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1 Introduction

Many graph properties and graph transformations can be formalized in Monadic
Second-Order logic. This language is the extension of First-Order logic allowing
variables denoting sets of elements. In the case of graphs, these elements can be
vertices, and in some cases edges. Monadic second-order graph properties can be
checked in linear time on the class of graphs of tree-width at most k for any fixed
k. These properties are Fixed Parameter Linear, for tree-width as a parameter.

Monadic second-order logic as a language for specifying graph properties is
interesting from several different points of view: we already mentioned complex-
ity, but another point of view is that of Graph Grammars. For logicians, monadic
second-order logic is attractive because relatively many classes of structures have a
decidable theory for this language.

In this communication we will discuss the point of view of Graph Theory. Many
graph properties concerning colorings, forbidden configurations, connectivity are
expressible in Monadic Second-Order logic, but also many graph theoretical con-
structions like the canonical decompositions of a graph in 2- and 3-connected com-
ponents, its modular and its split decompositions.

We will review a number of cases where a set of graphs or of combinatorial
objects is characterized by a common hierarchical decomposition. In the cases we
will consider, the decomposition can be formalized in monadic second-order logic
and from it, all graphs or objects of the corresponding set can be defined by monadic
second-order formulas with the help of auxiliary data like a k-tuple of sets of vertices
or a linear order on the vertices.

This general description applies to the following sets of graphs or combinatorial
objects :

1. the connected graphs having the same cycle matroid as a given graph,

2. the different planar embeddings of a planar connected graph,

3. the transitive orientations of a comparability graph,

4. the interval models of an interval graph,

5. the pairs of linear orders representing a partial order of dimension 2,

6. the chord representations of a circle graph,

7. the systems of intersecting closed curves in the plane having a same Gauss
multiword.
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In the first three sections, we will present the main concepts underlying these
descriptions. In the fourth one we will apply them to Circle Graphs.

For fixed parameter tractability the references are the books [21] and [23]. For
the use of monadic second-order logic in the theory of graph grammars the refer-
ence is the book chapter [4]. For the links between graph decompositions and the
decidability of monadic second-order logic the references are the articles [5, 9, 17].
The results for the seven above cases are explicit or implicit in the articles [6–12].

2 Graph Properties Expressible in Monadic
Second-Order Logic

Let R = {A,B,C, ...} be a finite set of relation symbols ; each of them, say A, is
given with a nonnegative integer ρ(A) called its arity. We denote by ST R(R) the
set of finite R-structures S = 〈DS ,(AS)A∈R〉 where AS ⊆ D

ρ(A)
S for each A. A sim-

ple graph G can be defined as the {edg}-structure S(G) = 〈VG, edgG〉 where VG is
the set of vertices and edgG ⊆ VG × VG is a binary relation representing the edges.
For undirected graphs, the relation edgG is symmetric. If in addition we need vertex
labels, we will represent them by unary relations. Graphs, either simple or not, can
also be represented by the richer incidence structure I(G) = 〈VG ∪EG, incG〉, where
EG, the set of edges, is now part of the domain and incG(e, u, v) holds iff e is an
edge from u to v (or between u and v if G is undirected).

Monadic Second-Order logic is the extension of First-Order logic by variables
denoting subsets of the domains of the considered structures, and new atomic for-
mulas of the form x ∈ X expressing the membership of x in a set X . (Uppercase
letters will denote set variables, lowercase letters will denote first-order variables).
In the sequel MS will abbreviate Monadic Second-order.

We denote by MS(R,W ) the set of MS formulas written with the set R of rela-
tion symbols and having their free variables in a set W consisting of first-order as
well as of set variables. As a typical and useful example, we give an MS formula
τ with free variables x and y expressing that (x, y) belongs to the reflexive and
transitive closure of a binary relation A :

∀X(x ∈ X ∧ ∀u, v[(u ∈ X ∧A(u, v)) =⇒ v ∈ X ] =⇒ y ∈ X).

If the relation A is not given in the structure but is defined by an MS formula, then
one replaces A(u, v) by this formula with appropriate substitutions of variables.

