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History : Confluence of 4 independent research directions,  now  intimately 

related : 

1. Polynomial  algorithms for NP-complete and other hard problems on particular 

classes of graphs, and especially hierarchically structured ones : series-parallel 

graphs, cographs, partial k-trees, graphs or hypergraphs of tree-width < k, graphs of 

clique-width < k. 

2. Excluded minors and related notions of forbidden configurations (matroid 

minors, « vertex-minors »). 

3. Decidability of Monadic Second-Order logic on classes of  finite  graphs, and on 

infinite graphs. 

4. Extension to graphs and hypergraphs of the main concepts of Formal 

Language Theory : grammars, recognizability, transductions, decidability questions. 
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Two  key  words : 
 

Graph  structure  (main notions) :   

 hierarchical decompositions (tree-decomposition, modular decomposition,…) 

 embedding on surfaces 

 exclusion of  minor,  vertex-minor  or  induced subgraph 

 existence  of  homomorphism  into a fixed graph  (generalized coloring) 

Logic : First-order, second-order, monadic second-order (MS)  

 for expressing graph properties (i.e., graph classes) and graph transformations, 

 and  structures  of  above  types 

 

The  good  combination  :  MS  logic  and  hierarchical  decompositions  related to 

tree-width  and  clique-width/rank-width. 
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 An  overview  chart  

 

Graph                   "Context-free" 

operations             sets  of  graphs 

 

Fixed  parameter tractable 

algorithms            Language  theory 

              for  graphs  

              Recognizable 

                                 sets of graphs        

Monadic  2nd-order           Monadic  2nd -order  

logic              transductions 
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  Key  concepts of Language  Theory  and  their  extensions 
 

Languages Graphs 

Algebraic structure : 
monoid  (X*,*,ε)  

Algebras based on graph operations : ⊕, ⊗, // 
quantifier-free definable operations 

Algebras :  HR,  VR 
Context-free languages : 

Equational subsets of (X*,*,ε) 
Equational sets of the 

algebras   HR,  VR 
Regular languages : 
Finite  automata  ≡ 

Finite congruences   ≡ 
Regular expressions   ≡ 

Recognizable sets  
of the algebras HR, VR 

 
defined by finite congruences 

≡   Monadic Second-order 
definable sets of words or terms

∪ 
Monadic Second-order definable sets of graphs 

Rational and other types of 
transductions 

Monadic Second-order transductions 
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Summary 
Introduction  (finished)  

Extension to graphs of Language Theoretical  notions 

1.  Context-free  sets defined  by  equation  systems. 

2.  The graph algebras  VR  and  HR.  

3. Recognizability as  an algebraic notion. 

4. Monadic second-order logic defines  inductive  properties and functions  

5. Algorithmic  applications  

6. Monadic second-order  transductions. 

Links  with  logic  and  graph  theory  

7.  Graph classes on which  MS  logic is decidable 

Open questions 
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1.  Equational  (context-free) sets 

 
Equation systems = Context-Free (Graph) Grammars   

in an algebraic  setting 
 
 

In the case of  words,   the  set of context-free  rules  

S  → a S T ;    S  → b  ;  T  → c T T T ;   T  → a 
 

is equivalent to  the system  of  two set  equations: 

    S  =  a S T     ∪    { b }  

    T  =  c T T T      ∪        { a } 

 

where S  is the language generated  by   S      (idem for T and T). 
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For  graphs  (or  other  objects)  we consider  systems of equations like: 

  S  =  f( k( S ), T  )      ∪  { b }  

  T  =  f( T , f( g(T ), m( T )))  ∪   { a } 

where : 

 f      is a binary operation,   

g, k, m    are unary operations on  graphs,   

a, b     denote  basic graphs  (up  to  isomorphism).  

 

An  equational set  is  a component  of the least  (unique)  solution  of such  

an  equation system. This  is  well-defined in any  algebra. 

 

Many properties  are  valid  at  the  general  algebraic  level. 
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2.  The  graph algebras   HR   and    VR 
 

HR operations : Origin :  Hyperedge Replacement hypergraph grammars ; associated complexity 
measure : tree-width 
 

Graphs have  distinguished vertices called sources, (or terminals or boundary vertices) 

pointed  to  by source  labels from a finite set :    {a, b, c,  ..., h}. 

