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Summary  

 

 

 First-order model-checking : a review of some algorithmic  

   “meta-theorems”. 

 

 Monadic second-order model-checking with fly-automata. 
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 FO (First-order) and MSO (monadic second-order) model-checking:  

  verification of  G = ϕ  for fixed ϕ, in terms of the size of G. 

  

  This  is called  “data complexity”.    

  The size of a graph  G  is  the  number of vertices. 

 

 Graphs are relational structures: the vertices form the domain,  binary 

relations express adjacency or incidence, and unary relations express 

labellings. The case of graphs capture most difficulties.  

 Other relational structures can be, to some extent, encoded as labelled 

graphs. 
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 First-order model checking.   

  

Typical FO graph properties : 

  degree   <   d,   diameter  >   d    (for fixed d). 

 

Connectedness, planarity, k-colorability are not FO. They are MSO 

(monadic second-order) expressible. 

 

 

Time complexity of checking  G  = ϕ  for fixed ϕ ,  n =  # of vertices. 

 

For  all  graphs :    O(ns) , s  =  the number of quantifiers   of  ϕ. 
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Sparse  graphs : they  have O(n) edges for n vertices. 

 

Bounded  degree  :  O(n)     (Seese, 1996). 

Locally bounded tree-width, includes bounded degree, planar,  

bounded tree-width :   O(n1+ε)    (Frick and Grohe, 2004) 

Bounded expansion :  O(n)     (Dvorak et al., 2010) 

Nowhere dense :   O(n)      (Grohe et al., 2014) 

 

Tree-width will be reviewed soon   (Trees have tree-width 1). 

Locally bounded tree-width means : each ball of radius r has tree-width 

   <  f(r)  for some function f.  

A ball of radius  r  is  Nr(x) =  induced subgraph of vertices at distance at 

most   r   of a vertex x. 
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 Bounded expansion and nowhere dense classes have been defined by 

Nesetril  and  Ossona de Mendez in terms of average degree for certain  

shallow  minors. 

 

The basic tool for FO model-checking 

 

Gaifman's Theorem: Every FO sentence (closed formula)  is equivalent to a 

Boolean combination of  local formulas.  
 

Local formula : Conjunction of  ψ[Bi], i = 1, …,k,  where   B1, …, Bk   are 

pairwise disjoint balls of radius r .  

 For graphs of degree < d, there are finitely many balls of radius r, up to 

isomorphism. 
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 Bounded expansion  has a  characterization in terms of 

   neighbourhood complexity    (Reidl et al. 2016) : 
 

G,  a graph, Y a set of vertices and  r  > 1.   
µr(Y) :=  the number of sets  Nr(x)∩Y,   x  ∈ V. 
 

  A class of graphs C  has bounded expansion if and only if, for each r, 
there is number  a  such that  µr(Y) < a. Y  for all graphs in C, all sets  Y.     
 There is a similar characterization for  nowhere  dense  classes by 
Eickmeyer et al. (2017).  
 
 It is not surprizing that conditions related to neighbourhoods have 

consequences  for  FO  verification in view of Gaifman's Theorem.  

  

 Proofs are rather technical and involve huge constants. 
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 Bounded expansion and nowhere dense classes do not include all 

classes of graphs of  bounded average degree,  (those such that  

 E = O(V)  for all subgraph (V,E)  ).  Cliques with subdivided edges are so, 

but are not of bounded expansion. 

 

FO model-checking for dense graphs  

 

 Graphs of bounded clique-width :  O(n), a special case of the theorem 
for MSO   logic to be discussed below. 

 

 

 Graphs defined by first-order definabble transformations from graphs 
of bounded degree d : O(ns) (Gajarsky et al.).  The exponent s depends on 
d  and the sentence to check.  

 

 Example:   Take a rectangular grid ; use labels to select 2 rows. Add edges 
between any two vertices of these 2 rows. They are not sparse and not of 
bounded clique-width. 
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 Observations :  (1)  The constants “hidden” behind the O-notation are 

extremely large. The algorithms from the proofs are not practically 

implementable. 

