacency are exponentially smaller than for bounded tree-width
Properties of special tree-width

\[\text{twd} = \text{tree-width} ; \quad \text{pwd} = \text{path-width} ; \quad \text{sptwd} = \text{special tree-width} ; \]
\[\text{cwd} = \text{clique-width}. \]

1) \(\text{twd}(G) \leq \text{sptwd}(G) \leq \text{pwd}(G) \)

2) \(\text{cwd}(G) \leq \text{sptwd}(G) + 2 \) (for \(G \) simple).
 \[\text{whereas} \quad \text{cwd}(G) \leq 2^{\text{twd}(G) + 1} \] (exponential is not avoidable)

3) \(\text{sptwd}(G) \leq 20 (\text{twd}(G)+1) \cdot \text{MaxDegree}(G) \)
 (for a set of graphs of bounded degree, bounded special tree-width is equivalent to bounded tree-width).
4) Trees have special tree-width 1 (= tree-width) but graphs of tree-width 2 have \textit{unbounded} special tree-width.

5) The class of graphs of special tree-width \(\leq k \) is closed under:
 - reversals of edge directions,
 - taking \textit{topological minors} (subgraphs and smoothing vertices)
 but \textit{not under taking minors}.
Graphs of tree-width 2 have *unbounded special tree-width*

Proof sketch: If $G \otimes *$ (= G augmented with a universal vertex *) has special tree-width k, then it has path-width $\leq k$.

Let G be any tree: $G \otimes *$ has tree-width 2.

If $G \otimes *$ has special tree-width $\leq k$, then G has path-width $\leq k$.

But trees have *unbounded path-width*, hence graphs of tree-width 2 have unbounded special tree-width.
Terms that characterize special tree-width; and construction of automata for MS₂ properties.

Definition: Special terms

They use the graph operations that define clique-width for graphs with multiple edges (Key point: no “vertex fusion” is needed)

1) The set C of labels contains ⊥ (to mean “terminated vertex”)
2) Operations Relab a → c and Adda,b only if a, b ≠ ⊥
3) Subterms define graphs with ≤ 1 vertex labelled by a if a ≠ ⊥
4) Adda,b(t) allowed as subterm only if G(t) has one vertex x labelled by a and one vertex y labelled by b. Similar definitions for directed graphs.

Edges are added “one by one” and are in bijection with the occurrences of the operations Adda,b, that can define multiple edges.
Proposition: (1) G has *special tree-width* $\leq k$ \iff it is defined by a *special term* using $\leq k + 2$ labels (including the particular label \bot)

(2) $cwd(G) \leq sptwd(G) + 2$

We will compare:

- path-width and clique-width,
- tree-width and clique-width,
- special tree-width and clique-width
Comparing path-width and clique-width:

$$\text{cwd} (G) \leq \text{pwd}(G) + 2$$

Idea: By traversing bottom-up the path decomposition, by using 4 colors + \perp, the clique-width operations can add, *one by one*, new vertices (using $\oplus i$) and new edges (using $Adda,b$ or $\overrightarrow{Adda,b}$).

\perp is for “terminated vertices”.
For tree-width: $cwd(G) \leq 2^{twd(G)} + 1$

Because of vertex 3, common to two “son boxes”, of the tree-decom, the previous method does not work. (It does not allow fusion of vertices).
If a box of the tree-decomposition has k vertices, then $2^k - 1$ labels are necessary to specify how the vertices below it are linked to its vertices. ($2^{2k} - 1$ for directed graphs).
For special tree-width (as for path-width): \(\text{cwd}(G) \leq \text{sptwd}(G) + 2 \)

The red dotted edges are not incident.

Two “brother” boxes \((b, e)\) are disjoint. This is the characteristic property of \emph{special tree-decompositions}.
Special tree-width is interesting for model-checking of MS$_2$ properties (as we will see) but the *parsing* problem is open:

Can one find an $O(n^{g(k)})$ algorithm?:

- that reports that the input graph G (with n vertices) has special tree-width more than k or
- outputs a special tree-decomposition witnessing that the special tree-width of G is $\leq f(k)$ (for a fixed function f hopefully not exponential).

