

Monadic second-order logic for graphs.

Algorithmic and language theoretical applications

Bruno Courcelle

Université Bordeaux 1, LaBRI, and Institut Universitaire de France

Reference : Graph structure and monadic second-order logic,

book to be published by Cambridge University Press, readable on :

http://www.labri.fr/perso/courcell/ActSci.html

 2

History : Confluence of 4 independent research directions,

 now intimately related :

1. Fixed-Parameter Tractable algorithms for parameters reflecting hierarchical

structurings : tree-width, clique-width. This research started with case studies for

series-parallel graphs, cographs, partial k-trees.

2. Extension to graphs of the main concepts of Formal Language Theory :
grammars, recognizability, transductions, decidability questions

3. Excluded minors and related notions of forbidden configurations
 (matroid minors, « vertex-minors »).

4. Decidability of Monadic Second-Order logic on classes of finite graphs.

 3

Two ways of considering graphs

1) A graph (finite, up to isomorphism) is an algebraic object,

 an element of an algebra of graphs
 (Similar to words, elements of monoids)

 2) A graph is a logical structure ;

 graph properties can be expressed by logical formulas
 (FO = first-order, MS = monadic second-order, SO = second-order)

 Consequences:

 a) Language Theory concepts extend to graphs

 b) Algorithmic meta-theorems

 4

 An overview chart

Graph "Context-free"

operations sets of graphs

Fixed parameter tractable

algorithms Language theory

 for graphs

 Recognizable

 sets of graphs

Monadic 2nd-order Monadic 2nd -order

logic transductions

 5

 Key concepts of Language Theory and their extensions

Languages Graphs

Algebraic structure :
monoid (X*,*,ε)

Algebras based on graph operations : ⊕, ⊗, //
quantifier-free definable operations

Algebras : HR, VR
Context-free languages :

Equational subsets of (X*,*,ε)
Equational sets of the

algebras HR, VR
Regular languages :
Finite automata ≡

Finite congruences ≡
Regular expressions ≡

Recognizable sets
of the algebras HR, VR

defined by finite congruences

≡ Monadic Second-order
definable sets of words or terms

∪
Monadic Second-order definable sets of graphs

Rational and other types of
transductions

Monadic Second-order transductions

 6

Summary
1. Context-free sets defined by equation systems

2. Two graph algebras; tree-width and clique-width.

3. Recognizability : an algebraic notion.

4. Monadic second-order sentences define recognizable sets.

5. Fixed-parameter tractable algorithms : constructions of automata

6. Monadic second-order transductions.

7. Robustness results : preservation of classes under direct and inverse monadic

 second-order transductions. Short proofs in graph theory. (black= graph theory)

8. Logic and graph structure theory : Comparing encoding powers of

 graph classes via monadic second-order transductions

9. Graph classes on which monadic second-order logic is decidable

10.Open questions

 7

1. Equational sets (generalization of context-free languages)

Equation systems = Context-Free (Graph) Grammars

in an algebraic setting

In the case of words, the set of context-free rules

X → a X Y ; X → b ; Y → c Y Y X ; Y → a

is equivalent to the system of two equations:

 X = a X Y ∪ { b }

 Y = c Y Y X ∪ { a }

where X is the language generated by X (idem for Y and Y).

 8

In arbitrary algebras (in graph algebras) we consider equation systems like:

 X = f(k(X), Y) ∪ { b }

 Y = f(Y , f(g(Y), m(X))) ∪ { a }

where :

 f is a binary operation,

g, k, m are unary operations on graphs,

a, b denote basic objects (graphs up to isomorphism).

An equational set is a component of the least solution of such an

equation system. This is well-defined in any algebra.

 9

 The general algebraic setting

F : a finite set of operation symbols with (fixed) arities, called a signature

M = < M, (fM)f ∈ F > : an F-algebra.

P(M) its power-set algebra with domain P(M) and operations extended to

sets : fP(M)(A,B) = { fM(a,b) / a ∈ A, b ∈ B }.