(2) First-order  logic is weak for expressing graph properties.  

  (3) However, it is used in relational databases. The constraints like 

bounded degree, tree-width etc. are never satisfied by the relational 

structures representing the content of a database. 

Polynomial-time algorithms are obtained from constraints on formulas. 

For  conjunctive queries ϕ of tree-width < k, S = ∃y ϕ  is decidable in 

time  f(ϕ).Sc(k) . (tree-width of the “graph of the variables” , two variables 

are adjacent if they are in a same atom). 
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Monadic second-order (MSO)  model-checking 
  

MSO logic expresses many useful graph properties :   planarity, 

connectedness, cycles,  spanning trees,  but also   

NP-complete problems : 3-vertex colorability, Hamiltonicity. 

 
Examples : 3-colorability :  

∃X ,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  

    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 

      } )  
 

Non  connectedness : 

∃Z ( ∃x ∈ Z  ∧  ∃y ∉ Z  ∧  (∀u,v (u ∈ Z  ∧  edg(u,v) ⇒ v ∈ Z)  ) 
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 For getting polynomial time algorithms, tree-structurings of graphs, in 

particular those defined by tree-decompositions, are needed. 

 

 Only two types of decompositions (or equivalent notions)  help :        

Tree-decompositions and descriptions of graphs by clique-width terms. 

They yield parameters in the sense of   Fixed Parameter Tractability. 
 

 Both types of decomposition are expressed by algebraic terms over 

graph operations (that compose  or  transform graphs).  

 

 Next : a quick review of tree-width, clique-width and mutual 

relations.  
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Tree-width  ( twd(G) )  illustrated : 

 

 

 

         

 

 

 

 

  width of  decomposition : 3 = 4-1 

  dotted  lines : equal  vertices. 
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  Clique-width  terms  construct  (labelled)  graphs. 

 

 Vertices are labelled  by  a,b,c, ... .  A  vertex  labelled by a  is an  a-vertex. 

 

Binary  operation:   disjoint  union  :   ⊕ 

Unary  operations:  edge  addition  denoted  by  adda,b 

adda,b (G)  is  G  augmented   

with  (un)directed edges  from (between) 

 every   a-vertex  to (and)  every  b-vertex. 

vertex  relabellings : 

 relaba       b(G)  is  G  with  every  a-vertex   is  made  into  a  b-vertex 

 Basic graphs  :  a    denotes  a  vertex  labelled  by   a. 

 The clique-width  of    G, denoted by cwd(G), is the smallest  k  such 

that   G is  defined  by a  term  using  k   labels.  
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 Example : Cliques with a-vertices,  have  clique-width  2 

 and  unbounded  tree-width. 

 

 

 

 

 

 

 

  Kn   is   defined   by   tn   where    t1   :=   a 

   t2   :=   relabb      a ( adda,b (a ⊕ b) ) 

   t3   :=   relabb      a ( adda,b (t2 ⊕ b) ) 

   t4   :=   relabb      a ( adda,b (t3 ⊕ b) ) 
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Bounded clique-width: cographs (2),  cliques (2),  complete bipartite 

graphs (2),  trees (3), any  class  of  bounded   tree-width. 

Unbounded clique-width: Planar graphs, chordal graphs, bounded 

degree. 

 

Comparing  tree-width  and  clique-width :  

 

Undirected  graphs : 

cwd (G)  < 3. 2 twd(G) - 1   (by Corneil & Rotics ;  the exponential is not avoidable).  

 Directed graphs :  

 cwd (G)  <  2 2.twd(G)+1   (Courcelle-Olariu, 2000; book Courcelle-Engelfriet 2012). 
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Classes for which  cwd(G) = O(twd(G)c )  with “good values” of  c  and 

hidden constants . 