Note: We can use the algorithms producing path-decompositions
4. Automata for MS model-checking

- Automaton constructor
- \(k \)
- \(\varphi \)
- Error: \(wd(G) > k \)
- Yes
- No

Steps done “once for all”, independent of \(G \)

\(A(\varphi, k) \): automaton on terms \((wd = \text{tree-width or clique-width or equivalent})\)
4.1 Construction of \(A(\varphi, k) \) for “clique-width” terms

\(k = \) the number of vertex labels = the bound on clique-width

\(F = \) the corresponding set of operations and constants:

\(a, \emptyset, \oplus, \text{Add}a,b, \text{Relab} \ x \rightarrow \ y \)

\(G(t) = \) the graph defined by a term \(t \) in \(T(F) \).

Its vertices are (in bijection with) the occurrences of the constants in \(t \) that are not \(\emptyset \)
Example:

Graph $G(t)$
Terms are equipped with Booleans that encode assignments of vertex sets V_1,\ldots,V_n to the free set variables X_1,\ldots,X_n of MS formulas (formulas are written without first-order variables):

1) we replace in F each constant a by the constants $(a, (w_1,\ldots,w_n))$ where $w_i \in \{0,1\}$: we get $F^{(n)}$ (only constants are modified);

2) a term s in $T(F^{(n)})$ encodes a term t in $T(F)$ and an assignment of sets V_1,\ldots,V_n to the set variables X_1,\ldots,X_n:

if u is an occurrence of $(a, (w_1,\ldots,w_n))$, then

$$w_i = 1 \text{ if and only if } u \in V_i.$$

3) s is denoted by $t \ast (V_1,\ldots,V_n)$
Example (continued):

\[t \ast (V_1, V_2) \]

\[V_1 = \{1, 3, 4\}, \quad V_2 = \{2, 3\} \]
By an induction on \(\varphi \), we construct for each \(\varphi(X_1,\ldots,X_n) \) a finite (bottom-up) deterministic automaton \(A(\varphi(X_1,\ldots,X_n), k) \) that recognizes:

\[
L(\varphi(X_1,\ldots,X_n)) := \{ \ t * (V_1,\ldots,V_n) \in T(F^{(n)}) \ / \ (G(\ t), (V_1,\ldots,V_n)) \models \varphi \}
\]

Theorem: For each sentence \(\varphi \), the automaton \(A(\varphi, k) \) accepts in time \(f(\varphi, k). \mid t \mid \) the terms \(t \) in \(T(F) \) such that \(G(t) \models \varphi \)

It gives a **fixed-parameter linear** model-checking algorithm for input \(t \), and a **fixed-parameter cubic** one if the graph has to be parsed. (The parameter is clique-width, or, for undirected graphs, the equivalent graph complexity measure **rank-width**
The inductive construction of $A(\varphi, k)$:

Atomic formulas: discussed below.

For \land and \lor: product of two complete automata

(deterministic or not)

For negation: exchange accepting / non-accepting states

for a complete deterministic automaton
Quantifications: Formulas are written without ∀

\[L(\exists X_{n+1} \cdot \varphi(X_1, \ldots, X_{n+1})) = pr(L(\varphi(X_1, \ldots, X_{n+1}))) \]

\[A(\exists X_{n+1} \cdot \varphi(X_1, \ldots, X_{n+1})) = pr(A(\varphi(X_1, \ldots, X_{n+1}))) \]

where pr is the “projection” that eliminates the last Boolean. One obtains a nondeterministic automaton.

oOo

The number of states is an h-iterated exponential, where \(h \) = maximum nesting of negations.
Tools for constructing automata

Substitutions and inverse images ("cylindrifications").

1) If we know $A(\varphi(X_1, X_2))$, we can get easily $A(\varphi(X_4, X_3))$:

$$L(\varphi(X_4, X_3)) = h^{-1}(L(\varphi(X_1, X_2)))$$

where h maps $(a, (w_1, w_2, w_3, w_4))$ to $(a, (w_4, w_3))$

We take

$$A(\varphi(X_4, X_3)) = h^{-1}(A(\varphi(X_1, X_2)))$$

This construction preserves determinism and the number of states.