Binary operation(s)  :  Parallel  composition 

G // H     is  the  disjoint  union of  G  and  H  and sources  with  same  label  are   fused.  

(If G  and  H are  not disjoint, one  first  makes  a  copy of  H disjoint from  G). 
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Unary operations   :    Forget   a  source  label  
       Forgeta(G)   is  G  without  a-source: the  source  is  no longer distinguished ;  

(it is  made  "internal"). 

       Source renaming : 
Rena     b(G)  exchanges  source  labels  a  and b     

(replaces  a  by  b   if  b is not the label of a  source) 
 

Nullary operations denote basic graphs : the connected graphs with at most one edge.  
 

For dealing with hypergraphs one takes more nullary symbols for denoting 

hyperedges. 
 

Each graph G has type τ(G) = the set of labels  of its sources.  

The type function has a homomorphic behaviour :  

     τ(G//H) = τ(G) U τ(G) ; τ(Forgeta(G)) = τ(G) - {a} ; τ(Rena     b(G)) = τ(G)[a/b, b/a]. 
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Tree-decompositions 
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Proposition:  A  graph  has  tree-width  ≤  k  if and only if  it  can  be  constructed   from  

basic  graphs  with   ≤  k+1  labels  by  using  the  operations    // , Rena     b  and  Forgeta.  
 

Example : Trees are of tree-width 1, constructed with two source labels, r  (root) and n  (new 

root):  Fusion of two trees at their roots  :  

 

Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root" as current root :  

e  =  r  •_________•  n 

Renn      r  (Forgetr (G // e )) 
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From  an algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc)) (Constant  ab  denotes  an edge from  a   to  b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                         The  tree-decomposition  associated  with  this term. 
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VR    operations  
Origin : Vertex Replacement graph grammars  

Associated complexity measure: clique-width, has no  combinatorial  characterization  

but is defined in terms of  few very simple  graph operations  (giving easy  inductive proofs). 

Equivalent notion: rank-width (Oum and Seymour) with better structural and 

algorithmic properties (characterization by excluded vertex-minors, exact cubic decomposition 

algorithm). 
 

Graphs are simple, directed or not.   

k   labels  :  a , b , c,  ..., h.   Each vertex has one and only  one label ;  

a label  p  may label several vertices, called the   p-ports. 

 

One  binary operation:   disjoint  union    :   ⊕ 
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Unary  operations:  Edge addition denoted  by  Add-edga,b 
 

Add-edga,b(G)   is  G augmented with (un)directed edges  from every   a-port   to 

every  b-port. 

 

 

      H = Add-edga,b(G) ; only 5  new edges added  

The  number  of added edges  depends  on  the  argument graph. 
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Vertex  relabellings :  
Relaba       b(G)  is  G with every vertex  labelled by a   relabelled into b 

 

Basic graphs   are those with a single vertex. 

 

Definition: A  graph  G has  clique-width ≤ k ⇔ it can be constructed from basic 

graphs  with the  operations ⊕, Add-edga,b  and  Relaba      b  with  k labels. 

Its  clique-width  cwd(G)  is the   smallest  such  k. 

 

 The  type  (for the VR algebra) of  graph G  is  τ(G)  =  the set  of port labels  

having  an occurrence. Type  has a  homomorphic behaviour : 

τ(G ⊕ H)  = τ(G)Uτ(H) ; τ(Add-edga,b(G)) = τ(G) ; τ(Relaba       b(G) ) =τ(G)[b/a]. 
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 Example : Cliques have clique-width 2.  

 
 

Kn  is   defined  by tn where  tn+1  =   Relabb      a( Add-edga,b(tn ⊕ b)) 
 

Another  example :  Cographs  are generated  by  ⊕  and  ⊗  defined by : 

G ⊗ H  =  Relabb      a( Add-edga,b (G ⊕ Relaba      b(H))) 

            = G ⊕ H  with  “all edges”  between  G  and  H. 
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 Proposition : (1) Bounded   tree-width  implies  bounded  clique-width, but  not  

conversely. 
 

(2) Unlike tree-width, clique-width is  sensible to edge directions: Cliques have 

clique-width  2,  tournaments have unbounded clique-width. 
 