    

Graph class cwd(G)  where  k = twd(G) 

  planar 6k – 2     ( 32k – 24  if directed) 

  degree   <  d  k.d  + d + 2 

  incidence  graph k + 3       ( 2k + 4  if  directed) 

  p-planar 12k.p  

at most  q. n  edges  for  n vertices O(k 
q
 )               where  q  << k 

       

Incidence  graphs : for MSO2  properties (MSO with edge quantifications),  

we get linear-time MSO2 model-checking for graphs of bounded twd. 
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Remark :  The  algorithm that transforms  a  normalized  

  tree-decomposition  T  into  a  clique-width  term  uses  time : 

    O(n.k.(log(k) + m.log(m)) )    where : 

   

n = number of  vertices = number of nodes of tree T, 

  k =  the  width  of the tree-decomposition,  

  m = number of labels of  the produced  clique-width term. 

   

  Normalized : The vertices are the nodes of the tree. 
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The basic theorem for MSO model-checking  

 

Theorem: Each MSO property of graphs of cwd or twd < k  is  

decidable in time  f(k) x # of vertices (hence  FPT time, where the 

parameter is (k, ϕ), and  ϕ  expresses the considered  property). 

 

  

Also for MSO properties expressed with edge set quantifications, 

(MSO2)  but  only  for  graphs  of  bounded  tree-width. 
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 Restriction to graphs (or relational structures) of bounded tree-

width is necessary for getting polynomial-time algorithms for  

MSO2  model-checking. 

 
 

 

Theorem (Kreutzer and Tazari, 2010):  Assume ETH (3-SAT is not solvable in 

time 2o(n)).  For a graph class closed under subgraphs, if  MSO2 model-

checking  is doable  in time O(nf(ϕ)), then twd(G)  < log(n)48 , n = VG. 
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The basic tool for the   MSO  meta-theorem: 

  Translation of the MSO sentence ϕ  to check into a  finite automaton 

A  that runs on the term that defines the graph G, and accepts the term if 

and only if G =  ϕ. 

 

Major difficulty : The “finite” automata are huge (this is not avoidable by 

Grohe 2004) 

 

Remedy: Use of fly-automata : they compute the needed states and 

transitions. States are easily parsable words and transitions are defined by 

“small” programs. Only the needed transitions for a given term are 

computed. 
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Finite automata  on terms (also called tree-automata) 

 A small example with 2 states I(Int) and R(Real) for type-checking 

arithmetic expressions. Bottom-up computation using a table saying that:  

       \ R                     I \ I = R 

        /    \        

          + I        Rnd  I        I+I = I  ;  Rnd(R)= I  

         /   \         

           1I     3I       x R         IxR = R    

        /    \ 
          3I       0.5 R 
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Fly-automata for the verification of  MSO graph properties 

 

 Standard proof  of  the basic  theorem : For each  MSO  formula  ϕ  

and  integer k, one builds  a  finite  automaton A(ϕ,k) that  takes  as  input 

a term denoting a graph G of clique-width < k and answers  in  time  f(k).n    

whether   G   =  ϕ    (where   n  is  the  number  of  vertices). 

 The   construction  is  by  induction  on  the  structure  of  ϕ. 
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 The  MSO  meta-theorem  through  finite  automata: 

       k            ϕ    (logical  formula)   

      

             Automaton Constructor  

                   Yes  

G                   Graph Analyzer                t              A(ϕ,k’)           

                    No  

       Error : cwd(G) > k               k’ = g(k) > k 

 

Steps       are  done  “once  for  all”, independently   of   G   

A(ϕ,k’):  “finite”  automaton,  running  on  terms  t . 
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Difficulty : The finite automaton  A(ϕ,k)  is  too large  to  be  imple-

mented  by  a (usual) transition table as  soon  as  k > 2 :  

 it may have 2^(2^(…2^k)..))  states,  because of quantifier alternations. 
  

 

  To overcome this difficulty, we use fly-automata whose states and 

transitions are described and not tabulated. Only the, say 100, transitions 

necessary  for  an  input  term of size 100  are  computed  “on the fly”.   
 

