

1

Structured graphs and the verification of

their monadic second-order properties

by means of automata

Bruno Courcelle and Irène Durand

Bordeaux University, LaBRI (CNRS laboratory)

Demonstration of the software TRAG

Written by Irène Durand and Mikhail Raskin

(outside of this lecture)

2

Summary

 First-order model-checking : a review of some algorithmic

 “meta-theorems”.

 Monadic second-order model-checking with fly-automata.

3

 FO (First-order) and MSO (monadic second-order) model-checking:

 verification of G = ϕ for fixed ϕ, in terms of the size of G.

 This is called “data complexity”.

 The size of a graph G is the number of vertices.

 Graphs are relational structures: the vertices form the domain, binary

relations express adjacency or incidence, and unary relations express

labellings. The case of graphs capture most difficulties.

 Other relational structures can be, to some extent, encoded as labelled

graphs.

4

 First-order model checking.

Typical FO graph properties :

 degree < d, diameter > d (for fixed d).

Connectedness, planarity, k-colorability are not FO. They are MSO

(monadic second-order) expressible.

Time complexity of checking G = ϕ for fixed ϕ , n = # of vertices.

For all graphs : O(ns) , s = the number of quantifiers of ϕ.

5

Sparse graphs : they have O(n) edges for n vertices.

Bounded degree : O(n) (Seese, 1996).

Locally bounded tree-width, includes bounded degree, planar,

bounded tree-width : O(n1+ε) (Frick and Grohe, 2004)

Bounded expansion : O(n) (Dvorak et al., 2010)

Nowhere dense : O(n) (Grohe et al., 2014)

Tree-width will be reviewed soon (Trees have tree-width 1).

Locally bounded tree-width means : each ball of radius r has tree-width

 < f(r) for some function f.

A ball of radius r is Nr(x) = induced subgraph of vertices at distance at

most r of a vertex x.

6

 Bounded expansion and nowhere dense classes have been defined by

Nesetril and Ossona de Mendez in terms of average degree for certain

shallow minors.

The basic tool for FO model-checking

Gaifman's Theorem: Every FO sentence (closed formula) is equivalent to a

Boolean combination of local formulas.

Local formula : Conjunction of ψ[Bi], i = 1, …,k, where B1, …, Bk are

pairwise disjoint balls of radius r .

 For graphs of degree < d, there are finitely many balls of radius r, up to

isomorphism.

7

 Bounded expansion has a characterization in terms of

 neighbourhood complexity (Reidl et al. 2016) :

G, a graph, Y a set of vertices and r > 1.
µr(Y) := the number of sets Nr(x)∩Y, x ∈ V.

 A class of graphs C has bounded expansion if and only if, for each r,
there is number a such that µr(Y) < a. Y for all graphs in C, all sets Y.
 There is a similar characterization for nowhere dense classes by
Eickmeyer et al. (2017).

 It is not surprizing that conditions related to neighbourhoods have

consequences for FO verification in view of Gaifman's Theorem.

 Proofs are rather technical and involve huge constants.

8

 Bounded expansion and nowhere dense classes do not include all

classes of graphs of bounded average degree, (those such that

 E = O(V) for all subgraph (V,E)). Cliques with subdivided edges are so,

but are not of bounded expansion.

FO model-checking for dense graphs

 Graphs of bounded clique-width : O(n), a special case of the theorem
for MSO logic to be discussed below.

 Graphs defined by first-order definabble transformations from graphs
of bounded degree d : O(ns) (Gajarsky et al.). The exponent s depends on
d and the sentence to check.

 Example: Take a rectangular grid ; use labels to select 2 rows. Add edges
between any two vertices of these 2 rows. They are not sparse and not of
bounded clique-width.

9

 Observations : (1) The constants “hidden” behind the O-notation are

extremely large. The algorithms from the proofs are not practically

implementable.

(2) First-order logic is weak for expressing graph properties.

 (3) However, it is used in relational databases. The constraints like

bounded degree, tree-width etc. are never satisfied by the relational

structures representing the content of a database.