 

Classes of unbounded tree-width and bounded clique-width: 

 

 Cliques (2), Complete bipartite graphs (2), Distance hereditary graphs (3),  

 Graphs without P5 and 1⊗P4 (5), or 1⊕P4 and 1⊗P4 (16) as induced 
 subgraphs. (many similar results for exclusion of induced subgraphs  
              with 4 and 5 vertices).  
 
 

Classes of unbounded clique-width : 

 Planar graphs of degree 3, Tournaments, Interval graphs,  

 Graphs   without   induced   P5.                     (Pn = path with n vertices). 
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 Two  algebras  of  graphs    HR  and  VR    
 Hence, two  notions  of  context-free  sets, defined as the equational  sets  of 

the algebras  HR  and VR,  and  two  notions  of recognizable  sets  (based  on 

congruences). 
 

 Why not a third algebra ? :   
 

  We  have  robustness results  : 
  Independent  logical  characterizations, stability  under  certain   
  logically  defined  transductions,  generation  from trees. 
 
 Which properties  follow  from the  algebraic  setting  ? 

 
  Answers : Closure  under  union, // ,  ⊕  and  the unary operations. 
   Emptiness and finiteness are decidable (finite  sets  are  computable) 
   Parikh's  Theorem 
   Derivation  trees, denotation of generated graphs by terms, 
   Upper bounds  to  tree-width  and  clique-width. 
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 Which  properties  do  not  hold  as  we  could  wish ? 
 
  Answers : The set of all (finite) graphs is neither  HR-  nor VR-equational. 
 
        Not even is the set of all square grids (planar graphs of degree 4) 
 
        Parsing  is  sometimes  NP-complete. 
 
 
 Comparison  of the two classes : 
 
 Equat(HR)  ⊆  Equat(VR)   
    =    sets  in  Equat(VR) ,  all graphs  of  which  are  without   
     some fixed  Kn,n  as  subgraph. 
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3.   Recognizable  sets  : an algebraic   definition 
 

F :   a finite set of operations with (fixed) arity,  called a signature 

M = < M, (fM)f ∈ F >  :   an  F-algebra. 

 

Definition :  L  ⊆ M   is   (F-)recognizable  if  it is a union of equivalence classes 

for a finite congruence   ≈  on    M    (finite   means  that   M / ≈   is  finite). 

        Equivalently, L = h-1(D) for a homomorphism  h : M → A,  where A is a 

finite  F-algebra, D ⊆  A.  

  On terms,  h  is the run of a  finite  deterministic automaton. 

 

REC(M) = the recognizable subsets of M (with respect to  the algebra M) 
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For   the  algebras  HR  and  VR  that  have  infinite  signatures : 
 

we  require  that  the  congruence  ≈  is type preserving : 

G ≈ H  implies  τ(G) = τ(H)  

it  has  finitely  many classes  of each  type, 

L  is  the union of finitely many classes. 

 

We could also use many-sorted algebras, with  τ(G)  as sort  of G,  

because  the type function has  a  homomorphic  behaviour.  
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Two notions  of recognizable  sets  on the two  algebras  HR  and  VR.  
 

 

 Which properties of  recognizable sets follow  from the  algebraic setting ? 
 
  Answers : Closure  under  union, intersection and difference, 

inverse homomorphisms, inverse  unary derived operations. 
 
The  intersection  of an equational  set  and a recognizable one is  

                          equational  (with effective constructions) 
    
 

Which properties of  recognizable sets do not follow algebraically  ? 
 

Answers : Closure  under the operations  of the algebras : //, ⊕,  
the unary operations.  
 
(False  for  add-edg but true for some harmless  restriction of the use of  
this operation). 

 



 24

 
 Which  properties  do  not  hold  as  we  could  wish  or  expect  ? 
 

Answers :   Emptiness is not decidable  (because  of infinite signatures). 
 

     REC  and  EQUAT  are  incomparable  
 
     Every  set  of square grids is HR- and VR-recognizable.  
 