2) From $A(\varphi(X_1, X_2))$, we can get $A(\varphi(X_3, X_1 \cup (X_2 \setminus X_4)))$ by h^{-1}

with h mapping $(a, (w_1, w_2, w_3, w_4))$ to $(a, (w_3, w_1 \lor (w_2 \land \neg w_4)))$
Relativization to subsets by inverse images.

If φ is a closed formula expressing a graph property P, its relativization $\varphi[X_1]$ to X_1 expresses that the subgraph induced on X_1 satisfies P. To construct it, we replace recursively

$$\exists y. \theta$$

by

$$\exists y. y \in X_1 \land \theta$$

etc…

However, there is an easy transformation of automata: we let h map $(a, 0)$ to \emptyset and $(a, 1)$ to a.

$$L(\varphi [X_1]) = h^{-1} (L(\varphi))$$

Hence:

$$A(\varphi [X_1]) := h^{-1} (A(\varphi))$$
The inductive construction (continued):

Complete deterministic automata for atomic formulas and basic graph properties: automaton over $F^{(n)}$ recognizing the set of terms $t \ast (V_1, \ldots, V_n)$ in $L(\varphi(X_1, \ldots, X_n))$

Intuition: in all cases, the state at node u represents a finite information $q(u)$ about the graph $G(t / u)$ and the restriction of (V_1, \ldots, V_n) to the vertices below u (vertices = leaves)

1) if $u = f(v,w)$, we want that $q(u)$ is defined from $q(v)$ and $q(w)$ by a fixed function: the *transition function*;

2) whether $(G(t), V_1, \ldots, V_n)$ satisfies $\varphi(X_1, \ldots, X_n)$ must be checkable from $q(root)$, giving the *accepting states*.
Atomic formulas (1): \(\text{edg}(X_1, X_2) \) for directed edges

Vertex labels are from a set \(C \) of \(k \) labels.

\(\text{edg}(X_1, X_2) \) means: \(X_1 = \{ x \} \land X_2 = \{ y \} \land x \rightarrow y \)

\(k^2 + k + 3 \) states: 0, Ok, \(a(1) \), \(a(2) \), \(ab \), Error, for \(a, b \) in \(C \), \(a \neq b \)

Meaning of states (at node \(u \) in \(t \); its subterm \(t/u \) defines \(G(t/u) \subseteq G(t) \)).

- **0**: \(X_1 = \emptyset, X_2 = \emptyset \)
- **Ok** *Accepting state*: \(X_1 = \{ v \}, X_2 = \{ w \}, \text{edg}(v, w) \) in \(G(t/u) \)
- **a(1)**: \(X_1 = \{ v \}, X_2 = \emptyset, v \) has label \(a \) in \(G(t/u) \)
- **a(2)**: \(X_1 = \emptyset, X_2 = \{ w \}, w \) has label \(a \) in \(G(t/u) \)
- **ab**: \(X_1 = \{ v \}, X_2 = \{ w \}, v \) has label \(a \), \(w \) has label \(b \) (hence \(v \neq w \)) and \(\neg \text{edg}(v, w) \) in \(G(t/u) \)
- **Error**: all other cases
Transition rules

For the constants based on a:
$(a,00) \rightarrow 0$; $(a,10) \rightarrow a(1)$; $(a,01) \rightarrow a(2)$; $(a,11) \rightarrow \text{Error}$

For the binary operation \oplus:

If $p = 0$ then $r := q$
If $q = 0$ then $r := p$
If $p = a(1)$, $q = b(2)$ and $a \neq b$ then $r := ab$
If $p = b(2)$, $q = a(1)$ and $a \neq b$ then $r := ab$
Otherwise $r := \text{Error}$
For unary operations $\text{Add}_{a,b}$

$$\begin{align*}
\text{r} & \quad | \\
& \quad p \\
\text{If } \ p = ab \quad \text{then } \text{r} := \text{Ok} \quad \text{else } \text{r} := p
\end{align*}$$

