

1

Fly-automata for checking

monadic second-order graph properties

of graphs of bounded tree-width

Bruno Courcelle

Bordeaux University, LaBRI (CNRS laboratory)

2

Topics

 Comparing clique-width to tree-width for sparse graphs

 Fixed-parameter tractable (FPT) algorithms based on

 graph decompositions + logic + automata on terms

3

Graph decompositions = tree structuring of graph in terms

 of “small” graphs and composition operations

 Graph structure theory :

 tree-decomposition for the Graph Minor Theorem,

 modular decomposition for comparability graphs,

 ad hoc decompositions for the Perfect Graph Theorem.

 Algorithmic meta-theorems give FPT algorithms for

 parameters tree-width and clique-width based on graph

 decompositions; properties to check are expressed in

 monadic second-order logic (MSO). (Definitions will be given soon).

4

Theorem : For each k, every MSO graph property P can be

checked in (FPT) time O(f(k).n) where n = number of vertices, k =

tree-width or clique-width of the input graph, given by a relevant

decomposition. This decomposition is formalized by an algebraic term

over operations that build graphs (generalizing concatenation of words).

Method : From k and ϕ expressing P, one builds a finite

automaton A(ϕ,k) to recognize the terms that represent decom-

positions of width at most k and define graphs satisfying P.

5

Difficulty : The finite automaton A(ϕ,k) is much too large as soon

as k > 2 : 2^(2^(…2^k)..)) states

(because of quantifier alternations)

To overcome this difficulty, we use fly-automata whose states and

transitions are described and not tabulated. Only the transitions

necessary for an input term are computed “on the fly”. Sets of states

can be infinite and fly-automata can compute values, e.g., the number of

p-colorings or of acyclic p-colorings of a graph. This is a theoretical view

of dynamic programming.

6

The MSO meta-theorem through fly-automata

 ϕ (MSO formula)

 Fly-automaton constructor

 Yes

G Graph analyzer t A(ϕ)

 No

 A(ϕ): infinite fly-automaton. The time taken by A(ϕ) is O(f(k).n) where

k depends on the operations occurring in t and bounds the tree-width or

clique-width of G.

7

Computations using fly-automata (by Irène Durand)

 Number of 3-colorings of the 6 x 525 rectangular grid (of clique-
width 8) in 10 minutes.

 4-acyclic-colorability of the Petersen graph (clique-width 5) in 1.5
minutes.

 (3-colorable but not acyclically;

 red and green vertices

 induce a cycle).

8

The McGee graph

is defined by a term

of size 99 and depth 76.

This graph is 3-acyclically colorable.

Checked in 40 minutes.

Even in 2 seconds by enumerating the accepting

runs, and stopping as soon as a success is found.

9

Definition 1 : Monadic Second-Order Logic

 First-order logic extended with (quantified) variables
denoting subsets of the domains.

 A graph G is given by the logical structure

 (VG , edgG(.,.)) = (vertices, adjacency relation)

 Property P is MSO expressible : P(G) ⇔ G != ϕ

 MSO expressible properties : transitive closure, properties of

paths, connectedness, planarity (via Kuratowski), p-colorability.

10

 Examples : G is 3-colorable :

∃X ,Y (X ∩ Y = ∅ ∧
 ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧

 (u ∉ X ∪ Y ⇒ v ∈ X ∪ Y)]

 })

G is not connected :

∃Z (∃x ∈ Z ∧ ∃y ∉ Z ∧ (∀u,v (u ∈ Z ∧ edg(u,v) ⇒ v ∈ Z))

Planarity is MSO-expressible (no minor K5 or K3,3).

11

 Edge quantifications (MSO2 graph properties)

 If G = (VG , edgG(.,.)), its incidence graph is defined as
 Inc(G) := (VG ∪ EG , incG(.,.)) with

 incG(u,e) ⇔ u is the tail of edge e,

 incG(e,u) ⇔ u is the head of edge e. (G is directed).

 MSO formulas over Inc(G) can use quantifications on edges and

express more properties than those over G. MSO2 graph properties of G

are expressed by MSO formulas over Inc(G).

 That G is isomorphic to some Kp,p is MSO2 expressible but not MSO

expressible.

12

Definition 2 : Tree-decomposition, tree-width (denoted by twd(G)).

 Graph G a decomposition of G of width 3 (= 4-1)

13

Definition 3 : Clique-width (denoted by cwd(G)).

 Defined from graph operations. Graphs are simple, directed or not,

vertices are labelled by a,b,c, A vertex labelled by a is an a-vertex.

One binary operation: disjoint union : ⊕

Unary operations: edge addition denoted by Adda,b

Adda,b (G) is G augmented

with undirected edges between every

a-vertex and every b-vertex.