 Hence  there are  uncountably many  recognizable  sets   
   and  no  characterization  by  finite automata   
   or  logical  formulas. 
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Inductive  proofs  and  computations  
 

Example : Series-parallel graphs, defined  as graphs with sources 1 and 2,   

generated from  e   = 1             2    and the operations //  (parallel-composition)  and  

series-composition   defined  from other operations by : 

G • H =  Forget3(Ren2        3 (G) // Ren1      3 (H)) 

Example  :  

 

  1 •        G              •        H                            •  2 

        3 

 

   1   •                   • 2 
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Inductive  proofs :  
 

1)  G, H connected implies :  G//H   and   G • H   are  connected, (induction) 

e   is connected (basis) : 

⇒      All  series-parallel graphs are connected. 

 

 

2)     It is not true that : 

G  and  H  planar implies :  G//H is  planar  (K5 = H//e). 

 

A stronger property for induction :  

G has a planar embedding with the sources in the same “face”  

⇒      All  series-parallel graphs are planar.  
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Inductive  computation  :  Test  for 2-colorability  

Not all  series-parallel  graphs are  2-colorable  (see  K3)  
 

G, H  2-colorable does not imply that G//H is 2-colorable  (because  K3=P3//e). 
 

One can check 2-colorability  with 2 auxiliary  properties : 
 

    Same(G) =  G is 2-colorable with sources of the same color, 
Diff(G) =  G is 2-colorable with sources  of different colors 

by  using rules :  
    Diff(e) =  True  ;  Same(e) = False 
 

Same(G//H)  ⇔ Same(G) ∧ Same(H) 
Diff(G//H) ⇔  Diff(G) ∧  Diff(H) 
 

Same(G•H)  ⇔  (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H)) 
Diff(G•H)  ⇔  (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧  Same(H)) 

 

 

We can compute for every SP-term t, by induction on the structure of  t the pair of 
Boolean values (Same(Val(t)) ,  Diff(Val(t)) ).   

 

 We  get  the answer  for  G = Val(t)  (the graph  that  is  the value  of t )  regarding 2-
colorability. 
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Recognizability  and  inductive  properties  
 

 

Definition : A  set  P  of  properties  on  an F-algebra M is  F-inductive   if  
for  every  p ∈ P  and f ∈ F, there exists a (known)   Boolean formula  B  
such that  : 
 

p(fM(a,b) )  =  B[…,q(a),…,q'(b),….] for  all  a  and  b in M 
   

   (here  q, q' ∈ P ,  q(a),…, q(b) ∈ {True, False} ) . 
 

 

Proposition :  A  subset  L of  M  is recognizable  if and only if  it is the set 

of elements  that satisfy a property belonging to a finite inductive set  P  of 

properties .  
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Inductive  properties  and  automata  on  terms 

The simultaneous computation of m inductive properties can be implemented 

by a finite deterministic  bottom-up automaton  with 2m  states running on terms  t.  

 

This computation  takes time O( ⎜t ⎜): the key  to  fixed-parameter  tractable 

algorithms 
 

Membership  of  an element  m  of  M  in a recognizable set  L  can be  tested  

by  such  an  automaton  on  any   term   t   in  T(F)  defining  m   
       (in some  term  if  L  is  equational, i.e. context-free ). 
 

 

An inductive set of properties can be effectively constructed (at least 

theoretically)  from every monadic-second order formula. 
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4.   Monadic Second-Order (MS) Logic  
A  logical  language  which specifies  inductive  properties  and functions  

 
=  First-order logic on power-set structures  
 
=  First-order logic extended with (quantified) variables  

denoting subsets  of the domains. 
 
MS properties :   transitive closure,  properties of paths, connectivity,  

 
planarity  (via Kuratowski, uses connectivity),   k-colorability. 
 

Examples  of formulas for   G =  ( VG , edgG(.,.) ), undirected 
 

Non connectivity : 
∃X ( ∃x ∈ X  ∧  ∃y ∉ X  ∧  ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∈ X)  ) 

 
3-colorability : 
∃X,Y (”X,Y  are  disjoint”  ∧  ∀u,v { edg(u,v) ⇒  
                    [(u ∈ X  ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧(u ∈V-(X∪Y)  ⇒ v ∉V-(X∪Y)]} ) 
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 Definition :  A set  L  of words,  or trees,  or graphs  or  relational 
structures   is  Monadic Second-Order  (MS)  definable  if it is the set of 
finite models of an MS  sentence  ϕ    (a  formula  without  free  variables).  
 