Polynomial-time algorithms are obtained from constraints on formulas.

For conjunctive queries ϕ of tree-width < k, S = ∃y ϕ is decidable in

time f(ϕ).Sc(k) . (tree-width of the “graph of the variables” , two variables

are adjacent if they are in a same atom).

10

Monadic second-order (MSO) model-checking

MSO logic expresses many useful graph properties : planarity,

connectedness, cycles, spanning trees, but also

NP-complete problems : 3-vertex colorability, Hamiltonicity.

Examples : 3-colorability :

∃X ,Y (X ∩ Y = ∅ ∧
 ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧

 (u ∉ X ∪ Y ⇒ v ∈ X ∪ Y)]

 })

Non connectedness :

∃Z (∃x ∈ Z ∧ ∃y ∉ Z ∧ (∀u,v (u ∈ Z ∧ edg(u,v) ⇒ v ∈ Z))

11

 For getting polynomial time algorithms, tree-structurings of graphs, in

particular those defined by tree-decompositions, are needed.

 Only two types of decompositions (or equivalent notions) help :

Tree-decompositions and descriptions of graphs by clique-width terms.

They yield parameters in the sense of Fixed Parameter Tractability.

 Both types of decomposition are expressed by algebraic terms over

graph operations (that compose or transform graphs).

 Next : a quick review of tree-width, clique-width and mutual

relations.

12

Tree-width (twd(G)) illustrated :

 width of decomposition : 3 = 4-1

 dotted lines : equal vertices.

13

 Clique-width terms construct (labelled) graphs.

 Vertices are labelled by a,b,c, A vertex labelled by a is an a-vertex.

Binary operation: disjoint union : ⊕

Unary operations: edge addition denoted by adda,b

adda,b (G) is G augmented

with (un)directed edges from (between)

 every a-vertex to (and) every b-vertex.

vertex relabellings :

 relaba b(G) is G with every a-vertex is made into a b-vertex

 Basic graphs : a denotes a vertex labelled by a.

 The clique-width of G, denoted by cwd(G), is the smallest k such

that G is defined by a term using k labels.

14

 Example : Cliques with a-vertices, have clique-width 2

 and unbounded tree-width.

 Kn is defined by tn where t1 := a

 t2 := relabb a (adda,b (a ⊕ b))

 t3 := relabb a (adda,b (t2 ⊕ b))

 t4 := relabb a (adda,b (t3 ⊕ b))

15

Bounded clique-width: cographs (2), cliques (2), complete bipartite

graphs (2), trees (3), any class of bounded tree-width.

Unbounded clique-width: Planar graphs, chordal graphs, bounded

degree.

Comparing tree-width and clique-width :

Undirected graphs :

cwd (G) < 3. 2 twd(G) - 1 (by Corneil & Rotics ; the exponential is not avoidable).

 Directed graphs :

 cwd (G) < 2 2.twd(G)+1 (Courcelle-Olariu, 2000; book Courcelle-Engelfriet 2012).

16

Classes for which cwd(G) = O(twd(G)c) with “good values” of c and

hidden constants .

Graph class cwd(G) where k = twd(G)

 planar 6k – 2 (32k – 24 if directed)

 degree < d k.d + d + 2

 incidence graph k + 3 (2k + 4 if directed)

 p-planar 12k.p

at most q. n edges for n vertices O(k
q
) where q << k

Incidence graphs : for MSO2 properties (MSO with edge quantifications),

we get linear-time MSO2 model-checking for graphs of bounded twd.

17

Remark : The algorithm that transforms a normalized

 tree-decomposition T into a clique-width term uses time :

 O(n.k.(log(k) + m.log(m))) where :

n = number of vertices = number of nodes of tree T,

 k = the width of the tree-decomposition,

 m = number of labels of the produced clique-width term.

 Normalized : The vertices are the nodes of the tree.

18

The basic theorem for MSO model-checking

Theorem: Each MSO property of graphs of cwd or twd < k is

decidable in time f(k) x # of vertices (hence FPT time, where the

parameter is (k, ϕ), and ϕ expresses the considered property).