The number of added edges depends

on the argument graph. H = Adda,b (G) ; only 5 new edges added

Directed edges are defined similarly.

14

Vertex relabellings :

Relaba b(G) is G with every a-vertex is made into a b-vertex

Basic graphs : a , a vertex labelled by a.

The clique-width of G (denoted by cwd(G)) is the smallest k such that

G is defined by a term using k labels.

Example : Cliques have unbounded tree-width and

clique-width 2.

Kn is defined by tn where tn+1 =

Relabb a(Adda,b (tn ⊕ b))

15

Clique-width compared to tree-width [sparse graphs]

 For all graphs G :

 cwd(G) < 22.twd(G)+2 +1 (< 3.2twd(G)-1 if G is undirected).

 For incidence graphs H = Inc(G) :

 cwd(H) < 2. twd(G)+4 (< twd(G) + 3 if G is undirected).

 For planar graphs :

 cwd(G) < 32. twd(G) - 24 (< 6.twd(G) - 2 if G is undirected).

 For graphs of degree < d : cwd(G) = O(twd(G)).

 For hereditary average degree d : cwd(G) = O(twd(G)2.d).

16

Meta-theorems : FPT time f(wd(G)).n

 (1) MSO properties of graphs of bounded cwd,

 (2) MSO2 properties of graphs of bounded twd.

 Notes: - MSO expressible ⇒ MSO2 expressible and

 bounded twd ⇒ bounded cwd.

(2) reduces to (1) because MSO2 on G = MSO on Inc(G)

 and cwd(Inc(G)) = O(twd(Inc(G))) = O(twd(G))

 avoiding the exponential jump cwd(G) = 2O(twd(G))

 - twd(G) = O(cwd(Inc(G)): MSO2 checking via incidence
 graphs “only work” for bounded tree-width.

17

 Automata for checking MSO properties

 We want to check a property P(G) of a graph G = G(t) given by a

term t that is either a clique-width term or a term representing a tree-

decomposition.

 We can construct an automaton A(P) to check that, for given term t

that G(t) satisfies P :

 either “directly” from our understanding of P and graph operations,

 or by an induction on the structure of an MSO formula expressing P.

 We need automata for atomic formulas. A conjunction is handled by

a product of two automata. An existential quantification introduces non-

determinism, but automata are run deterministically : this is the main

source of huge sizes. Negation needs determinization.

18

Definition 4 : Fly-automaton (FA)

A = < F, Q, δ, Out >

F : finite or countable (effective) set of operations,

Q : finite or countable (effective) set of states (integers, pairs of integers,

finite sets of integers: states can be encoded as finite words, integers in binary),

Out : Q � D (a set of finite words), computable.

δ : computable (bottom-up) transition function

Nondeterministic case : δ is finitely multi-valued. Determinization

works.

An FA defines a computable function : T(F) � D , a decidable

property if D = {True, False}.

19

Theorem [B.C & I.D.] : For each MSO property P, one can

construct a single infinite FA over F that recognizes the terms t in

T(F) such that P(G(t)) holds.

Computation time is f(k).n, n = size of term, k = number of labels in t.

Consequence : The same automaton (the same model-checking program)

can be used for graphs of any clique-width.

20

 Application to incidence graphs and MSO2 properties (edge

quantifications) of graphs of bounded tree-width.

 1) From of a tree-decomposition T of G of width k, we construct a

term t for Inc(G) of “small” clique-width k+3 (2k+4 if G directed).

 2) We translate an MSO2 formula ϕ for G into an MSO formula θ for

Inc(G).

 3) The corresponding automaton A(θ) takes term t as input. But an

atomic formula edg(X,Y) of ϕ is translated into ∃U. inc(X,U) ∧ inc(U,Y)

in θ which adds one level of quantification.

The automaton A(θ) remains manageable.

21

 For certain properties P, for example connectedness, directed cycle,

outdegree < p, we have P(G) ⇔ P(Inc(G)).

 The automaton for graphs G defined by clique-width terms can be

used for the clique-width terms that define the graphs Inc(G).

oOo

 Why automata running on clique-width terms rather than on terms

representing tree-decompositions ? They are simpler to construct (and

smaller). It is practically useful to translate tree-decompositions of

sparse graphs (incidence graphs, planar graphs, graphs of bounded

degree) into clique-width terms.

22

Conclusion

 In most cases, we get XP or FPT dynamic programming

algorithms, that can be obtained independently.

 These algorithms are based on fly-automata, that can be quickly

constructed from logical descriptions � flexibility.

 These constructions are implemented. Tests have been made for

colorability and connectedness problems.

 Thank you for suggesting interesting problems that could fit

in this framework.