For unary operations $\text{Relab}_{a\rightarrow b}$

$$\begin{align*}
\text{If } \ p = a(i) \text{ where } i &= 1 \text{ or } 2 \quad \text{then } \text{r} := b(i) \\
\text{If } \ p = ac \quad \text{where } c &\neq a \text{ and } c \neq b \quad \text{then } \text{r} := bc \\
\text{If } \ p = ca \quad \text{where } c &\neq a \text{ and } c \neq b \quad \text{then } \text{r} := cb \\
\text{If } \ p = \text{Error} \text{ or } 0 \text{ or } \text{Ok} \text{ or } c(i) \text{ or } cd \text{ or } dc \quad \text{where } c &\neq a \quad \text{then } \text{r} := p
\end{align*}$$
Other atomic or basic formulas (2)

\[X_1 \subseteq X_2, \quad X_1 = \emptyset, \quad \text{Single}(X_1), \]

\[\text{Card}_{p,q}(X_1) : \text{cardinality of } X_1 \text{ is } p \text{ modulo } q, \]

\[\text{Card}_{<q}(X_1) : \text{cardinality of } X_1 \text{ is } < q. \]

→ Easy constructions with small numbers of states: 2, 2, 3, q, q+1.
Sizes of some deterministic automata: $k = \text{bound on clique-width}$

<table>
<thead>
<tr>
<th>Property</th>
<th>Partition (X_1, \ldots, X_p)</th>
<th>edg(X,Y)</th>
<th>NoEdge</th>
<th>Connected, NoCycle for degree $\leq p$</th>
<th>Path(X,Y)</th>
<th>Connected, Nocycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of states $N(k)$</td>
<td>2</td>
<td>$k^2 + k + 3$</td>
<td>2^k</td>
<td>$2^{O(p.k.k)}$</td>
<td>$2^{O(k.k)}$</td>
<td>$2^{O(k)}$</td>
</tr>
</tbody>
</table>

For **connectedness**, the minimal (deterministic) automaton has more than $2^{\frac{k}{2}}$ states.

Other constructions yield **nondeterministic** automata for connectedness and for its negation with $2^{O(k.k)}$ states.
Difficulties in practice:

Parsing: construction of terms (based on tree-decompositions or other graph decompositions). The linear-time exact parsing algorithm by Bodlaender (for tree-width) and the cubic approximate parsing algorithm by Hlineny & Oum (for clique-width via rank-width) are not implementable.

Bodlaender reports about usable algorithms for (non-random) graphs with 50 vertices and tree-width ≤ 35

Specific algorithms: (1) Flow-graphs of structured programs have tree-width at most 6 and tree-decompositions are easy from the parse trees of programs (Thorup).

(2) For certain graph classes of bounded clique-width defined by forbidden induced subgraphs, optimal clique-width terms can be constructed in polynomial time (by using modular decomposition).
The sizes of the automata $A(\varphi, k)$.

They may be too large to be practically compiled.

The construction by induction on the structure of φ may need intermediate automata of huge size, even if the unique minimal deterministic automaton equivalent to $A(\varphi,k)$ has a manageable number of states.
Examples: Soguet *et al.* using MONA have constructed automata for the following cases; no success for clique-width 4:

<table>
<thead>
<tr>
<th></th>
<th>Clique-width 2</th>
<th>Clique-width 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxDegree≤3</td>
<td>91 states</td>
<td>Space-Out</td>
</tr>
<tr>
<td>Connected</td>
<td>11 states</td>
<td>Space-Out</td>
</tr>
<tr>
<td>IsConnComp(X)</td>
<td>48 states</td>
<td>Space-Out</td>
</tr>
<tr>
<td>Has≤4-VertCov</td>
<td>111 states</td>
<td>1037 states</td>
</tr>
<tr>
<td>HasClique > 4</td>
<td>21 states</td>
<td>153 states</td>
</tr>
<tr>
<td>2-colorable</td>
<td>11 states</td>
<td>57 states</td>
</tr>
</tbody>
</table>

Examples of automata too large to be constructed, i.e., “compiled”, even “directly”, without using the general construction.

for k = 2: 4-colorability, 3-acyclic-colorability, NoCycle (i.e., is a forest)

for k = 5: 3-colorability, clique

for k = 4: connectedness.
This is not avoidable:

The number of states of $A(\varphi, k)$ is bounded by an h-iterated exponential where h is the number of quantifier alternations of φ.