Also for MSO properties expressed with edge set quantifications,

(MSO2) but only for graphs of bounded tree-width.

19

 Restriction to graphs (or relational structures) of bounded tree-

width is necessary for getting polynomial-time algorithms for

MSO2 model-checking.

Theorem (Kreutzer and Tazari, 2010): Assume ETH (3-SAT is not solvable in

time 2o(n)). For a graph class closed under subgraphs, if MSO2 model-

checking is doable in time O(nf(ϕ)), then twd(G) < log(n)48 , n = VG.

20

The basic tool for the MSO meta-theorem:

 Translation of the MSO sentence ϕ to check into a finite automaton

A that runs on the term that defines the graph G, and accepts the term if

and only if G = ϕ.

Major difficulty : The “finite” automata are huge (this is not avoidable by

Grohe 2004)

Remedy: Use of fly-automata : they compute the needed states and

transitions. States are easily parsable words and transitions are defined by

“small” programs. Only the needed transitions for a given term are

computed.

21

Finite automata on terms (also called tree-automata)

 A small example with 2 states I(Int) and R(Real) for type-checking

arithmetic expressions. Bottom-up computation using a table saying that:

 \ R I \ I = R

 / \

 + I Rnd I I+I = I ; Rnd(R)= I

 / \

 1I 3I x R IxR = R

 / \
 3I 0.5 R

22

Fly-automata for the verification of MSO graph properties

 Standard proof of the basic theorem : For each MSO formula ϕ

and integer k, one builds a finite automaton A(ϕ,k) that takes as input

a term denoting a graph G of clique-width < k and answers in time f(k).n

whether G = ϕ (where n is the number of vertices).

 The construction is by induction on the structure of ϕ.

23

 The MSO meta-theorem through finite automata:

 k ϕ (logical formula)

 Automaton Constructor

 Yes

G Graph Analyzer t A(ϕ,k’)

 No

 Error : cwd(G) > k k’ = g(k) > k

Steps are done “once for all”, independently of G

A(ϕ,k’): “finite” automaton, running on terms t .

24

Difficulty : The finite automaton A(ϕ,k) is too large to be imple-

mented by a (usual) transition table as soon as k > 2 :

 it may have 2^(2^(…2^k)..)) states, because of quantifier alternations.

 To overcome this difficulty, we use fly-automata whose states and

transitions are described and not tabulated. Only the, say 100, transitions

necessary for an input term of size 100 are computed “on the fly”.

 Sets of states can be infinite and fly-automata can compute values,

for example, the number of p-colorings of a graph.

25

The MSO meta-theorem through fly-automata

 ϕ (MSO formula)

 Fly-automaton constructor

 Yes

G Graph analyzer t A(ϕ)

 No

 A(ϕ): a single infinite fly-automaton. The time taken by A(ϕ) is f(k).n

where k depends on G via the operations occurring in t and bounds the

tree-width or clique-width of G. No uniform linear bound on computation

time.

26

Computations using fly-automata (by Irène Durand)

 Number of 3-colorings of the 3 x 100 rectangular grid (of clique-

width 5) in a few seconds. For 4 x 150 : one minute for 3-colorability.

A few seconds for 2-colorability.

 4-acyclic-colorability of the Petersen graph (clique-width 5)

 in 2 minutes.

 (3-colorable but not acyclically;

 red and green vertices

 induce a cycle).

27

The McGee graph

is defined by a clique-width term

of size 99 and depth 76.

This graph is 3-acyclically colorable.

Checked in 40 minutes.

Even in 2 seconds by enumerating the accepting

runs, and stopping as soon as a successful one is found.

28

 Fly-automaton (FA)

Definition : A = < F, Q, δ, Out > (FA computing a function).

F : finite or countable (effective) set of operations,

Q : finite or countable (effective) set of states (integers, pairs of integers,

etc. : states are encoded by finite words),

Out : Q � D , computable (D is an effective set, coded by finite words).

δ : computable (bottom-up) transition function

Nondeterministic case : δ is finitely multi-valued which ensures that

 determinization works

 A fly-automaton defines a computable function : T(F) � D ,

 hence, a decidable property if D = {True, False}.