An MS property of the structures S of a class C ⊆ ST R(R) is a property P such
that for all S ∈ C :

P(S) holds if and only if S � ϕ,

for some fixed formula ϕ in MS(R,∅). We say also that P is MS expressible. (The
notation S � ϕ means that the logical formula ϕ is true in the structure S.)

Example. For each k one can construct a formula ϕk in MS({edg},∅) such that
for every graph G:

S(G) � ϕk if and only if G is k-colorable.

Here is the formula ϕ3:
∃X1, X2, X3[∀x(x ∈ X1 ∨ x ∈ X2 ∨ x ∈ X3)∧

∀x(¬(x ∈ X1 ∧ x ∈ X2) ∧ ¬(x ∈ X2 ∧ x ∈ X3) ∧ ¬(x ∈ X1 ∧ x ∈ X3))
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∧∀u, v(edg(u, v) ∧ u �= v =⇒ ¬(u ∈ X1 ∧ v ∈ X1) ∧ ¬(u ∈ X2 ∧ v ∈ X2)
∧¬(u ∈ X3 ∧ v ∈ X3))].

Many properties based on the existence of paths like connectivity, strong connec-
tivity, biconnectivity can be expressed in MS logic with the help of the above written
formula τ that defines the reflexive and transitive closure of a binary relation.

IfH is a simple loop-free undirected graph, then the property that a graphG con-
tainsH as a minor is MS expressible. LetH have vertices 1, ..., n. ThenG containsH
as a minor iff it has pairwise disjoint sets of verticesX1, ..., Xn that induce connected
subgraphs of G and are such that for every edge i−j in H , there exists an edge of G
linking one vertex of Xi and one of Xj . These conditions are easily expressible by
an MS formula μH . Every minor-closed class of undirected graphs is characterized
by finitely many excluded minors, and is thus definable by an MS formula. This is
the case of planar graphs which are characterized by the formula ¬μK5 ∧ ¬μK3,3 .

All properties of a graph G considered above are expressed via the relational
structure S(G). More properties are MS expressible via the relational structure
I(G). In particular the existence of a Hamiltonian cycle in a graph G is MS
expressible by using I(G) and not by using S(G). See [4, 5].

Every property that is MS expressible via the relational structure I(G) is fixed
parameter linear, where the parameter is tree-width. Every property that is MS
expressible via the relational structure S(G) is fixed parameter cubic, where the
parameter is clique-width (this follows from [15] and [27], the latter article showing
that cubic time is enough for finding an appropriate decomposition of the given
graph). However, the paradigm MS logic + bounded tree-width or bounded clique-
width extends to other algorithmic problems than just the verification of proper-
ties. One can compute efficiently optimization functions [16], one can enumerate
queries efficiently ([1, 13, 22]), one can label graphs in order to facilitate answers to
queries [18].

3 Monadic Second-Order Transductions

The construction of MS formulas for expressing graph properties is not always an
easy task. Our articles contribute to building a toolbox, the big hammer of which
is the notion of Monadic Second-Order transduction (MS transduction in short).
We first present a very simple case.

The edge-complement of a simple loop-free undirected graph G, that we denote
by G, can be defined in logical terms. The edge relation of G is defined from that
of G by:

edgG(x, y) ⇐⇒ x �= y ∧ ¬edg(x, y).
Hence we define G from G by defining its edge relation by a logical (here

first-order) formula to be evaluated in G. We say that the edge-complement trans-
formation is a first-order transduction.

The notion of an MS transduction generalizes this example on several respects,
and in particular by the use of MS formulas instead of first-order ones. As in Lan-
guage Theory, a binary relation R ⊆ A × B where A and B are sets of relational
structures is called a transduction: A → B. An MS transduction transforms a
structure S, given with an n-tuple of subsets of its domain called the parameters,
into a structure T , the domain of which is a subset of DS × [k]. ( [k] = {1, ..., k}).
Furthermore, each such transduction, has an associated backwards translation, a
mapping that transforms effectively every MS formula ϕ relative to T , possibly with

207



Bruno Courcelle

free variables, into one, say ϕ#, relative to S having free variables corresponding to
those of ϕ (k times as many actually) together with those denoting the parameters.
This new formula expresses in S the property of T defined by ϕ. We now give some
details. (The main reference for this section is [4].)