There is no alternative construction giving an upper bound with a bounded nesting of exponentiations (Meyer & Stockmeyer, Weyer, Frick & Grohe).
Remedy: using \textit{fly-automata}.

States and transitions are \textbf{not listed} in huge tables.

They are specified (in uniform ways for all k) by “small” programs.

Example of a state for connectedness:

$q = \{ \{a\}, \{a,b\}, \{b,c,d\}, \{b,d,f\} \}$,

a,b,c,d,f are vertex labels; q is the set of \textit{types} of the connected components of the current graph.

Some transitions:

$\text{Add}_{a,c} : \quad q \rightarrow \{ \{a,b,c,d\}, \{b,d,f\} \}$,

$\text{Relab}_{a \rightarrow b} : \quad q \rightarrow \{ \{b\}, \{b,c,d\}, \{b,d,f\} \}$

Transitions for \oplus: union of sets of types.
This method works for formulas with no quantifier alternation but using the “basic formulas”.

Examples: \(p \)-acyclic colorability

\[
\exists X_1, \ldots, X_p \left(\text{Partition}(X_1, \ldots, X_p) \land \text{NoEdge}(X_1) \land \ldots \land \text{NoEdge}(X_p) \land \ldots \\
\ldots \ldots \land \text{NoCycle}(X_i \cup X_j) \land \ldots \right)
\]

with \(\text{NoCycle}(X_i \cup X_j) \) for every \(i < j \).

Minor inclusion: \(H \) simple, loop-free. \(\text{Vertices}(H) = \{ v_1, \ldots, v_p \} \)

\[
\exists X_1, \ldots, X_p \left(\text{Disjoint}(X_1, \ldots, X_p) \land \text{Conn}(X_1) \land \ldots \land \text{Conn}(X_p) \land \ldots \\
\ldots \land \text{Link}(X_i, X_j) \land \ldots \right)
\]

with \(\text{Link}(X_i, X_j) \) for each edge \(v_i \rightarrow v_j \) of \(H \); means that there exists an edge between \(X_i \) and \(X_j \), and \(\text{Conn}(X_i) \) means that \(X_i \) induces a connected graph.
Some experiments with fly-automata (by Irène Durand, LaBRI)

3-colorability of the 6 x 300 grid (of clique-width 8) in less than 2 hours,

4-acyclic-colorability of the Petersen graph (clique-width 7) in 17 minutes.

(3-colorable but not acyclically; red and green vertices induce a cycle).
New tool: Annotations

At some positions in the given term, we attached some (finite) contextual information.

Example:
At position u in a term t, we attach the set

$$ADD_t(u) = \text{the set of pairs } (a,b) \text{ such that some operation } Add_{c,d} \text{ above } u \text{ (hence, in its “context”) adds edges between the (eventual) vertices } below u \text{ labelled by } a \text{ and } b.$$

These sets can be computed in linear time by means of a top-down traversal of t.
Certain automata on annotated terms may have less states.

Example: \(\text{edg}(X_1, X_2) : 2k+3 \) states instead of \(k^2 + k + 3 \) (cf. page 44):

0, Ok, a(1), a(2), Error, for a in C.

Transitions for \(\oplus \) annotated by \(R \):

\[
\begin{array}{c}
\oplus, R \\
p \\
q \\
r
\end{array}
\]

\((p, q, r \text{ are states})\)

If \(p = 0 \) then \(r := q \); if \(q = 0 \) then \(r := p \);

if \(p = a(1), q = b(2) \) and \((a, b) \in R \wedge \) then \(r := \text{Ok} \);

and if \((a, b) \notin R \wedge \) then \(r := \text{Error} \);

if \(p = b(2), q = a(1) : \text{idem} \);

otherwise \(r := \text{Error} \).
Other examples:

For Clique(X) meaning that X induces a clique:

$$2^k + 2 \text{ states instead of } 2^{O(k,k)}.$$

For Connectedness: same states but they “shrink” quicker:

cf. the rules for $Add_{a,c}$ on page 53.
4.2 Automata for the model-checking of MS_2 formulas

We need:

1) Terms to represent graphs, over appropriate operations.