29

 Extension : computation of graph evaluations.

P(X) is a property of tuples X of sets of vertices (usually MSO expressible).

∃ X.P(X) : the basic, “Boolean evaluation”.

X.P(X) : number of satisfying tuples X.

Sp X.P(X) : spectrum = the set of tuples of cardinalities of the

components of the tuples X that satisfy P(X).

 MinCard X.P(X) : minimum cardinality of X satisfying P(X).

 Other optimal values can be computed.

30

Computation time of a fly-automaton (FA)

 F = all clique-width operations, Fk : those using k labels.

 On term t ∈ T(Fk) defining G with n vertices, if a fly-automaton

 takes time bounded by :

 (k + n)c � it is a P-FA (a polynomial-time FA),

 f(k). nc � it is an FPT-FA,

 a. ng(k) � it is an XP-FA.

 The associated algorithm is polynomial-time, FPT or XP for clique-

width as parameter. (The important notion is the maximum size of a state.)

 All dynamic programming algorithms based on clique-width terms

can be described by FA.

31

 We obtain FPT algorithms parameterized by clique-width for the

following problems and computations :

 Number of p-colorings,

 Minimum Cardinality of a color class X in a coloring with

 color classes X, X1, … ,Xp (for fixed p)

 Equitable p-coloring (the sizes of two color classes differ

 by at most 1); this problem is W[1] (not FPT)

 for p+tree-width as parameter.

32

 Fly-automata can be constructed :

 - either “directly”, from our understanding of the considered graph

properties,

 - or “automatically” from a logical description,

 - or by combining previously constructed automata.

 Direct constructions

 Example 1 : Checking that a “guessed” p-coloring is good: a state is a

set of pairs (a, j) where a is a label and j a color (among 1, …, p) or

Error.

 Checking the existence of a good p-coloring : a set of such states, in

practice is not of maximal (exponential) size.

33

Example 2 : Connectedness.

The state at node u of term t is the set of types (sets of labels) of the

connected components of the graph G(t/u). For k labels (k = bound

on clique-width), the set of states has size < 2 ^ (2 ^ k).

 Proved lower bound : 2 ^ (2 ^ k/2).

� Impossible to “compile” the automaton (i.e., to list its transitions) .

Example of a state : q = { {a}, {a,b}, {b,c,d}, {b,d,f } }, (a,b,c,d,f : labels).

Some transitions :

 adda,c : q { {a,b,c,d}, {b,d,f } },

 relaba b: q { {b}, {b,c,d}, {b,d,f } }

 Transitions for ⊕ : union of sets of types.

Note : Also state (p,p) if G(t/u) has > 2 connected components, all of type p.

34

Fly-automata can have infinitely many states and produce

outputs : numbers, finite sets of tuples of numbers, etc.

 Example continued : For computing the number of connected

components, we use states such as :

 q = { ({a}, 4), ({a,b}, 2), ({b,c,d},2), ({b,d,f },3) },

 where 4, 2, 2, 3 are the numbers of connected components

 of respective types {a}, {a,b}, {b,c,d}, {b,d,f }.

 This “counting construction” extends in a uniform way to any FA (the

formal setting is based on semi-rings in place of the two Boolean values).

35

Inductive construction for ∃X. ϕ(X) with ϕ(X) MSO formula.

Combinations and transformations of FA’s.

 Product of A and B : states are pairs of a state of A and one of B.

 Determinization of A : states of Det(A) are finite sets of states of A
because the transition is finitely multi-valued. At each position in the
term, Det(A) gives the finitely many states that can in some
computation (the automaton A can be infinite).

 Counting determinization of A, yielding Cdet(A) : a state of CDet(A) is
a finite multi-set of states of A (giving the number of runs that can yield
a state of A, not only the existence).