  Sets of states can be infinite and fly-automata can compute values, 

for example, the  number of  p-colorings  of a graph.  
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The  MSO  meta-theorem  through  fly-automata 

                ϕ    (MSO  formula)

                             

      

             Fly-automaton constructor  

                  Yes  

G                   Graph analyzer                 t                 A(ϕ)           

                  No   

 A(ϕ): a single infinite fly-automaton. The time taken by A(ϕ) is f(k).n 

where k depends on G via the operations occurring in t and bounds the 

tree-width  or  clique-width of  G. No uniform linear bound on computation 

time. 
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Computations  using  fly-automata    (by  Irène  Durand) 
 

 Number of   3-colorings  of  the  3 x 100  rectangular grid  (of  clique-

width  5)  in  a few seconds.  For  4 x 150 :  one minute for 3-colorability.  

A  few  seconds  for  2-colorability. 

 
 4-acyclic-colorability  of  the  Petersen  graph  (clique-width 5)   

 in  2    minutes. 

 
 (3-colorable but not acyclically;  

 red  and  green  vertices  

 induce  a  cycle). 
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The  McGee  graph    

is  defined  by a clique-width term  

of  size  99  and depth 76. 

 

This graph  is 3-acyclically  colorable. 

Checked in 40 minutes. 

 

Even in 2 seconds by enumerating the accepting  

runs,  and  stopping  as soon as  a  successful one  is found. 
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 Fly-automaton  (FA)   

Definition :  A = < F, Q, δ, Out >    (FA   computing  a   function). 

F :   finite  or  countable (effective)  set of operations, 

Q :  finite or countable (effective)  set of states   (integers, pairs of integers, 

etc. : states are  encoded by finite words), 

Out : Q � D , computable  (D  is an effective set, coded  by  finite  words). 

δ : computable  (bottom-up)  transition  function 

Nondeterministic  case :  δ   is  finitely  multi-valued  which ensures that   

           determinization  works  

 

 A  fly-automaton  defines  a  computable  function : T(F) � D ,  

 hence,  a  decidable  property  if  D  =  {True, False}. 
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 Extension :   computation  of  graph  evaluations.  

 

P(X) is a property of tuples X  of sets of vertices (usually MSO expressible). 

∃ X.P(X)  : the basic, “Boolean evaluation”. 

 

# X.P(X) : number  of satisfying  tuples  X. 

 

Sp X.P(X)  : spectrum = the  set  of tuples of  cardinalities of  the 

components of the tuples  X  that   satisfy  P(X). 

 

 MinCard X.P(X) : minimum cardinality of  X  satisfying   P(X). 

 

 Other  optimal values can be computed. 
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Computation  time  of  a  fly-automaton (FA)  

   

 F  =  all  clique-width  operations,   Fk : those  using k  labels. 

 On  term  t ∈ T(Fk)  defining  G  with  n  vertices,  if  a  fly-automaton  

  takes  time  bounded by : 

  (k + n)c  �  it is a P-FA   (a   polynomial-time  FA), 

  f(k). nc  �    it is an FPT-FA, 

  a. ng(k)  �    it is an XP-FA. 

 The  associated  algorithm  is  polynomial-time, FPT  or XP  for clique-

width  as  parameter. (The important notion  is  the maximum  size of a state.)  

 All  dynamic programming algorithms  based on clique-width  terms 

can  be described by FA.  
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 We  obtain  FPT  algorithms parameterized by clique-width for the 

following  problems and computations : 

 

   Number of p-colorings, 

 

   Minimum Cardinality of a color class X in a coloring with  

      color classes X, X1, … ,Xp              (for fixed p) 

   Equitable p-coloring (the sizes of two color classes differ  

      by at most 1); this problem is W[1] (not FPT)  

      for p+tree-width as parameter. 
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  Fly-automata  can  be constructed : 

 

 - either  “directly”, from  our  understanding  of  the considered  graph 

properties, 

 - or  “automatically”  from a  logical description, 

 - or by combining  previously  constructed  automata. 

 

 Direct constructions   

 Example 1 : Checking that a “guessed”  p-coloring  is good: a state is a 

set of pairs (a, j) where a is a  label  and  j  a color (among 1, …, p)  or   

Error. 

