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Topics 

 

 Comparing  clique-width  to  tree-width for sparse graphs 

 

 Fixed-parameter tractable (FPT) algorithms based on 

         graph decompositions + logic + automata  on terms 
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Graph decompositions = tree structuring of graph in terms  

    of “small” graphs and composition operations  
 

 Graph structure theory : 

  tree-decomposition  for  the Graph Minor Theorem, 

  modular decomposition  for comparability graphs, 

  ad hoc decompositions  for the Perfect  Graph Theorem. 
 

 Algorithmic  meta-theorems  give  FPT algorithms  for 

  parameters  tree-width  and clique-width  based on graph  

  decompositions; properties to check are expressed in  

        monadic second-order logic (MSO). (Definitions  will  be given  soon). 
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Theorem : For each k, every MSO  graph property  P  can be 

checked in (FPT) time  O(f(k).n) where n = number of vertices, k = 

tree-width or clique-width of the input graph, given by a relevant 

decomposition. This decomposition is formalized by an algebraic term 

over operations that build graphs (generalizing concatenation of words). 
 

Method : From k and ϕ expressing P, one builds a  finite  

automaton  A(ϕ,k) to recognize the terms that represent decom-

positions of  width at  most  k and define graphs satisfying  P.  
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Difficulty : The finite automaton  A(ϕ,k) is much too large as soon 

as   k > 2 :  2^(2^(…2^k)..))  states  

(because of quantifier alternations) 
 

   

To overcome this difficulty, we use fly-automata whose states and 

transitions are described and not tabulated. Only the transitions 

necessary  for an  input term are computed “on the fly”.  Sets of states 

can be infinite and fly-automata can compute values, e.g., the number of 

p-colorings or of acyclic p-colorings of a graph. This is a theoretical view 

of dynamic  programming. 
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The  MSO  meta-theorem  through fly-automata 
  

                ϕ    (MSO  formula)

                             

      

             Fly-automaton constructor  

                  Yes  

G                   Graph analyzer                 t                 A(ϕ)           

                  No   

 A(ϕ): infinite fly-automaton. The time taken by  A(ϕ) is O(f(k).n) where 

k depends on the operations occurring in t and bounds the tree-width or 

clique-width of  G.  
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Computations  using  fly-automata    (by Irène  Durand) 
 

 Number of   3-colorings  of  the  6 x 525  rectangular grid  (of clique-
width  8)  in  10 minutes.  
 
 
 
 4-acyclic-colorability  of  the  Petersen  graph  (clique-width 5)  in  1.5   
minutes. 
 
 (3-colorable but not acyclically;  

 red  and  green  vertices  

 induce  a  cycle). 
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The  McGee  graph    

is  defined  by a term  

of size  99  and depth 76. 

 

This graph  is 3-acyclically  colorable. 

Checked in 40 minutes. 

Even in  2 seconds by enumerating the accepting  

runs,  and  stopping  as soon as  a  success is found. 
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Definition  1 :  Monadic  Second-Order  Logic  
 

 First-order  logic  extended  with  (quantified)  variables  
denoting  subsets  of  the  domains. 

  
 A  graph  G is given  by  the logical  structure   

     ( VG , edgG(.,.) ) = (vertices, adjacency relation) 

 Property  P is MSO expressible :  P(G)   ⇔   G  !=  ϕ 

 MSO  expressible  properties :   transitive closure,  properties  of 

paths, connectedness,  planarity  (via Kuratowski),   p-colorability. 



 

10 

 Examples :  G  is  3-colorable  : 
 

∃X ,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  

    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 

      } )  
 
 

G  is  not  connected : 

∃Z ( ∃x ∈ Z  ∧  ∃y ∉ Z  ∧  (∀u,v (u ∈ Z  ∧  edg(u,v) ⇒ v ∈ Z)  ) 

 

  

Planarity  is  MSO-expressible  (no minor  K5  or  K3,3). 
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 Edge  quantifications  (MSO2  graph  properties) 

 
 

 If   G  =  ( VG , edgG(.,.) ), its incidence graph  is  defined as  
  Inc(G) := ( VG ∪ EG , incG(.,.) ) with    

  incG(u,e)  ⇔   u  is  the tail of  edge  e, 

  incG(e,u)  ⇔   u  is  the head of  edge  e.    (G is directed).   
 
  
 MSO  formulas  over Inc(G) can use  quantifications on edges and 

express more properties than those over G.  MSO2  graph properties  of G 

are expressed by MSO  formulas over Inc(G). 

 That  G  is isomorphic to some Kp,p  is  MSO2  expressible but not MSO 

expressible.    
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Definition 2 : Tree-decomposition, tree-width  (denoted by  twd(G)).  
 

          

 

 

 

 

 

 

 

 
 

 

 Graph  G                             a   decomposition   of  G  of  width  3 (= 4-1) 
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Definition 3 :  Clique-width       (denoted by  cwd(G)).  
 

 Defined from graph operations. Graphs are simple, directed or not, 

vertices are labelled  by  a,b,c, ... .  A  vertex  labelled by a is an  a-vertex. 
 

One  binary  operation:   disjoint  union  :   ⊕ 
 

Unary  operations:  edge  addition  denoted  by  Adda,b 
 

Adda,b (G)  is  G  augmented   

with  undirected edges  between  every  

a-vertex and  every  b-vertex. 