36

Handling free variables : Terms are equipped with Booleans that

encode assignments of vertex sets V1,…,Vp to the free set variables

X1,…,Xp of MSO formulas (formulas are written without first-order

variables):

 1) we replace in F each a by the nullary symbol

 (a, (w1,…,wp)), wi ∈ {0,1} : we get F(p) (only nullary symbols are modified);

 2) a term s in T(F(p)) encodes a term t in T(F) and an

 assignment of sets V1,…,Vp to the set variables X1,…,Xp :

 if u is an occurrence of (a, (w1,..,wp)), then

 wi = 1 if and only if u ∈ Vi .

 3) s is denoted by t * (V1,…,Vp)

37

Example

 Graph G(t)

 Term t

38

Example (continued)

 V1 = {1,3,4}, V2 = {2,3}

 Term t * (V1,V2)

39

 By an induction on ϕ, we construct, for each ϕ(X), X=(X1,…,Xp),

a fly-automaton A(ϕ(X)) that recognizes :

L(ϕ(X)) : = { t * (V1,…,Vp) ∈ T(F(p)) / (G(t), V1,…,Vp) = ϕ }

 Atomic formulas (X ⊆ Y, edg(X,Y)) : direct constructions

 ¬ P (negation) : as FA are run deterministically (by computing at each

position the finite set of reachable states), it suffices to exchange accepting

and non-accepting states.

 P ∧ Q, P ∨ Q : products of automata.

40

Quantifications: Formulas are written without ∀

 L(∃ Xp+1 . ϕ(X1, ..., Xp+1)) = prp+1(L (ϕ(X1, ..., Xp+1))

 A(∃ Xp+1 . ϕ(X1, ..., Xp+1)) = prp+1(A (ϕ(X1, ..., Xp+1))

where prp+1 is the projection that eliminates the last Boolean

� a non-deterministic FA denoted by prp+1(A (ϕ(X1, ..., Xp+1)),

to be run deterministically.

41

 Atomic formula : edg(X1,X2) for directed edges

 edg(X1,X2) means : X1 = { x } ∧ X2 = { y } ∧ x y

 Vertex labels ∈ a set C of k labels.

 k2+k+3 states : 0, Ok, a(1), a(2), ab, Error, for a,b in C , a ≠ b

 Meaning of states (at node u in t : its subterm t/u defines G(t/u) ⊆ G(t)).

 0 : X1 = ∅ , X2 = ∅

 Ok Accepting state : X1 = {v} , X2 = {w} , edg(v,w) in G(t/u)

 a(1) : X1 = {v} , X2 = ∅ , v has label a in G(t/u)

 a(2) : X1 = ∅ , X2 = {w} , w has label a in G(t/u)

 ab : X1 = {v} , X2 = {w} , v has label a, w has label b (hence v ≠ w)

 and ¬edg(v,w) in G(t/u)

 Error : all other cases

42

 Transition rules

 For the constants based on a :

 (a,00) � 0 ; (a,10) � a(1) ; (a,01) � a(2) ; (a,11) � Error

 For the binary operation ⊕: r

 (p,q,r are states) p q

 If p = 0 then r := q

 If q = 0 then r := p

 If p = a(1), q = b(2) and a ≠ b then r := ab

 If p = b(2), q = a(1) and a ≠ b then r := ab

 Otherwise r : = Error

43

 For unary operations adda,b r

 p

 If p = ab then r := Ok else r : = p

 For unary operations relaba b

 If p = a(i) where i = 1 or 2 then r : = b(i)

 If p = ac where c ≠ a and c ≠ b then r : = bc

 If p = ca where c ≠ a and c ≠ b then r : = cb

 If p = Error , 0, Ok, c(i), cd or dc where c ≠ a then r : = p

44

Examples : p-acyclic colorability

 ∃ X1,…,Xp (Partition(X1,…,Xp) ∧ NoEdge(X1) ∧ ∧ NoEdge(Xp) ∧ ...
 ∧ NoCycle(Xi ∪ Xj) ∧)

Minor inclusion : H simple, loop-free. Vertices(H) = { v1,…,vp }

 ∃X1,…,Xp (Disjoint(X1,…,Xp) ∧ Conn(X1) ∧ ... ∧ Conn(Xp) ∧ ...
 ... ∧ Link(Xi , Xj) ∧ ...)