 Checking the existence of a good  p-coloring  : a set of such states, in 

practice is not of maximal (exponential) size. 
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Example 2  : Connectedness. 

 

The state at node u of term t is the set of  types (sets  of  labels)  of  the 

connected  components of  the  graph G(t/u).  For  k  labels (k = bound 

on clique-width),  the set  of  states  has  size  <  2 ^ (2 ^ k).   

  Proved  lower  bound  :  2 ^ (2 ^ k/2).   

�  Impossible  to  “compile”  the  automaton (i.e., to list its transitions) . 

Example  of  a  state   :  q = { {a}, {a,b}, {b,c,d}, {b,d,f } },  (a,b,c,d,f :  labels).  

Some  transitions :               

  adda,c :    q             { {a,b,c,d}, {b,d,f } },                    

  relaba         b: q            { {b}, {b,c,d}, {b,d,f } }   

  Transitions   for   ⊕ :  union  of  sets  of  types. 

Note : Also  state (p,p)  if  G(t/u) has   >  2 connected components,  all  of  type p. 
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Fly-automata can have  infinitely  many  states  and  produce   

outputs  :   numbers, finite sets of tuples of numbers,  etc.  

 

 Example continued : For  computing  the  number  of  connected  

components,  we  use  states  such  as  : 

   q = { ({a}, 4 ), ({a,b}, 2), ( {b,c,d},2), ( {b,d,f },3) },   

   where 4, 2, 2, 3  are  the  numbers  of  connected  components  

   of  respective   types  {a}, {a,b}, {b,c,d}, {b,d,f }.  

 

 This  “counting  construction”  extends  in a uniform way to any FA (the 

formal setting is based on semi-rings in place of the two Boolean values). 
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Inductive  construction  for  ∃X. ϕ(X)  with  ϕ(X)  MSO  formula. 

 

Combinations and  transformations  of   FA’s. 

 

 Product  of  A  and  B :  states are pairs of a state of A  and one of B. 

 

 Determinization  of  A :  states  of  Det(A)  are  finite sets of states of A  
because the transition is finitely  multi-valued.  At  each  position  in the 
term, Det(A)  gives the finitely  many  states  that can  in some 
computation (the automaton A  can be infinite). 
 

 Counting  determinization of A, yielding Cdet(A) :  a state of CDet(A)  is 
a finite multi-set  of  states of A (giving the number of runs  that  can  yield  
a  state of A, not only the existence). 
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Handling free variables : Terms  are  equipped  with  Booleans  that  

encode  assignments  of  vertex  sets  V1,…,Vp  to  the  free  set  variables  

X1,…,Xp  of   MSO formulas   (formulas   are   written   without   first-order  

variables): 

  1)  we   replace  in  F  each  a   by  the  nullary  symbol  

  (a, (w1,…,wp)), wi ∈ {0,1} :  we  get  F(p) (only  nullary symbols are  modified); 

  2)  a  term   s   in  T(F(p) )  encodes  a   term  t   in  T(F)  and  an  

 assignment  of  sets  V1,…,Vp   to  the  set  variables  X1,…,Xp :   

   if   u  is  an  occurrence  of  (a, (w1,..,wp)),  then    

     wi  =  1  if  and  only  if    u  ∈  Vi . 

  3)  s   is  denoted  by  t * (V1,…,Vp)    
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Example  

 

 

 

 

 

 

             

                         Graph  G(t)    

 

 

 

 

 

     

     

     Term   t      
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Example   (continued)  

 

 

 

 

 

               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

   Term   t * (V1,V2)        
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 By  an  induction  on  ϕ,  we  construct,  for  each  ϕ(X),  X=(X1,…,Xp),    

a fly-automaton    A(ϕ(X))  that  recognizes : 

L(ϕ(X)) : =  { t * (V1,…,Vp) ∈ T(F(p) )  /  ( G( t ), V1,…,Vp )   =  ϕ } 

 

 Atomic formulas  (X ⊆ Y, edg(X,Y) ) :  direct  constructions 

 ¬ P (negation) :  as FA  are  run deterministically (by computing at each 

position the finite set of reachable states), it suffices  to  exchange  accepting  

and  non-accepting  states. 