We let R and Q be two finite sets of relation symbols. Let W be a finite set of set
variables, called the parameters. A (Q,R)-definition scheme is a tuple of formulas
of the form:

Δ = (ϕ, ψ1, · · · , ψk, (θw)w∈Q∗k)
where k > 0, Q∗k := {(q,�j) | q ∈ Q,�j ∈ [k]ρ(q)},

ϕ ∈ MS(R,W ), ψi ∈ MS(R,W ∪ {x1}) for i = 1, · · · , k,
and θw ∈ MS(R,W ∪ {x1, · · · , xρ(q)}), for w = (q,�j) ∈ Q∗k.

These formulas are intended to define a structure T in ST R(Q) from a structure
S in ST R(R). Let S ∈ ST R(R), let γ be a W -assignment in S. A Q-structure T
with domain DT ⊆ DS × [k] is defined in (S, γ) by Δ if:

(i) (S, γ) |= ϕ

(ii) DT = {(d, i) | d ∈ DS , i ∈ [k], (S, γ, d) |= ψi}

(iii) for each q in Q : qT = {((d1, i1), · · · , (dt, it)) ∈ Dt
T | (S, γ, d1, · · · , dt) |=

θ(q,�j)}, where �j = (i1, · · · , it) and t = ρ(q).

By (S, γ, d1, · · · , dt) |= θ(q,�j), we mean (S, γ′) |= θ(q,�j), where γ′ is the assignment
extending γ, such that γ′(xi) = di for all i = 1, · · · , t; a similar convention is used
for (S, γ, d) |= ψi.

Since T is associated in a unique way with S, γ and Δ whenever it is defined,
i.e., whenever (S, γ) |= ϕ, we can use the functional notation defΔ(S, γ) for T . The
transduction defined by Δ is the binary relation:

DΔ := {(S, T ) | T = defΔ(S, γ) for some W -assignment γ in S}.

Hence DΔ ⊆ ST R(R)×ST R(Q). A transduction f ⊆ ST R(R) × ST R(Q) is an
MS transduction if it is equal, up to isomorphism of structures, to DΔ for some
(Q,R)-definition scheme Δ.

An MS-transduction is defined as a binary relation. Hence it can be seen as
a “nondeterministic” partial function associating with an R-structure one or more
Q-structures. However, it is not really nondeterministic because the different out-
puts come from different choices of parameters. In the case where W = ∅ it defines
a partial function. It may also happen that different choices of parameters yield
isomorphic output structures. This is the case in the example of edge contrac-
tion detailed below. We will refer to the integer k by saying that Δ and DΔ are
k-copying; if k = 1 we will say that they are noncopying. A noncopying definition
scheme can be written more simply: Δ = (ϕ, ψ, (θq)q∈Q).

Example. Edge contraction.
We consider a graph G with two types of edges, the ordinary edges and the

ε−edges. It is represented by a structure 〈VG, edgG, ε − edgG〉 where the binary
relation ε− edgG represents the ε−edges. We want to define the graph H obtained
from G by the contraction of all ε−edges.

It is formally defined as 〈VH , edgH〉 where VH = VG / ∼, ∼ is the equivalence
relation such that x ∼ y if and only if x and y are linked by an undirected path made
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of ε−edges, and edgH([u], [v]) holds if and only if x ∈ [u], y ∈ [v] for some (x, y) in
edgG ([u] denotes the equivalence class of u). The MS formula ξ(x, y) defined as:

∀X [(x ∈X ∧ ∀ u, v{u ∈ X ∧ (ε− edg(u, v) ∨ ε− edg(v, u)) =⇒ v ∈X}) =⇒ y ∈X ]

expresses x ∼ y. For defining VH we must select a set containing one and only
one vertex of each equivalence class. This can be done with a set variable Y that
will be a parameter of the MS transduction, satisfying the formula ϕ(Y ) saying
that for every x there is a unique y such that y ∈ Y ∧ ξ(x, y) holds. Edge con-
traction can thus be defined by the transduction with noncopying definition scheme
Δ = (ϕ, ψ, θedg) where ψ(Y, x) is x ∈ Y and:

θedg(Y, x, y) is the formula x ∈ Y ∧ y ∈ Y ∧ ∃u, v.[edg(u, v) ∧ ξ(x, u) ∧ ξ(y, v)].