Equation systems of the general form :

S = < X1 = p1, …, Xn = pn >

X1,…,Xn are unknowns (ranging over sets)

p1,…,pn are polynomials for example :

 f(k(X1),X2) ∪ f(X2, f(g(X3), X1))) ∪ c

 10

Its solutions are the fixed-points of the (recursive) equation :

X = SP(M)(X) (1) where X = (X1,…,Xn)

SP(M)(X) : = (p1P(M)(X) ,…, pnP(M)(X))

The set P(M)n ordered by component-wise inclusion is ω-complete,

the mapping SP(M) is monotone and ω-continous, hence Equation (1)

has a least solution defined by iteration :

µX.SP(M)(X) = U i >0 SP(M)(X)i(∅, …,∅) (increasing sequence)

An equational set of M is a component of µX. SP(M)(X)

for some equation system S

 11

Classical examples

Algebra Equational sets

<A* , ., ε , a,b,…,d> Context-free languages

<A* , ε , (λu∈A*.ua)a∈ A > Regular languages

T(F), terms over F, (initial F-algebra) Regular sets of terms

<Nk, + , (0,…,0), … (0,…,1,0,…,0) …> Semi-linear sets =

finite unions of sets { u + n1.v1+…+ np.vp ⎜ n1,…,np ∈ N }

for u,v1,…,vp ∈ Nk

 12

Properties of context-free languages valid at the algebraic level

1) If K and L are equational sets of M, so are K ∪ L and fP(M)(K,L).

2) The emptiness of an equational set is decidable

Proof : A system S can be solved in P(T(F)) where T(F) is the

F-algebra of terms over F.

 “Transfer” of least fixed-points by homomorphisms :

If h : M’ M then h(µX.SP(M’)(X)) = µX.SP(M)(X)

Hence, µX.SP(M)(X) = valM(µ X.SP(T(F))(X)) (valM = value mapping : T(F) M)

Each component of µX.SP(T(F))(X) is a context-free language (terms are

words written in Polish prefix notation). Emptiness can be checked.

 13

3) If M is “effectively given” and the components of µX.SP(M)(X) are all

finite sets, µX.SP(M)(X) can be computed (by straightforward iteration and by

stopping as soon as SP(M)(X)i(∅,…) = SP(M)(X)i+1(∅,…)).

4) Finiteness test (with some natural “size” conditions).

5) For every context-free language L over k letters : a,…,d, the set of k-

tuples (⎜u⎜a, …., ⎜u⎜ d) in Nk for all u in L is semi-linear (using transfer

theorem for least fixed-points; “Parikh’s Theorem”).

Here : each function f has a weight w(f) in Nk , the weight w(t) of a

term t is the sum of weights of its symbols ; if L is equational w(L) is semi-

linear.

 14

2. The graph algebras HR and VR

We define two graph algebras Equational sets of graphs, two
generalizations of context-free languages.

HR operations : Origin: Hyperedge Replacement hypergraph grammars
associated graph complexity measure : tree-width

Graphs have distinguished vertices called sources, (or terminals or boundary vertices)

pointed to by source labels from a finite set : {a, b, c, ..., d}.

Binary operation(s) : Parallel composition

G // H is the disjoint union of G and H and sources with same label are fused.

(If G and H are not

disjoint, one first makes

a copy of H

disjoint from G).

 15

Unary operations :

 Forget a source label

 Forgeta(G) is G without a-source: the source is no longer distinguished ;

(it is made "internal").

 Source renaming :

Rena b(G) exchanges source labels a and b

(replaces a by b if b is not the label of any source)

Nullary operations denote basic graphs : edge graphs, isolated vertices.

Terms over these operations define (or denote) graphs (with or without sources)

 16

Example : Trees

Constructed with two source labels, r (root) and n (new root).

Fusion of two trees

at their roots :

Trees are defined by : T = T // T ∪ extension(T) ∪ r

Extension of a tree by parallel composition

with a new edge, forgetting the old root,

making the "new root" as current root :

e = r •_________• n

Renn r (Forgetr (G // e))

 17

Example : (Directed) series-parallel graphs
 defined as directed graphs with sources 1 and 2,

 generated from e = 1 2 by the operations // (parallel-composition)

and the series-composition defined from the basic operations by :

G • H = Forget3(Ren2 3 (G) // Ren1 3 (H))

Example :

 1 • G • H • 2

 3

 1 • • 2

Their defining equation is : S = S // S ∪ S • S ∪ e

 18

Relation to tree-decompositions and tree-width

 Tree T

 Graph G Tree-decomposition

 (T,f) of G

Dotted lines - - - - link copies of a same vertex.

