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Abstract

We define a vertex labelling for every planar 3-connecteglysaith n vertices from which
one can answer connectivity queries.cdnnectivity quenasks whether there exists in the
given graph a path linking andv that avoids a sdt of edges and a s&t of vertices. The
verticesu, v and those oK are given by their labels. The edgesroére given by the labels
of their ends. Each label has a sizeQflog(n)) bits. Our construction makes an essential
use of straight-line embeddingen n x n grids of simple loop-free planar graphs. Such
embeddings can be constructed in linear time by Schnydigicsithm [7].
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Let us review the motivations for looking for compact labeils of graphs.
By compact we mean of order less tham the number of vertices. In distributed
computing over a communication network with underlyingpir&, nodes must
act according to their local knowledge only, which is updaty message passing.
Due to space constraints on local memory of nodes, and lintessage size,
a distributed task cannot be solved in practice by represgithe whole graph
G in each node or in each message, but must rather manipulat compact
representations @. Typically, the routing task may involve routing tablesatlre
sublinear in the size d& (preferably of poly-logarithmic size), and short addresse
transmitted in the headers of messages (of poly-logarttisme too). As surveyed
in [6] many problems including routing and distance computati&m be achieved
usingcompact labelslf nodes or links fail in a network, then recomputation o th
labels is generally required. Courcelle and Twigg studreff] the forbidden-set
labelling problemwhere in addition to source and destination, the queryrdlga
is given a set of failed nodes and edges and it must constpathahat avoids this
set. These labels can be used to quickly recover from falurea network. In this
framework labellings can be updated by transmitting to @i\/ving nodes the list
of labels of all defected nodes and links, so that survivindes can update their
local data-structures (e.g., their routing tables).

We now state the main theorem and describe the main idea® afotfistruc-
tion. If Gis a graph,u,v € V(G), X CV(G) —{u,v} andF C E(G), we let
Conn(u,v,X,F) mean : there exists a path betwaeandv thatavoids X and F
i.e, a path in the grap{G — F)\X. We call this aconnectivity quergimplicitly in
the subgraph of defined by excluding andF). We write Conru, v, X) if F = &.

A labelling supports a queryf it makes possible to answer it from the labels of the
arguments.

Main Theorem For every simple undirecte@8connected planar graph, we can
construct in @nlog(n)) time an Qlog(n))-bit labelling supporting connectivity
queries.

The problem of connectivity labelling in planar undirectgdphs is easy with-
out forbidden sets (Ida@) bits suffice to identify the connected components). The
problem ofreachabilityin directed planar graphs is not easy. It is known to be
LOGSPACE-hard]]. It can be solved efficiently with labelling schemes. Thoru
[8] shows that a planar digraph can be preprocessed in nesarlirme, produc-
ing a near-linear space oracle that can answer reachadpigyies in constant time.
The oracle can be distributed as@flog(n)) space labelling for each vertex from
which we can determine if one vertex can reach another byidernsg their two



Fig. 1. The augmented graph discussed in the example.

labels only.

More difficult queries that we know how to treat for graphs otibhded clique-
width ([4]) but not yet for planar graphs adkstance querieandrouting (explicit
construction of shortest paths).

For a plane grapks, we letG* be the plane graph obtained by the addition of
one new vertex in the middle of each face and of edges betweewdrtex and
those ofG incident with that face. I3 is biconnected, the graph™ is simple and
can be embedded in tmex m-grid wherem= |V (G™)| . A linear-time algorithm
for doing so has been given by Schnyd@}. [ We fix such an embedding. For
X CV(G), we let itsbarrier Bar(X) be a set of edges @&+ such thatu andv
€ V(G) — X are separated by in G iff they are separated i? by Bar(X), i.e.,
belong to different connected componentsR3f— Bar(X). Note that BafX) is a
set of straight line segments, heriké— Bar(X) is a union of connected open sets.
(See B] for the precise definition of the set Ba¢).)

Example Figure 1 shows a grapH with verticesu,v,w,x,yand edges represented
by continuous lines, and its augmented gréph Dotted lines represent the edges
of HT that are not inH. The graphH™ is simple sinceH is biconnected and it
is drawn with straight-lines. The barrier ¢k,y} consists of the 6 (thick) dotted
edges({x,a}, {x,b},{x,c},{y,a},{y,b},{y.c}) wherea,b,c are the face vertices
in H*. It separates from v andw.

If, from labels attached to the vertices ¥fwe can deduce the set of straight-
line segments forming B&X), and if we also know the coordinateswandv, we
can test whethew andv are separated iR? by Bar(X) by means of computational
geometry algorithms (De Berg et aP]].

To do so, to each vertexof G, we attach, not only its own pair of coordinates



in the fixed embedding, but also those of a bounded numberighbeur vertices
of G and of vertices oG ™ representing faces @. This can be done because every
planar graph is the union of 3 edge disjoint forests. Thisifaased in 7).

However this sketched proof only works for 3-connected atagraphsG, or
rather for those such that every 2 vertices are incident widounded number of
faces. Hence, in particular for 3-connected graphs wheth edge is subdivided
by the addition of one degree 2 vertex. This is useful, bezawescan in this way
reduce the problem for 3-connected graphs to the particalse wher& is empty,
I.e., where one deletes only vertices.

With many additional constructions, we can extend thisltéswall undirected
planar connected graph3][ In a few words, we consider first biconnected graphs
decomposed into 3-connected components, and then codrgafEhs decomposed
into biconnected components, which gives the general émoiThese decompo-
sitions are expressed as trees. By using a labelling schem¢odCourcelle and
Vanicat p], we can recognize certain cases wharandv are separated by one
or two vertices of the given sef. If those separation criteria do not apply, then
we are reduced to connectivity queries in certain 3-coratecomponents, and the
geometric method of the present communication can be usedcohecture that
the main theorem extends to graphs embedded in a fixed surface

For undirected planar graphs, distance and routing qushesld also be in-
vestigated. The problem of reachability in directed plagraphs with obstacles is
a difficult and important open question. Another one cons¢ne case where the
network is locally modified : how can the labelling be updatéetiently ?
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