Remark that the structures associated with all values of the parameter Y satisfying
ϕ(Y ) are isomorphic. They only differ regarding the concrete subsets Y of VG used
as sets of vertices of H .

The Fundamental Property of MS Transductions

The following proposition says that if T = defΔ(S, γ), then the monadic second-
order properties of T can be expressed as monadic second-order properties of (S, γ).
The usefulness of definable transductions is based on this proposition.

Let Δ = (ϕ, ψ1, · · · , ψk, (θw)w∈Q∗k) be a (Q,R)-definition scheme, written with
a set of parameters W . Let V be a set of set variables disjoint from W . For every
variable X in V , for every i = 1, · · · , k, we let Xi be a new variable. We let V ′

:= {Xi/X ∈ V , i = 1, · · · , k}. Let S be a structure in ST R(R) with domain D.
For every mapping η : V ′ −→ P(D), we let ηk : V−→ P(D × [k]) be defined by
ηk(X) = η(X1) × {1} ∪ · · · ∪ η(Xk) × {k}. With this notation we can state:

Proposition 1. For every formula β in MS(Q, V ) one can construct a formula
β# in MS(R, V ′ ∪ W ) such that, for every S in ST R(R), for every assignment
γ : W −→ P(D), for every assignment η : V ′ −→ P(D) we have :

(S, η ∪ γ) |= β# if and only if :
defΔ(S, γ) is defined, ηk is a V –assignment in defΔ(S, γ),
and (defΔ(S, γ), ηk) |= β.

We call β# the backwards translation of β relative to the transduction defΔ. The
composition of two transductions is defined as the composition of the corresponding
binary relations (equivalently, multivalued functions). From Proposition 1 we get:

Proposition 2. 1) The composition of two MS transductions is an MS transduc-
tion.

2) The inverse image of an MS-definable class of structures under an MS trans-
duction is MS-definable.

The mapping from I(G) to the set of spanning forests of a graph G or to the set
of its subgraphs, or of its minors (represented by their incidence structures) are MS
transductions. The mapping from S(G) to the set of its induced subgraphs for a
simple graph G is an MS transduction (a subgraph H of G is represented by S(H)).
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4 Graph Decompositions Defined by MS

Transductions

Of particular interest are graph decompositions. They are useful for the construc-
tion of efficient algorithms, and also because they give structural descriptions of
the considered graphs. The general results of [19, 20] define canonical decomposi-
tions which include as particular instances the modular decomposition and the Tutte
decomposition of a graph in 3-connected components. (Tree-decompositions, rank
decompositions [27], optimal decompositions for clique-width are not canonical.)

We show that these canonical decompositions can be defined by monadic second-
order formulas “inside” the considered graphs. In our language the mapping from
a (linearly ordered) graph to its decomposition of this type is an MS transduction.
We first review informally the modular decomposition. (See [25, 26] for thorough
studies of this notion).

Modular decomposition
The modular decomposition of a graph is a canonical expression of this graph

in terms of (nested) substitutions. Let G and H be two simple loop-free undirected
graphs with disjoint sets of vertices. The substitution of H for a vertex u of G is
the graph G[H/u] defined as the union of G and H , minus the vertex u and the
incident edges, plus edges between w and all vertices of H for every edge w − u
in G. Substitutions can be done in parallel (disjoint graphs for distinct vertices)
giving G[H1/u1, ..., Hn/un] and nested in expressions like G[H [L/u]/v].

Let K be a graph and M a set of vertices. The graph K can be expressed as
G[H/u] with M = VH iff M is a module of K, that is, a set of vertices such that
every vertex not in M is linked either to no vertex of M or to all of them.