Width = max. size of a box -1. Tree- width = min. width of a tree-dec.

 19

Proposition: A graph has tree-width ≤ k

if and only if it can be constructed from edges by using

the operations // , Rena b and Forgeta with ≤ k+1 labels a,b,….

Consequences :

 - Representation of tree-decompositions by terms.

 - Algebraic characterization of tree-width.

 - The set of graphs of tree-width at most k is equational for each k.

 - Every HR equational set of graphs has bounded tree-width
(an upper bound is easy to obtain from a system S : just count the number

of source labels used in S).

 20

From an algebraic expression to a tree-decomposition

Example : cd // Rena c (ab // Forgetb(ab // bc)) (ab denotes an edge from a to b)

 The tree-decomposition associated with this term.

 21

Negative facts about HR-equational sets

 - The set of all finite graphs is not HR-equational.

 - Neither is the set of all square grids (planar graphs of degree 4)

 - Parsing is NP-complete for certain fixed equation systems

(graphs of cyclic bandwidth < 3)

 But finding a tree-decomposition of width < k (if it exists) can be
done in “linear” time (O(2p.n) where n = number of vertices and p = 32.k2)

 Examples of HR-equational sets:

 - Every context-free language but also the language {anbncn ⎜ n > 0 }.

 - Outerplanar graphs (having a planar embedding with all vertices on the infinite
(external) face) and Halin graphs (planar, made of a tree with a cycle linking all
leaves).

 22

The VR graph algebra

Origin : Vertex Replacement graph grammars.

 associated complexity measure: clique-width.

Graphs are simple, directed or not
 (the definitions can be extended to graphs with multiple edges)

We use labels : a , b , c, ..., d.

Each vertex has one and only one label ; several vertices may

have same label (whereas a source label designates a unique vertex)

One binary operation: disjoint union : ⊕

 23

Unary operations: Edge-addition denoted by Adda,b

Adda,b(G) is G augmented with edges between every a-port and every b-

port (undirected case) or from every a-port to every b-port (directed case).

 H = Adda,b(G) ; only 5 edges added

The number of added edges depends on the argument graph.

 24

Vertex relabellings :
Relaba b(G) is G with every vertex labelled by a relabelled into b

Basic graphs are those with a single vertex.

Definition: A graph G has clique-width ≤ k ⇔ it can be constructed from basic

graphs with the operations ⊕, Adda,b and Relaba b by using k labels.

 Its clique-width cwd(G) is the smallest such k

Clique-width has no combinatorial characterization (like tree-width). It is defined in terms of

few very simple graph operations, giving easy inductive proofs.

Equivalent notion: rank-width (Oum and Seymour) with better structural and algorithmic

properties (characterization by excluded vertex-minors, exact cubic decomposition algorithm).

 25

 Example 1 : Cliques have clique-width 2.

Kn is defined by tn where tn+1 = Relabb a(Adda,b(tn ⊕ b))

Cliques are defined by the equation :

K = Relabb a(Adda,b(K ⊕ b)) ∪ a

 26

Example 2 : Cographs

They are generated by ⊕ and ⊗ (the complete join) defined by :

G ⊗ H = Relabb a(Adda,b (G ⊕ Relaba b(H)))

 = G ⊕ H with “all possible” undirected edges between G and H.

Cographs are defined by :

C = C ⊕ C ∪ C ⊗ C ∪ a

Fact : A simple undirected loop-free graph is a cograph if and only if it has

clique-width at most 2.

Example 3 : Distance hereditary graphs have clique-width at most 3 (and

are the graphs of rank-width 1).

 27

Proposition : (1) Bounded tree-width implies bounded clique-width

(cwd(G) < 22twd(G)+1 for G directed), but not conversely.

(2) Unlike tree-width, clique-width is sensible to edge directions : Cliques

have clique-width 2, tournaments have unbounded clique-width.

Classes of unbounded tree-width and bounded clique-width:

 Cographs (2), Distance hereditary graphs (3),

 Graphs without {P5 , 1⊗P4} (5), or {1⊕P4 , 1⊗P4} (16)

as induced subgraphs.
(many similar results for exclusion of induced subgraphs with 4 and 5 vertices).

Classes of unbounded clique-width :

 Planar graphs of degree 3, Tournaments, Interval graphs,

 Graphs without induced P5. (Pn = path with n vertices)

 28

Summary : Two algebras of (finite) graphs HR and VR
 Two notions of “context-free sets” : the equational sets of algebras HR
and VR, (and below, two notions of recognizable sets, based on congruences).