2) A representation of vertices and edges by occurrences of operations and constants in these terms.

2.1: For “clique-width” terms: we have no good representation of edges because each occurrence of $\text{Add}_{a,b}$ may add simultaneously an unbounded number of edges.

2.2: For special terms: each edge is produced by a unique occurrence of $\text{Add}_{a,b}$. This gives what we want for graphs of bounded special tree-width (but not for bounded tree-width).
Using special terms:

The leaves represent the vertices.

The nodes labelled $\text{Add}_{a,b}$ and $\text{Add}_{a,c}$ represent the edges; each occurrence of $\text{Add}_{a,b}$ represents one of the two parallel edges.

The automata for $\text{edg}(X,Y)$ and $\text{inc}(X,Y)$ (incidence) have $O(k^2)$ and $O(k)$ states respectively for $sptwd$ at most k.
2.3 : Case of terms characterizing tree-width

First idea : make them into “clique-width terms” for the incidence graph. But:

clique-width ≤ 2^{O(tree-width)} → too large automata.

Second idea : handling them “directly”, as for “clique-width terms”

The difficulty is to have a bijection between nodes in the term and the vertices and edges of the graph.
First possibility

Vertices are in bijection with the occurrences of *Forget* operations. The edges are at the leaves of the tree, *below* the nodes representing their ends.

The automaton for \(\text{edg}(X,Y) \) has \(2^{\Theta(k.k)} \) states (compare with \(O(k^2) \) for sptwd). Too bad for a basic property!
Second possibility

Vertices are at the leaves, the edges are at nodes close to those representing their ends. Because of // which fuses some vertices, each vertex is represented by several leaves.

On the figure, vertex a is represented by two leaves.
 Equality of vertices is an equivalence relation \sim on leaves.

Hence: there exists a set of vertices X such that ...

is expressed by:

there exists a set of leaves X, saturated for \sim such that ...

Same exponential blow up as with the second possibility.

The responsible is // (that is not needed for representing special tree-decompositions).
An improvement using annotations

Undirected graphs of tree-width ≤ k-1 are denoted by terms over the operations of the HR algebra: \(\sqcup, \text{Forget}_a \) and the constants \(a, ab \) for \(a, b \in [k]=\{1,\ldots,k\} \), \textit{without renamings of labels.}

The vertices are in bijection with the occurrences of the \textit{Forget} operations.

\textit{The annotation:} at each occurrence \(u \) of \(\text{Forget}_a \) representing a vertex \(x \) is attached the set of labels \(b \) such that the first occurrence of \(\text{Forget}_b \) above \(u \) represents a vertex adjacent to \(x \).

The automaton for \(\text{edg}(X,Y) \) has \(2^{2k} +2 \) states (instead of \(2^{\Theta(k,k)} \)).
Remarks:

incidence: \textit{in}(X,Y) uses $k^2 + 3$ states (for undirected graphs) (only $k+3$ states for directed graphs).

adjacency: edg(X,Y), can be written $\exists Z \ (\text{in}(Z,X) \land \text{in}(Z,Y))$ (for undirected graphs) which gives a deterministic automaton with $2^{O(k.k)}$ states.

With this annotation, incidence and adjacency are handled separately on “redundant” representations of graphs by terms.
Conclusions

1. Using automata for model-checking of MS sentences on graphs of bounded tree-width or clique-width is not hopeless if we use fly-automata, built from (possibly non-deterministic) “small” automata for basic graph properties (and their negations), and for sentences without quantifier alternation (in order to keep flexibility, by allowing variations on the input sentences).

2. More tests on significant examples are necessary, and also comparison (theory and practice) with other approaches: games, monadic Datalog, specific problems, “Boolean width”.

3. Can one adapt fly-automata to counting and optimization problems?
4. **Special tree-width** is less powerful than tree-width, but the constructions of automata are simpler. The **parsing** problem is open.

5. In many cases (in particular bounded degree) special tree-width is **linearly bounded in tree-width**.