A module is strong if does not overlap any module. (Two sets overlap if they have
a nonempty intersection and none is a subset of the other.) The strong modules of a
graph G form a tree for inclusion, called its modular decomposition. This tree is the
syntactic tree of a canonical expression of G in terms of substitutions. (The modular
decomposition is called substitution decomposition in some works). This tree can
be enrich by labels and additional edges, and this gives the graph representation of
the modular decomposition. From it the graph G can be reconstructed.

The mapping from a graph G given with a linear order � of its vertices is an MS
transduction. We sketch the construction which is given in [6, 10, 14]. There exists an
MS formula ϕ(X) that is valid in the given graph iff X is a strong modules. To build
the tree of strong modules, we specify in each strong module that is not a singleton
a representing vertex x that will be the corresponding non-leaf node of the modular
decomposition. This specification is done by an MS formula ψ(x,X). Furthermore
we need that distinct strong modules are represented by distinct vertices. The order
� on vertices is here useful. For a set Y ⊆ VG, we let fl(Y ) be the �-smallest ver-
tex of Y . Each strong module M contains a unique maximal proper strong module
N such that fl(N) is minimal. (Maximal is understood for set inclusion). We take
fl(M − N) as the representative vertex of M . Two non-singleton strong modules
are represented by different vertices. (This would not be the case if we would rep-
resent M by fl(M)). We can thus construct the tree of strong modules by an MS
transduction as a tree with set of nodes VG × {1} ∪ RG × {2}, where RG is the
set of vertices which represent non-singleton strong module. The remaining parts
of the construction are routine. Note that this construction uses a linear order on
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vertices, but for any two linear orders, the corresponding outputs are isomorphic
relational structures.

Split decomposition:
This decomposition due to Cunningham ([20]) generalizes the modular decompo-
sition. We review it briefly. We only consider simple loop-free directed graphs.
An undirected edge can be considered as a pair of opposite directed edges. Hence,
this definition also applies to undirected graphs.

A split of a strongly connected graph G is a bipartition {A,B} of VG such that
A and B have at least 2 elements and EG = EG[A] ∪EG[B] ∪ (A1 ×B1)∪ (B2 ×A2)
for some Ai ⊆ A, Bi ⊆ B. If {A,B} is a split, then G can be expressed as the union
of G[A] and G[B] linked by two directed, complete bipartite graphs. (Since G is
strongly connected the set (A1 ×B1)∪ (B2 ×A2) is not empty). If G is undirected,
then strong connectivity is just connectivity.

The inverse of splitting is the join operation, defined as follows.
Let H and K be two disjoint graphs with distinguished vertices h in H and k

in K. We define H �(h,k)K as the graph with set of vertices VH ∪ VK − {h, k} and
edges x −→ y such that, either x −→ y is an edge of H, or an edge of K, or we have
x −→ h in H and k −→ y in K, or we have h −→ y in H and x −→ k in K.

If {A,B} is a split, then G = H �(h,k) K where H is G[A] augmented with a
new marker vertex h and edges x −→ h whenever there are in G edges from x to
some u in B, and edges h −→ x whenever there are edges from some u in B to x.
The graph K is defined similarly from G[B], with a new vertex k. The graphs H
and K have at least 3 vertices and strictly less vertices than G.

A decomposition of a strongly connected graph G is defined as follows: {G} is
the only decomposition of size 1; if {G1, ..., Gn} is a decomposition of size n, and
Gn = H �(h,k) K, then {G1, ..., Gn−1, H,K} is a decomposition of G of size n+ 1.
The graphs Gi are called the components of the decomposition. The graph G can
be reconstructed without ambiguity provided the marker vertices and their match-
ings are specified. The components of a decomposition form an unrooted tree for the
“matching” relation. By decomposing iteratively a strongly connected graph and
by using only good splits defined as those that do not overlap any other, one gets
the Unique (Canonical) Split Decomposition. The restriction to good splits genera-
lizes the restriction to strong modules. These restrictions are important for having
canonical decompositions. Figure 4.1 shows an undirected graph G and Figure 4.2
its split decomposition.
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Figure 4.1: Graph G
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Figure 4.2: The split decomposition of G.