 1) Comparison of the two classes :

 Equat(HR) ⊆ Equat(VR)

 = sets in Equat(VR) whose graphs are without
 some fixed Kn,n as subgraph.

2) Why not using a third algebra ?
 One could, but Equat(HR) and Equat(VR) are robust in the following
sense :

 * Iogical characterizations independent of the initial definitions,
* stability under certain logically defined transductions,
* generation from trees.

 For other algebras, we would loose these properties (proofs below).

 29

3) Properties following from the algebraic setting :

- Closure under union, // , ⊕ and the unary operations
 - Emptiness and finiteness are decidable (finite sets are computable)
 - Semi-linearity Theorem (extends “Parikh’s Theorem”)
 - Derivation trees
 - Denotation of the generated graphs by terms,
 - Upper bounds to tree-width and clique-width.

 4) Properties that do not hold as we could wish :

- The set of all finite (even planar) graphs is neither

 HR- nor VR-equational.

 - Parsing is NP-complete (even for some fixed equation systems)

 30

Exercises

1) Prove that {anbncn ⎜ n > 0 } and the set of square words (ww) are HR-equational.

2) Construct HR equation systems for the outerplanar and the Halin graphs.

3) Construct an HR equation system for the series-parallel graphs having an even number of
vertices.

4) Construct a VR equation system for the trees having an number of nodes multiple of 3.

5) Construct a VR equation system for the cographs having an even number of edges.

6) Prove that the non-context-free language {an ⎜ n=2p for some p> 0 } is HR-equational for
some appropriate algebra extending the monoid of words.

7) Complete the proof of the proposition page 19 : transform a tree-decomposition of width k

into a term of the HR algebra defining the same graph and using k+1 source labels.

8) Prove that the proposition of page 19 holds without the source renaming operations.

 31

3. Recognizable sets : an algebraic definition

M = < M, (fM)f ∈ F > : an F-algebra where F is a finite signature.

Definition : L ⊆ M is (M-)recognizable if it is a union of equivalence

classes for a finite congruence ≈ on M.

Congruence = equivalence relation such that :

m ≈ m’ and p ≈ p’ ⇒ fM(m,p) ≈ fM(m’,p’).

 Finite means that M / ≈ is finite, i.e., ≈ has finitely many classes.

Equivalently, L = h-1(D) for a homomorphism h : M → A, where

A is a finite F-algebra and D ⊆ A.

Rec(M) = the recognizable subsets of M. This notion is relative to the

algebra M (not only to the underlying set M).

 32

Classical examples

Algebra Recognizable sets

<A* , ., ε , a,b,…,d> Regular languages
 (syntactic monoid)

<A* , ε , (λu∈A*.ua)a∈ A > Regular languages
 (Myhill-Nerode)

T(F), terms over F, (initial F-algebra) Regular sets of terms
On terms, h (cf. page 31) is the run of a finite deterministic bottom-up

automaton

<Nk, + , (0,…,0), … (0,…,1,0,…,0) …> Finite unions of Cartesian

 products of k sets { u + n.v ⎜ n ∈ N } for u,v ∈ N

 33

The algebras HR and VR have infinite signatures
We introduce two notions of type (or sorts in a many-sorted framework).

For HR : G has type τ(G) = the set of labels of its sources.

τ has a homomorphic behaviour :

 τ(G//H) = τ(G) U τ(G) ; τ(Forgeta(G)) = τ(G) - {a} ;

τ(Rena b(G)) = τ(G)[a/b, b/a].

For VR : the type is π(G) = the set of vertex labels having an occurrence.

π has a homomorphic behaviour :

τ(G ⊕ H) = τ(G)Uτ(H) ; τ(Adda,b(G)) = τ(G) ;

τ(Relaba b(G)) = τ(G)[b/a].

 34

For defining recognizability of set L, we require that the congruence ≈ is

type preserving (for τ or π according to the case, HR or VR) :

 G ≈ H ⇒ τ(G) = τ(H)

locally finite : it has finitely many classes of each type.

and L is a union of classes (possibly of different types).

We can also use many-sorted algebras HR and VR with countably many

sorts, and τ(G) and π(G) as respective sorts of a graph G,

 (because the type function has a homomorphic behaviour).