 

L  =  { S   /  S  finite,   S  ⎜=  ϕ  }  for a  fixed  MS formula  ϕ 
 
 
 
 
 

Edge set  quantifications  increase  the  expressive power   
 

Incidence  graph  of  G  undirected,  Inc(G) = ( VG ∪ EG, incG(.,.).) 
 
incG(v,e)   ⇔   v  is  a  vertex  of  edge  e. 
 
Monadic second-order  (MS2)  formulas  written  with  inc   can use 
quantifications   on sets of edges.  
 

The existence  of  a perfect matching  or  a  Hamiltonian circuit  is expressible  by 
an  MS2  formula, but  not   by   an   MS   formula. 
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Recognizability theorem :  (1) A  language (set  of words or finite terms) 
is  recognizable (by congruence  or  automaton)  ⇔   it  is  MS  definable  

 
(2) A set of finite graphs  is  VR-recognizable ⇐  it  is  MS-definable  
 
(3) A set of finite  graphs  is  HR-recognizable ⇐ it  is MS2-definable  
 
Proofs:  

(1) Doner, Thatcher, Wright, (1968 -1970). 
 

(2, 3)  Two proofs. One  is  based on the Feferman-Vaught paradigm, saying that 

the validity  of  an  MS  formula  in  the  disjoint  union  of  two  structures  can  be 

deduced  from  those  of  finitely  many  formulas  of  no  larger   quantification 

height in each of the two structures.  This   is   inductivity / recognizability. 

  The  other  constructs  an  automaton  on  terms  by  induction  on the 

structure  of the given  formula.  
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Some  consequences  of  the  Recognizability  Theorem : 
  

 The  MS2-theory of  the  set  of  graphs of  tree-width at most  k  is  

decidable. 

     (Is some  given formula true in all graphs ?) 

 

 The  MS-theory of  the  set  of  graphs of  clique-width  at  most  k  is 

decidable. 

 

 One  can  filter out  from  HR- or VR-equational  sets  the  graphs  

which do not satisfy given  MS2- or  MS-properties  and  obtain   

HR- or VR-equational  sets.   
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5. Algorithmic  applications 
 

Finite automata  constructed from  MS  formulas   process  terms,  not 

graphs.  We need   parsing  algorithms  building  terms  defining the  given  

graphs :  

1) one  can  construct  tree-decompositions in  linear time, whence 

terms  representing graphs  of  tree-width   < given  k  (Bodlaender,  1996). 

  2) one  can  construct in cubic  time  (non-optimal)  terms  for graphs  

of  clique-width  <  given  k        (Oum and Hlineny, 2007). 
 

 

 These  "theoretical  algorithms"  are  not  implementable.  Usable  algorithms  exist  for 

tree-width (Bodlaender  reports testing graphs with 50  vertices  of  tree-width 35). 
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Fixed-parameter  tractability  results  
Theorem (B.C.) :  

A)  For  graphs  of  clique-width  ≤  k , for each k : 

each monadic  second-order  property, (ex. 3-colorability), 

each monadic  second-order optimization function, (ex. distance), 

each monadic  second-order  counting  function, (ex. #  of paths) 

is  evaluable : 

in  linear  time  on graphs  given  by a term over VR, 

in time  O(n3)  otherwise. 
 

B) All  this  is  possible  in linear  time  on graphs  of tree-width ≤  k, for  

each  fixed  k. 
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Labelling  schemes  
For a property  P(x,y,Z,U)  of vertices  x,y  and sets of vertices  Z,U, for a 

class of graphs of C , one wants  2  algorithms, one that  attaches to each vertex 

u of a graph G in C a label L(u) and another one, independent of G, that decodes:  

 From  L(x), L(y), L(Z), L(U)  it  tells  whether  P(x,y,Z,U)  holds  in  G. 

 Labels  should  have  size  O(log(n))  or  O(log2(n)), n=number of vertices. 