The  number  of  added edges  depends   

on  the  argument graph.             H = Adda,b (G) ; only 5  new edges added 

Directed edges are defined similarly. 
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Vertex  relabellings : 

Relaba         b(G)  is  G  with  every  a-vertex   is  made  into  a  b-vertex 

 

Basic graphs  :  a , a  vertex  labelled by a. 

 

The clique-width  of    G  (denoted by cwd(G)) is the smallest  k  such that    

G is  defined  by a  term  using  k   labels.  

 

 

Example : Cliques   have unbounded tree-width and   

clique-width  2. 

Kn  is   defined  by  tn  where  tn+1  =    

Relabb        a( Adda,b  (tn ⊕ b) )  
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Clique-width compared to tree-width [sparse graphs] 
 

  For all graphs  G : 

 cwd(G) < 22.twd(G)+2 +1   (< 3.2twd(G)-1   if  G is undirected). 

  For incidence graphs H = Inc(G) : 

 cwd(H) < 2. twd(G)+4     (< twd(G) + 3    if G is undirected). 

  For planar graphs : 

 cwd(G) < 32. twd(G) - 24    (< 6.twd(G) - 2   if G is undirected). 

  For graphs of degree < d : cwd(G) = O(twd(G)). 

  For hereditary average degree d :  cwd(G) = O(twd(G)2.d). 
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Meta-theorems :  FPT  time  f(wd(G)).n    
  

  (1)  MSO    properties  of graphs of  bounded  cwd, 

  (2)  MSO2   properties  of graphs of  bounded  twd. 

    

 Notes: - MSO  expressible  ⇒   MSO2   expressible   and 

           bounded  twd   ⇒  bounded  cwd. 

(2) reduces to (1)   because  MSO2  on  G  = MSO  on  Inc(G)  

   and   cwd(Inc(G)) = O(twd(Inc(G))) = O(twd(G))  

   avoiding  the  exponential  jump  cwd(G) = 2O(twd(G))     

            -  twd(G)  =  O(cwd(Inc(G)):  MSO2 checking via incidence  
    graphs   “only work” for bounded tree-width. 
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    Automata  for  checking  MSO  properties 
  

 We want to check  a  property  P(G) of a graph G = G(t)  given by a 

term  t that is either a  clique-width term  or a term representing a tree-

decomposition. 

 We can construct an automaton A(P) to  check that, for given term t  

that G(t) satisfies P : 

 either  “directly” from our understanding of  P  and graph operations, 

 or by an induction on the structure of an MSO formula expressing P. 

 We need automata for atomic formulas. A  conjunction  is  handled by 

a  product of two automata.  An existential quantification  introduces non-

determinism, but automata are run deterministically : this is the main 

source of huge sizes.  Negation needs determinization. 
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Definition 4 :  Fly-automaton    (FA) 
 

A = < F, Q, δ, Out >  

F :  finite  or  countable (effective)  set of operations, 

Q :  finite or countable (effective)  set of states   (integers, pairs of integers, 

finite sets of integers: states can be encoded as finite words, integers in binary), 

Out : Q � D   (a  set of  finite  words), computable. 

δ : computable  (bottom-up)  transition  function 

Nondeterministic  case :  δ   is  finitely  multi-valued.  Determinization  

works.     

An  FA defines  a  computable  function : T(F) � D , a  decidable  

property  if  D  =  {True, False}. 
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Theorem  [B.C & I.D.] :  For each MSO property P, one can 

construct a single  infinite  FA over F  that recognizes the terms t in 

T(F)  such that  P(G(t)) holds. 

Computation time is  f(k).n,   n = size of term, k = number of labels in t. 

  
 

 

Consequence : The same automaton (the same model-checking program)  

can  be  used  for  graphs  of  any  clique-width. 
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  Application  to  incidence  graphs  and  MSO2  properties (edge 

quantifications) of graphs  of  bounded  tree-width. 
 

 

 1) From  of  a  tree-decomposition T of  G of width k, we  construct  a  

term  t  for  Inc(G) of “small” clique-width  k+3  (2k+4 if G  directed).   

 2) We translate an MSO2  formula ϕ  for G into an MSO formula θ for 

Inc(G).   

 3) The corresponding  automaton A(θ) takes  term  t  as  input. But  an 

atomic formula  edg(X,Y) of  ϕ  is  translated  into   ∃U. inc(X,U) ∧ inc(U,Y) 

in  θ which  adds  one level of quantification.    

The  automaton  A(θ) remains  manageable.  
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 For  certain  properties P, for example  connectedness, directed cycle,  

outdegree < p, we  have  P(G) ⇔  P(Inc(G)). 

 The  automaton  for  graphs G  defined by clique-width terms  can be 

used  for  the clique-width terms  that define  the graphs Inc(G).  

oOo 

 Why automata running on clique-width terms  rather than on terms 

representing  tree-decompositions ?   They  are  simpler to construct  (and 

smaller).  It  is practically  useful  to  translate  tree-decompositions  of  

sparse graphs (incidence graphs, planar graphs, graphs of bounded 

degree) into clique-width terms. 



 

22 

Conclusion 
 

  In most cases, we  get  XP  or  FPT dynamic programming 

algorithms, that can be obtained  independently. 
 

  These algorithms are based on fly-automata, that can be quickly 

constructed  from  logical  descriptions �  flexibility.  
 

  These constructions are implemented. Tests have been made for 

colorability and connectedness problems. 
 

  Thank you for suggesting interesting problems  that  could fit 

in this framework. 

 