 35

Two notions of recognizable sets of graphs, for algebras HR and VR.

Comparison of the two classes :

 Rec(VR) ⊆ Rec(HR)

 = sets in Rec(HR) whose graphs are without
 some fixed Kn,n as subgraph. (B.C. & P. Weil).
Recall :

 Equat(HR) ⊆ Equat(VR)

 = sets in Equat(VR) whose graphs are without
 some fixed Kn,n as subgraph.

Intuition : VR has more powerful operations than HR, but they make

difference only for graphs without some Kn,n as subgraph.

 36

Properties of recognizable sets that follow from the algebraic setting :

 - Closure under ∪, ∩ and - (difference),

- under inverse homomorphisms and inverse unary derived operations.
 (Proofs : clear from the definitions).

- Filtering Theorem : The intersection of an equational set and a

recognizable one is equational

 with effective constructions.

 (Proof : cf. 2-colorability of series-parallel graphs detailed below).

 37

Properties of recognizable sets of graphs that do not follow

“algebraically”

Closure under the binary operations of the algebras : //, ⊕,

under the unary operations fga, rena b, relaba b

Remarks: (1) This closure is false for Adda,b but is true if some “harmless”

restriction of the use of this operation is made.

 (2) Compare with regular languages:

 it is more difficult to prove their closure under concatenation

 than under the Boolean operations ;

 this is reflected by the sizes of syntactic monoids.

 38

Properties that do not hold as we could wish or expect:

- Emptiness is not decidable (because of infinite signatures).

 - Rec and Equat are incomparable (for HR and VR).

 - Every set of square grids is HR- and VR-recognizable.

- There are uncountably many recognizable sets and no

characterization by finite automata or logical formulas.
(To be contrasted with the cases of words and terms).

 39

 Inductive proofs and computations

Based on equations like the one that defines Series-Parallel graphs :

S = S // S ∪ S • S ∪ e

Examples : “Proof that all series-parallel graphs are connected”,

 “Proof that all series-parallel graphs are planar”,

 “Number of directed paths from Entry to Exit in a given

 series-parallel graph”.

Sometimes, auxiliary properties and / or functions are necessary.

Recognizability means “finitely many auxiliary properties suffice”

 40

Inductive computation :

 Test of 2-colorability for series-parallel graphs

Not all series-parallel graphs are 2-colorable (see K3)

G, H 2-colorable does not imply that G//H is 2-colorable (because K3=P3//e).

One can check 2-colorability with 2 auxiliary properties :

 Same(G) = G is 2-colorable with sources of the same color,
 Diff(G) = G is 2-colorable with sources of different colors

by using the rules :

 Diff(e) = True ; Same(e) = False

Same(G//H) ⇔ Same(G) ∧ Same(H)
Diff(G//H) ⇔ Diff(G) ∧ Diff(H)

Same(G•H) ⇔ (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H))
Diff(G•H) ⇔ (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧ Same(H))

 41

Application 1 : Linear algorithm

For every term t, we can compute, by running a finite deterministic bottom-up
automaton on t, the pair of Boolean values (Same(Val(t)) , Diff(Val(t))).

 We get the answer for G = Val(t) (the graph that is the value of t) regarding
2-colorability.

Example : σ at node u means that Same(Val(t /u)) is true, σ that it is false,
δ that Diff (Val(t /u)) is true, etc… Computation is done bottom-up with the rules of
previous page.

 The graph is not 2-colorable.

 42

Application 2 : Equation system for 2-colorable series-parallel graphs

Sσ,δ = the set of series-parallel graphs that satisfy Same (σ) and Diff (δ)
Sσ,δ = the set of those that satisfy Same and not Diff , etc …

From the equation : S = S // S ∪ S • S ∪ e , we get the equation system :

 43

In equation

Sσ,δ is in all terms of the righthand side : it defines (least solution)
the empty set. This proves (a small theorem) :

Fact : No series-parallel graph satisfies Same and Diff.

We can simplify the system {(a), (b), (c), (d)} into :

By replacing Sσ,δ by Tσ, Sσ,δ by Tδ, by using commutativity of //, we get the

system (for the 2-colorable

series-parallel graphs)

 44

Recognizability and inductive sets of properties

Definition : A set P of properties on an F-algebra M is F-inductive if, for
every p ∈ P and f ∈ F, there exists a Boolean formula B such that :

p(fM(a,b)) = B […,q(a),…,q'(b),….] for all a and b in M

 q, q' ∈ P , q(a),…, q(b) ∈ {True, False}.