 P ∧ Q, P ∨ Q :  products  of  automata. 
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Quantifications:  Formulas   are   written   without   ∀  

  L(  ∃ Xp+1 . ϕ(X1, ..., Xp+1) )   = prp+1( L ( ϕ(X1, ..., Xp+1)  ) 

  A(  ∃ Xp+1 . ϕ(X1, ..., Xp+1) )   = prp+1( A ( ϕ(X1, ..., Xp+1)  ) 

 

where   prp+1  is  the  projection   that  eliminates   the  last  Boolean          

�    a   non-deterministic  FA  denoted  by  prp+1( A ( ϕ(X1, ..., Xp+1)  ), 

to   be  run deterministically. 
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 Atomic  formula  :   edg(X1,X2)   for  directed  edges    

 

 edg(X1,X2)  means :   X1  = { x }  ∧  X2 = { y }    ∧   x                y 

 Vertex   labels   ∈  a   set    C   of   k   labels.  

 k2+k+3   states  :  0, Ok, a(1), a(2), ab, Error,      for a,b  in   C , a  ≠  b 

 Meaning  of  states (at node u in  t : its subterm  t/u  defines G(t/u)  ⊆  G(t) ).  

 0   : X1 = ∅  , X2 = ∅   

 Ok        Accepting   state :    X1 = {v}  , X2 = {w}  ,  edg(v,w)  in  G(t/u)   

 a(1) : X1 = {v}  , X2 = ∅ ,  v  has  label  a  in  G(t/u)   

 a(2)  : X1 = ∅  , X2 = {w}  ,  w  has  label  a  in  G(t/u)   

 ab  : X1 = {v}  , X2 = {w}  , v  has  label  a, w  has  label  b  (hence v ≠  w) 

             and  ¬edg(v,w)   in  G(t/u)    

 Error  : all  other  cases 
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 Transition  rules  

 For  the  constants  based on    a : 

 (a,00)  � 0  ;  (a,10) �  a(1)  ;  (a,01)  �  a(2)  ;    (a,11)  �  Error 

 

 For  the  binary  operation  ⊕:      r 

 (p,q,r  are  states)        p             q  

  If  p = 0  then  r := q  

  If  q = 0  then  r := p 

  If  p = a(1),  q =  b(2)  and  a  ≠  b   then   r  := ab 

  If  p = b(2),  q =  a(1)  and  a  ≠  b   then   r  := ab 

  Otherwise  r  : =  Error 
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 For  unary  operations   adda,b            r      

 

                 p     

  If  p = ab   then  r  :=  Ok   else  r  : =  p 

 

 For  unary  operations    relaba       b  

  If   p = a(i)   where   i = 1 or 2       then     r : = b(i)  

  If   p =  ac   where  c ≠ a  and  c  ≠  b    then     r : =  bc      

  If   p =  ca   where  c ≠ a  and  c  ≠  b        then     r : =  cb       

  If   p =  Error ,  0,  Ok,  c(i),  cd  or  dc  where    c ≠ a   then     r : = p   
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Examples :  p-acyclic  colorability   

 

 ∃ X1,…,Xp (Partition(X1,…,Xp)  ∧  NoEdge(X1)  ∧ ..... ∧  NoEdge(Xp)  ∧ ... 
   ........... ∧  NoCycle(Xi ∪ Xj)  ∧ ......  ) 

 

  

Minor  inclusion : H  simple, loop-free.  Vertices(H)  =  { v1,…,vp }  

 

 ∃X1,…,Xp (Disjoint(X1,…,Xp)  ∧  Conn(X1)  ∧ ... ∧  Conn(Xp)  ∧ ... 
   ...  ∧  Link(Xi , Xj)  ∧ ...  ) 

 

     
 Existence   of  “holes”   :  odd  induced  cycles  (to  check  perfectness ; one 

checks  “anti-holes”  on  the  edge-complement  of  the  given  graph). 