 Existence of “holes” : odd induced cycles (to check perfectness ; one

checks “anti-holes” on the edge-complement of the given graph).

Combinations of existing FA reflect the structure of MSO sentences

45

Enumeration and efficient recognition

 Recognition with Det(A) reports the answer when all states at

the root have been determined.

 An enumerating computation can list one by one:

 the states reached at the root by the different runs of A,

 the tuples X that satisfy an MSO property P(X).

 Recognition by enumeration of root states stops as soon as

 an accepting state is found. This is appropriate if ∃ X.P(X)

 holds. Not for counting accepting runs or # X.P(X)

46

Technical remark : If a graph is denoted by a clique-width term t, each

of its vertices is represented in t at a single position (an occurrence of a

nullary symbol).

 If the operation // is also used (G // H is obtained from disjoint G and H

by fusing some vertices of G to some vertices of H, in a precise way fixed by

labels), then a vertex of G//H is represented by several positions of the

term. The automaton that checks a property ϕ(X1, ..., Xp) of G denoted

by a term t must also check that the Booleans that specify (X1, ..., Xp)

agree on all positions of t that specify a same vertex of G.

 We have no such difficulty if we use disjoint union instead of //. Hence,

for representing tree-decompositions, clique-width terms are more

convenient if one uses automata constructed from logical formulas.

47

 Application to MSO2 properties of graphs of

 bounded tree-width via incidence graphs.

 1) Recall : From of a tree-decomposition of G of width k, we

construct a term t for Inc(G) of “small” clique-width k+3 (or 2k+4).

 2) Recall : We translate an MSO2 formula ϕ for G into an MSO

formula θ for Inc(G).

 3) The corresponding automaton A(θ) takes term t as input. But an

atomic formula edg(X,Y) of ϕ is translated into ∃U. inc(X,U) ∧ inc(U,Y)

in θ which adds one level of quantification.

Fact : The automaton A(θ) remains manageable.

48

 For certain graph properties P, for example “connectedness”, “contains a

directed cycle” or “outdegree < p”, we have :

 P(G) ⇔ P(Inc(G)).

 The automaton for graphs G defined by clique-width terms can be used

“directly” for the clique-width terms that define the incidence graphs Inc(G).

49

 Summary : Checking properties of G of tree-width < k

MSO property MSO2 property

cwd term for G

of width O(k) or O(kq)

in “good cases” and

exponential in bad ones

cwd term for Inc(G)

of width O(k);

more complicated

automaton in some cases,

because of edg(X,Y)

50

General conclusion

1) By uniform constructions, we get dynamic programming algorithms

based on fly-automata, that can be quickly constructed from logical

descriptions � flexibility.

 A “small” modification of the input formula is reflected easily in the

automaton.

2) It is hard to obtain tight upper-bounds to time computations.

3) The algorithms obtained from FA are not better than the specific ones

that have been developed. There obtained in uniform ways, rather quickly,

as combinations of existing “basic” automata.

51

4) Even for graphs given by tree-decompositions, clique-width terms are

appropriate because of two facts:

(a) fly-automata are simpler to construct and

(b) it is practically possible to translate tree-decompositions

of “certain” sparse graphs into clique-width terms.

5) Fly-automata are implemented. Tests have been made mainly for

colorability and Hamiltonicity problems.

6) Our constructions and their TRAG implementation concern directed

graphs as well as undirected ones.

52

References for monadic second-order model checking :

B.C, Irène Durand : Automata for the verification of monadic second-order graph

properties, J. Applied Logic 10 (2012) 368-409

and also : Computation by fly-automata beyond monadic second-order logic,

Theoretical Computer Science, 619 (2016) 32-67,

B.C.: From tree-decompositions to clique-width terms, Discrete Applied

Mathematics, 248 (2018) 125-144

and also : Fly-automata for checking MSO2 graph properties, Discrete Applied

Mathematics, 245 (2018) 236-252.

B.C. , Joost Engelfriet : Graph structure theory and MSO logic, Cambridge

University Press, 2012.