Proposition : A subset L of M is recognizable if and only if it is the

set of elements that satisfy a property belonging to a finite inductive set

P of properties

 Inductive sets formalize the notion of “auxiliary properties”

 in proofs by induction.

 45

Inductive sets of properties and automata on terms

The simultaneous computation of m inductive properties can be

implemented by a finite deterministic bottom-up automaton with 2m states

running on terms t.

This computation takes time O(⎜t ⎜): this fact is the key to fixed-

parameter tractable algorithms.

Remark : Membership of an element m of M in a recognizable set L

can be tested by such an automaton on any term t in T(F) defining m

 (in some term if L is equational, i.e. “context-free”).

 46

4. Monadic Second-Order (MS) Logic

A logical language that specifies inductive properties and

functions

= First-order logic on power-set structures

= First-order logic extended with (quantified) variables

denoting subsets of the domains.

MS (expressible) properties : transitive closure, properties of paths,
 connectivity, planarity (via Kuratowski, uses connectivity), k-colorability.

 47

Examples of formulas for G = (VG , edgG(.,.)), undirected

G is 3-colorable :

∃X,Y (X ∩ Y = ∅ ∧
 ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧
 (u ∉ X ∪ Y ⇒ v ∈ X ∪ Y)]
 })

G (undirected) is not connected :

∃X (∃x ∈ X ∧ ∃y ∉ X ∧ (∀u,v (u ∈ X ∧ edg(u,v) ⇒ v ∈ X))

 48

Transitive and reflexive closure : TC(R, x, y) :

 ∀ X { “X is R-closed” ∧ x ∈ X ⇒ y ∈ X }

 where “X is R-closed” is defined by :
 ∀u,v (u ∈ X ∧ R(u,v) ⇒ v ∈ X)

The relation R can be defined by a formula as in :

∀x,y (x ∈ Y ∧ y ∈ Y ⇒ TC(“u ∈ Y ∧ v ∈ Y ∧ edg(u,v)”, x, y)

expressing that G[Y] is connected (note that Y is free in R).

Application : G contains (fixed) H as a minor
where VH = {1,…,p} : there exist disjoint sets of vertices X1,…, Xp
in G such that each G[Xi] is connected and, whenever if i -- j in H,
there is an edge between Xi and Xj.

Consequence : planarity is MS-expressible (no minor K5 or K3,3).

 49

Provably non-expressible properties

- G is isomorphic to Kp,p for some p (not fixed; needs equipotence of two

sets, hence quantification over binary relations to find if there is a bijection).

- G has a nontrivial automorphism, or has all vertices of same degree.

- Card(X) is a multiple of p. (But this is possible if the graph is linearly

 ordered or some linear order is definable by an MS formula).

Definition : Adding these cardinality set predicates to MS logic gives

Counting monadic second-order logic (or CMS): all good properties of

MS logic hold for it.

(Adding an equicardinality set predicate to MS would spoil everything.)

 50

Edge set quantifications increase the expressive power

Incidence graph of G undirected, Inc(G) = (VG ∪ EG, incG(.,.).)

incG(v,e) ⇔ v is a vertex of edge e.

Monadic second-order formulas written with inc can use quantifications

on sets of edges : they define MS2 –expressible graph properties.

 The existence of a perfect matching or a Hamiltonian circuit is

 MS2 -expressible but not MS-expressible.

Definition : A set L of finite graphs is MS-definable (MS2 –definable) if

L = { G finite / G ⎜= ϕ } (L = { G finite / Inc(G) ⎜= ϕ }) for a fixed

MS sentence (a formula without free variables) ϕ.

 51

Recognizability Theorem : (1) A language (set of words or finite terms)
is recognizable (by congruence or automaton) ⇔ it is MS definable

(2) A set of finite graphs is VR-recognizable ⇐ it is CMS-definable

(3) A set of finite graphs is HR-recognizable ⇐ it is CMS2-definable

Proofs: (1) Doner, Thatcher & Wright, (1968 - 1970).