 

Combinations  of  existing  FA  reflect  the structure  of  MSO sentences 
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Enumeration  and efficient recognition 

        

 Recognition  with  Det(A)  reports the answer when all  states at 

the root have been determined. 

 

 An  enumerating  computation  can  list  one  by  one: 

   the states reached at  the root by the different runs of A, 

   the tuples  X  that  satisfy an  MSO  property  P(X). 

 

 Recognition by enumeration of root states stops as soon as  

   an accepting state is found. This is appropriate if ∃ X.P(X)  

   holds.  Not  for counting accepting runs or  # X.P(X) 
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Technical remark :  If a graph is denoted by a clique-width term t,   each 

of its vertices is represented in t  at a single position (an occurrence of a 

nullary symbol). 

 If the operation // is also used   ( G // H  is obtained from disjoint G and H 

by fusing some vertices of G  to some vertices of  H, in a precise way  fixed by 

labels), then a vertex  of  G//H  is represented by several positions of the 

term. The automaton that checks a property  ϕ(X1, ..., Xp) of  G  denoted 

by  a term t  must also check that the Booleans that specify  (X1, ..., Xp)  

agree on all positions of t  that specify a same vertex of G. 

 We have no such difficulty if we use disjoint union instead of  //. Hence, 

for representing  tree-decompositions, clique-width  terms  are more 

convenient  if one uses automata constructed from logical  formulas. 
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 Application  to  MSO2  properties of graphs  of   

 bounded tree-width  via   incidence   graphs. 

 

 

 1) Recall : From  of  a  tree-decomposition   of  G  of  width k, we  

construct  a  term  t  for  Inc(G) of “small” clique-width  k+3  (or 2k+4).   

 2) Recall :  We translate an MSO2  formula  ϕ  for G  into  an  MSO 

formula  θ  for Inc(G).   

 3) The corresponding  automaton A(θ) takes  term  t  as  input. But  an 

atomic formula  edg(X,Y) of  ϕ  is  translated  into  ∃U. inc(X,U) ∧ inc(U,Y) 

in  θ  which  adds  one  level  of  quantification.    

Fact  :  The  automaton  A(θ) remains  manageable.  
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 For  certain graph  properties  P, for example  “connectedness”, “contains a 

directed cycle”  or   “outdegree  <  p”, we  have : 

 

      P(G) ⇔  P(Inc(G)). 

 

 The  automaton  for  graphs G  defined by clique-width terms  can be used  

“directly”  for  the clique-width  terms  that  define  the incidence  graphs Inc(G). 
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 Summary  :  Checking  properties  of  G  of  tree-width  < k 

 

MSO  property MSO2  property 

cwd  term  for  G 

of width O(k) or O(kq)  

in  “good cases”  and  

exponential  in bad ones 

cwd  term  for  Inc(G) 

of  width  O(k);  

more complicated  

automaton in some cases, 

because  of  edg(X,Y) 
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General  conclusion 

 

1) By uniform constructions, we get  dynamic  programming  algorithms 

based on fly-automata, that can be quickly constructed  from  logical  

descriptions  �  flexibility.   

 A  “small” modification of the input formula  is reflected  easily in the 

automaton.  

2)  It is hard to obtain tight upper-bounds to time computations.  

3)  The algorithms obtained from FA are not better than the specific ones 

that have been developed. There obtained in uniform ways, rather quickly, 

as  combinations  of existing  “basic”  automata. 
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4)  Even for graphs given by tree-decompositions, clique-width terms are 

appropriate because of  two facts:  

(a) fly-automata are  simpler  to  construct  and  

(b) it is practically possible  to  translate tree-decompositions   

of  “certain”  sparse graphs into clique-width terms. 

5) Fly-automata are implemented. Tests have been made mainly for 

colorability and  Hamiltonicity  problems.  

6) Our constructions and their TRAG implementation concern directed 

graphs as well as undirected ones. 
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