Theorem 1 ([6, 10]). There are MS transductions that associate with a linearly
ordered graph the graph representations of its modular and split decompositions.
Up to isomorphism, the constructed relational structures do not depend on the cho-
sen ordering of the vertices.

5 Circle Graphs

A circle graph is the intersection graph of a set of chords of a circle. An equivalent
combinatorial characterization can be given in terms of words where each letter
has two occurrences. If a letter represents a chord, a set of chords is a word corre-
sponding to the sequences of extremities of chords read around the circle, and the
chords represented by a and b intersect iff the word can be written aubvawbx for
some words u, v, w, x.

Circle graphs which are prime, i.e., indecomposable for the split decomposition
have unique representations as words (or as sets of chords), where unique is meant
up to some obvious transformations. The main results are the following ones:

1. If two words define the same connected circle graph and have the same subword
of first occurrences of letters, then they are equal.

2. If a circle graph is prime, the unique word representing it can be constructed
by formulas of MS logic.

3. If a circle graph is not prime, then all its representations by double occurrence
words can be defined from it and the linear orders of its set of vertices, by a
fixed MS formula.

Result 2 uses MS formulas written with set predicates of the form Even(X) express-
ing that a set X has even cardinality. These formulas will be called C2MS formulas.
They are needed because the proof uses a result by Courcelle and Oum [17] showing
that the characterization of circle graphs by the three excluded vertex-minors given
by Bouchet [3] is expressible by C2MS formulas. Even helps to express computa-
tions in GF(2), and these computations occur because the notion of a vertex-minor
is handled through that an isotropic system, which is a vector space over GF(2).

Result 3 makes a crucial use of Theorem 1 for split decompositions. Every cir-
cle graph has a canonical split decomposition the components of which are prime
circle graphs, cliques and stars. For a circle graph, the prime components have
constructible word representations by Result 2. The other components have word
representations constructible by means of the linear order. By varying the linear
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order one gets all word representations (the orders corresponding to the first occur-
rence words of the word representations of the given graph actually suffice). The
results of this section are proved in [11].

Concerning the unique representability of prime circle graphs, a quite similar
result holds for comparability graphs (see [25]). Those which are undecomposable
for the modular decomposition have unique transitive orientations (actually they
have two, one and its reversal) and it is possible to construct these orientations
by MS formulas by a proof similar to the one used for circle graphs. This proof
uses a characterization of comparability graphs by forbidden induced subgraphs.
This characterization is expressible in MS logic although there are infinitely many
forbidden subgraphs. See [9].

Circle graphs.
Let A be a countable set called the set of letters. We let W be the set double
occurrence words i.e., of finite nonempty words over A having two occurrences or
no occurrence of each letter. We let V (w) be the set of letters occuring in w and
G(w) be the graph with set of vertices V (w) and an undirected edge between a and
b iff w = u1au2bu3au4bu5 or w = u1bu2au3bu4au5 for some u1, ..., u5 in A∗. The
graphs G(w) are also called circle graphs. It is clear that G(w) = G(w′) if w′ = w̃
(the mirror image of w) or if w and w′ are conjugate, denoted by w ∼ w′, which
means w = uv and w′ = vu for some u, v in A∗; w and w′ are equivalent, denoted
by w ≡ w′, iff either w ∼ w′ or w̃ ∼ w′. Two equivalent words represent the same
circle graph. Figure 5.1 shows a circle graph G and its chord representation defined
by the word : axbcuyvbycauxv.

Figure 5.1: A circle graph and a chord representation of it.

A circle graph G is uniquely representable if G = G(w) = G(w′) implies w ≡ w′.
The circle graphs with at most 3 vertices are uniquely representable, so are C4, P4,
the graph K4 minus one edge. The graphs K4, S3 are not. To take an example
the star S3 with center a is represented by the two inequivalent words abcdadcb and
acbdadbc.

Theorem 2 ([11]). A circle graph with at least 5 vertices is uniquely representable
iff it is prime for the split decomposition.

Proof. “if” is proved in [2, 24]. “Only if” is claimed in [24] but not actually
proved.