Results  

 P : MS property, C: graphs of bounded  tree-width or  clique-width  (O(log(n))) 

 P : x and y  are  separated  by  Z ,  

C : graphs  of bounded   tree-width or  clique-width ( O(log(n))) 

C : planar  graphs  (unbounded  clique-width, O(log(n))) 

 Distance of   x  and  y  in  G - Z ,  

    C : graphs  of bounded  tree-width or  clique-width  (O(log2(n))) 

Applications : Networks  with  failure.  
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6.  Monadic  second-order  transductions 

 

Transformations  of  graphs  or, more generally  of  relational  structures specified  

by  MS  (or  MS2)  formulas. 

 Two  types :  MS-transductions, for  graphs = (vertices, adjacency relation) 

       MS2-transductions,   for  graphs represented by  incidence  

       graphs = (vertices and edges, incidence relation) 

 Results :  

 MS-transductions  preserve  bounded clique-width  and  VR-equational sets 

 MS2-transductions  preserve  bounded tree-width  and  HR-equational sets 

 Preserve  the  decidability  of  MS-  (or MS2-) theories. 
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Definition : 
STR(Σ):  finite  Σ-relational  structures  (or directed ranked Σ-hypergraphs). 
 

MS  transductions are  multivalued mappings  τ  : STR(Σ)  STR(Γ) 
 

               S   ⎜              T  =  τ (S)         
 

Basic case : T  is  defined  inside  S  by  MS  formulas,  in terms  of 
parameters: subsets  X1, …,Xp   of  the  domain  of  S 
 

Examples :  (G, {x})  ⎜            the connected  component containing x. 
 
 

(G,X,Y)  ⎜            the minor of G  resulting from  contraction of the  
edges in X and  deletion of edges and vertices  in Y. 

 
Remark  :   For  each tuple of parameters X1, …,Xp   satisfying  an MS  property,  
T is uniquely defined.   τ  is multivalued  by  the  different choices of parameters. 
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General case : T  is  defined  in this  way  but  inside  
S ⊕ S ⊕ ... ⊕ S :   disjoint  copies of  S  with  "marked"   

  equalities of copied  elements  
 
      1,2      2,3 
   *   *   * 
 
   *   *   * 
 
   *   *   * 
 
 
   *   *   * 
 
     S ⊕ S ⊕ S 
  
Proposition  :  The  composition  of  two   MS  transductions  is  an  MS  

transduction. 
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Example  of  an  MS  transduction   (without parameters) : The  square  mapping  
δ  on  words:  u  ⎜→   uu 
 
For    u  =    aac, we  have     S  •  →  • → •    
                  a      a      c      
     
  S ⊕ S    •  →  • → •              •  →  • → •      (marking edges omitted) 

     a       a     c             a        a     c  
     p1     p1    p1           p2      p2    p2 

 
  δ(S)   •  →  • → •  →  • → • →  •  

     a        a      c        a      a        c  
 
 In δ(S) we  redefine Suc (i.e., →  ) as  follows : 
 
Suc(x,y) :  ⇔   p1 (x) ∧ p1 (y) ∧ Suc(x,y)   v p2 (x) ∧ p2 (y) ∧ Suc(x,y) 
    v p1 (x) ∧ p2 (y) ∧ "x has no  successor"  ∧   "y has no  predecessor" 

 
 We also  remove  the  "marker" predicates p1, p2. 
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The fundamental property of MS  transductions :  

 
     S   ⎜             τ (S) 
 

     τ #(ψ)             ⎜  ψ 
 

Every  MS  formula  ψ  has  an effectively  computable   
backwards  translation  τ #(ψ), an MS formula, such that : 

 

S   ⎜=  τ #(ψ)    if   and  only  if    τ (S)   ⎜=  ψ 
 

 The verification of ψ  in  the object structure τ(S)  reduces  to  the  
verification  of  τ #(ψ)   in  the  given structure S   (because  S  contain all 
information to describe  τ(S) ;  the MS properties of τ(S) are expressible by MS 
formulas in S  
 

Consequence : If L ⊆ STR(Σ)  has a decidable  MS theory  (or satisfiability 
problem),  so has  its image  under  an MS  transduction.  
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Comparison  between   MS - transductions  and  MS2 - transductions : 
they are  incomparable  
 
 For  expressing  graph  properties,  MS logic  over incidence graphs 
(MS2  logic  in short)   is more  powerful  than “ordinary”  MS  logic 
 
 For  building graphs  with  MS2 - transductions, we have more  
possibilities  on the  input graph, but we want more : we  want  to  specify 
each edge from some vertex or  edge of the input graph. 
 