Theorem 3 ([11]). There exist C2MS formulas that associate with every prime
circle graph G a word w ∈ W such that G(w) = G.
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A double occurrence word can be defined for logical treatment as a directed
circuit with a binary relation representing pairs of positions bearing the same let-
ter. Whether this letter is a or b does not matter.

Eulerian trails of 4-regular graphs.
We need a lemma concerning the Eulerian trails of 4-regular graphs without

loops and multiple edges. We prove that these trails can be encoded by tuples of
sets, hence defined and used by MS formulas.

Lemma. There exist MS formulas that associate with every connected 4-regular
undirected graph H the structures < VH , edgH , edgG(E) > for all Eulerian trails E
of H, where edgG(E) is the edge relation of the corresponding circle graph G(E).

Proof sketch of Theorem 3. Let w ∈ W , a, b ∈ V (w), a �= b. We say that a and
b are neighbours in w if w ≡ abw′ for some w′ in A∗. This means that on the
representation of G(w) by intersecting chords, chords a and b have two consecutive
ends on the circle. If G is prime with at least 5 vertices, this notion depends only
on G, and not on the word w representing it. Each letter occurring in w has four
different neighbours. We let N(G) be the graph of neighbourhood, with set of ver-
tices V (w) and an edge a−b iff a and b are neighbours in G. This graph is 4-regular.
We can prove that its adjacency relation is definable by a C2MS formula over the
given prime circle graph G, and that w can be constructed from N(G). Figure 5.2
shows with solid lines the graph N(G) for the graph G associated with the word :
axbcuyvbycauxv . The dotted lines around the vertices show the Eulerian trail which
corresponds to the chord representation of G, i.e., to the circular sequence of the
ends of the chords corresponding to letters.

Figure 5.2: The neighbourhood graph N(G).

For a, b ∈ VG(⊂ A), a �= b, we let G(a, b;u, v) be the graph G augmented with
the path a− u− v − b where u, v ∈ A− VG.

Claim 1. G(a, b;u, v) is a circle graph iff a, b are neighbours in G.

Claim 2. That a and b are neighbours in G is expressible by a C2MS formula.

Hence the mapping associating N(G) with a prime circle graph G is a C2MS
transduction. This claim uses the C2MS characterization of circle graphs given in
[17]. That a given graph G is a prime circle graph with at least 5 vertices is a C2MS
property. Assuming this satisfied, one can build from G and by C2MS formulas
(Claim 2) the 4-regular graph N(G). This graph is connected and has an Eulerian
trail F such thatG(F ) = G. The Eulerian trails ofN(G) are defined by tuples of sets
of vertices (by the Lemma) and an MS formula can select the one defining F .
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First occurrence words:
For every word w in A∗ we denote by F (w) the subword of w consisting of the

first occurrence of each letter. For an example, F (abbdacdcefef) = abdcef .

Theorem 4 ([11]). If w,w′ are double occurrence words such that G(w) = G(w′)
is connected and F (w) = F (w′), then w = w′.

Proof. The proof is by induction on the length of w.

Theorem 5 ([11]). There exist MS formulas that associate with (G,�) where G
is a circle graph and � a linear order on VG, the unique double occurrence word w
representing it such that F (w) = (VG,≺), provided such a word does exist.

Proof sketch. On a structure given with a linear order, the set predicate Even(X)
can be expressed by an MS formula (see [4]). Hence on these structures, every C2MS
formula can be translated into an equivalent MS formula. In particular, an MS for-
mula can check that the given graph is a circle graph. By Theorem 1 (Theorem 4.21
of [10]), one can construct from (G,�) its split decomposition Split(G) by an MS
transduction. For those components of Split(G) which are prime, an MS formula
can build double occurrence words representing them by Theorem 3. For the other
components, which are isomorphic to stars and to cliques, the linear order � makes
it possible to define by MS formulas representing double occurrence words. One ob-
tains a tree of relational structures S1, ..., Sk representing double occurrence words
for the k components of Split(G). From this tree one can produce a double occur-
rence word for G. It remains to check that it matches the first occurrence word
defined by F (w) = (VG,≺).
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