 Transitive  closure  is  an  MS-transduction    that   is   not  MS2  
 
 Edge  subdivision   is  an  MS2 – transduction   that  is  not  MS. 
 
 
Proofs  of  negative facts  are  based  on the  observation   that   
  if  S  is  transformed  into  T  by  an  MS-transduction, then  : 
 
        ⎜domain(T)⎜  =  O( ⎜domain(S)⎜)  
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Robustness  results : Preservation  and  generation 
 

Words : Rational  transductions    (= inverse  rational  transductions) 
 

 
REC   

 

 
Dyck lang.     Context-free     

              (trees)  
Inverse  MS  transductions 

 
Direct  MS  transductions  

 
 

MS-def. ⊂ VR-recog. 
                               (1) 

 
Trees         VR-equational 

               ∪    (2)     
                 Cwd( < k) 

 
  VR-equational    ⇒  bounded   clique-width. 
 

   
  (1) : A. Blumensath -B.C.                    (2) : J. Engelfriet. 
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Robustness  results :  Preservation   and   generation   (2)  
 

Inverse  MS  transductions 
 

Direct   MS   transductions  
 

 
MS-def. ⊂ VR-recog. 
                               (1) 

 
Trees         VR-equational 

               ∪    (2)     
                 Cwd( < k) 

Inverse  MS2  transductions 
 

Direct   MS2   transductions  
 

 
MS2-def. ⊂ HR-recog. 
                               (1) 

 

 
Trees         HR-equational 

               ∪    (3)     
                 Twd( < k)    

    VR-equational    ⇒  bounded   clique-width. 
    HR-equational    ⇒  bounded   tree-width. 
 

   (1) : A. Blumensath -B.C.        (2) : J. Engelfriet.         (3) : B.C.-J. Engelfriet 
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Recognizability  is  preserved  under  inverse  monadic second-order  
transductions.   (A.Blumensath, B.C., 2004)  
 
 Recognizability  of  sets  of  relational structures is  relative  to  disjoint  union  
and transformations  expressed  by  formulas  without  quantifiers.  
 
 
 Edge-complement, relabellings, edge-creation operations (cf. the definition of 
clique-width) are  typical  examples of  quantifier-free  definable  operations  on  
graphs. 
 
 
Proof sketch :  Every MS transduction is the composition of  MS   transductions  
of  3   types :  - Copyk 

        - Parameterless and noncopying   transduction 
       - Guessing   unary  relations 
 

 

 We can prove  that  recognizability  is preserved  by  the  inverses  of  
transductions  of  each  type. 



 46

Copyk  :  
 

S     ⎜    S ⊕ S ⊕  …   S   (k times) 
 

 
Disjoint union  with   binary   relations  Yi,j   for  1 ≤ i < j ≤ k    defined  as   

 

{(x,y)  /  x is the i-copy, y is the j-copy of some u in DS} 
 
 

 

Facts :   a) Copyk(S ⊕ T) = Copyk(S) ⊕ Copyk(T) 
 

 

  b) For  f  quantifier-free, there  is  a  quantifier-free  operation  g  such  that : 
 
     Copyk(f(S)) = g(Copyk(S)) 
 
 
 

  Copyk  is  “almost” a  homomorphism, REC  is  preserved  under   inverse  
homomorphisms. 
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7.  Logic and combinatorics: Graph classes with decidable monadic 

second-order   theories  (or  satisfiability  problems) 
 

Theorem (Seese 1991): If a set of graphs has a decidable MS2 satisfiability 

problem, it has  bounded tree-width. 
 

Theorem (B.C., Oum 2004): If a set of graphs has a decidable C2MS 

satisfiability problem, it has  bounded clique-width. 
 

Answering a question by Seese : If a set of graphs has a decidable MS 

satisfiability problem, is it the  image of a set of trees under an  MS  transduction, 

equivalently, has it bounded   clique-width ? 
 

MS2 = MS logic  with  edge  quantifications ; C2MS = MS logic with even cardinality set 
predicates.   A set C  has  a  decidable L-satisfiability  problem  if one can decide 
whether any  give  formula  in L  is  satisfied  by some graph in C 
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Proof  of  Seese’s  Theorem : 
 

A) If  a  set  of  graphs  C  has unbounded  tree-width, the set of its  minors  includes  

all k x k-grids  (Robertson, Seymour) 
 

B) If  a  set  of  graphs   contains  all  kxk-grids,  its MS2 satisfiability  problem is 

undecidable  
 

C) If C has  decidable MS2 satisfiability  problem, so has Minors(C), 

                because   C            Minors(C)  is an  MS2 transduction. 
  

Hence, if   C  has unbounded  tree-width and a decidable MS2 satisfiability  

problem, we have a contradiction  for the decidability of the  MS2 satisfiability  problem 

of Minors(C). 
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       Proof  of  Courcelle-Oum’s  Theorem : 
 

D) Equivalence  between  the cases  of all  (directed and undirected) graphs  and 

bipartite  undirected graphs. 
 

A’)  If a  set  of  bipartite graphs  C  has unbounded  clique-width, the set of its  vertex-

minors  contains  all  “Sk“  graphs  
 

C’)  If C has  decidable C2MS satisfiability  problem, so has Vertex-Minors(C), 

because  C                  Vertex-Minors(C)  is a   C2MS transduction. 
 

E)  An   MS transduction  transforms  Sk  into the kxk-grid.  
 

Hence  A' + B + C' + E   gives the result for bipartite undirected graphs.  

The  general result  follows with the encoding  D). 
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Definitions  and  facts   
 

Local  complementation  of  G  at vertex  v  

G * v   =  G  with edge complementation of  G[nG(v)], 

         the subgraph induced  by the neighbours of v 
 

Local equivalence  ( ≈ loc )  = transitive closure of local  complementation  

(at  all  vertices) 
 

Vertex-minor  relation : 

H  <VM  G  : ⇔  H  is an induced  subgraph  of  some G’ ≈ loc G. 



 51

 

Proposition (Courcelle and Oum 2004) :  The  mapping  that  associates   

with  G  its locally  equivalent  graphs  is  a   C2MS  transduction.  

 

Why is  the  even cardinality  set predicate  necessary ? 
 

    u                               Consider G * X for X ⊆ Y : 

                    

                                    u  is  linked  to  v  in G * X 

    v                                     ⇔    Card(X)  is even 

       G      Y    

(G * X =  composition of local complementations at all vertices from X) 
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Definition of   Sk , bipartite : A = {1,…,(k+1)(k-1)} , B =  {1,…,k(k-1)}  
From Sk  to  Gridk x k   by an MS transduction  

                            S3                    (folded)  Grid3x4 

The orderings of A and B : x, y  are  consecutive   ⇔   Card(nG(x) Δ nG(y)) = 2 

One recognizes the edges from i  ∈ B  to  i   ∈ A, and from i ∈ B to i+k-1 ∈ A (thick 
edges on the left drawing) 

One creates edges (e.g. from  1 ∈ A to 2 ∈ A, from  2 ∈ A to 3 ∈ A etc…and similarly 
for B, and from  1 ∈ B to 4 ∈ A, etc…)  one deletes others (from 4 ∈ B to 6 ∈ A   etc…), 
and vertices like 7,8 in A, to get  a grid containing Gridkxk           
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9.  A  few   open  questions 
 

 

Question 1 : What  should be the clique-width or rank-width of 

hypergraphs (or relational structures) ?  
 

 

Question 2 : Which graph  operations, quantifier-free definable or not, yield 

extensions  of the  signatures VR, HR  that  are  equivalent  to  them,  i.e., 

that  define the same recognizable  and  equational  sets ?  

   (some  answers already  given by   A. Blumensath, B.C., P. Weil) 

  

 Or  that  yield  larger  classes  of  equational  sets  for which  MS  logic 

is  decidable ? 
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Question 3 : Is  it  true  that  the decidability  of the MS (and not of the 

C2MS)  satisfiability  problem for a set of graphs implies bounded clique-

width, as  conjectured  by  D. Seese ?    

 
 

More  important (personal opinion) : 

 

Question 4  :   What  about  sets  of hypergraphs or  relational structures ?  
 

 

 

  Thanks   for  suggesting  other  questions ! 