(2) and (3) can be proved together in two ways :

 - by using the Feferman-Vaught paradigm

 - by constructing an automaton on terms by induction on the structure

 of the given formula. This method (see Section 5 below) is better

 for concrete implementation.

 52

The Feferman-Vaught paradigm

Main idea : the validity of an MS formula in the disjoint union of

two relational structures can be deduced from those of finitely

many auxilliary formulas of no larger quantifier-height in each of the

two structures. (A very simple case of the “Composition Method” for

infinite combinations of structures by Feferman & Vaught and Shelah.)

This is inductivity / recognizability.

We consider the easiest case, that of VR-recognizability

 53

Notation : The result of the query defined by formula ϕ with free

variables among X1,…,Xn ,i.e., the set of satisfying assignments in G is

 Sat(G, ϕ, X1,…,Xn) = { (V1,…,Vn) / G ⎜= ϕ(V1,…,Vn) }

Lemma 1 : If f is a quantifier-free mapping on graphs (edge-addition,

vertex relabeling, edge complement) , every ϕ has a Backwards

Translation f #(ϕ) relative to f such that for all G :

 Sat(f (G), ϕ, X1,…,Xn) = Sat(G, f #(ϕ), X1,…,Xn)

 where f #(ϕ) has no larger quantifier-height than ϕ.

 54

Splitting Theorem : One can construct formulas ψi, θi , i = 1,…,p, of no

larger quantifier-height than ϕ such that for all disjoint G and H :

Sat(G ⊕ H, ϕ, X1,…,Xn) is the disjoint union of the sets

 Sat(G, ψi, X1,…,Xn) ◊ Sat(H, θi, X1,…,Xn), i = 1,…,p,

where ◊ combines “partial answers” as follows :

A ◊ B = { (A1 ∪ B1,…,An ∪ Bn) / (A1,…,An) ∈ A , (B1,…,Bn) ∈ B }

Proof : Induction on the structure of ϕ.

Lemma 2 : For each n and h there are finitely many formulas

ϕ(X1,…,Xn) of quantifier-height < h, up to a decidable and sound

equivalence.
Proof : Routine. But yields large number !

 55

Proof of the Recognizability Theorem :

For each h , the equivalence relation such that :

 G ≈ H ⇔ Sat(G, ψ) = Sat(H, ψ) (= ∅ or () , the empty sequence)

 for every sentence ψ of quantifier-height < h

is a type-preserving, locally finite congruence on VR that saturates

the set of graphs defined by ϕ, for each ϕ of quantifier-height < h

 (The same proof works for HR, the algebra of graphs with sources,

 but one more lemma is necessary to handle the fusion of sources

 in parallel composition; sources are represented by constants of

 the logical structures).

 56

Extensions of the proof

1) For counting valid assignments, i.e., for computing, for given G and

fixed formula ϕ the cardinality of the set Sat(G, ϕ, X1,…,Xn), the

Splitting Theorem gives (because of disjoint unions) the recursion :

 ⎜Sat(G⊕H, ϕ, X1,…,Xn) ⎜ =

 Σ i = 1,…,p ⎜Sat(G, ψi, X1,…,Xn) ⎜. ⎜Sat(H, θi, X1,…,Xn) ⎜

2) Similar fact for optimizing functions, defined by :

 MaxSat(G, ϕ, X) = Max { ⎜A ⎜ / G ⎜= ϕ(A) }

 57

Algorithmic consequences of the Recognizability Theorem

MS formulas MS2 formulas
 using edge quantifications

G = (VG , edgG(.,.).) Inc(G) = (VG ∪ EG, incG(.,.))

 for G undirected : incG(e,v) ⇔

v is a vertex (in VG) of edge e (EG)

FPT cubic for clique-width FPT linear for tree-width

 finding a VR-term defining the finding a tree-decomposition

 graph is possible in cubic time is possible in linear time (Bodlaender)

 (Hlineny, Oum & Seymour) (even in LogSpace, Elberfeld et al., FOCS 2010)

 58

Language Theoretical consequences

One can filter out from HR- or VR-equational sets the graphs which do

not satisfy given MS2- or MS-properties and one obtains HR- or VR-

equational sets.

Generalizes : the intersection of a context-free language and a regular

language is context-free.

Consequences for the decidability of logical theories

 The MS2-theory of the set of graphs of tree-width < k is decidable.

 (is a given sentence true in all graphs of tree-width < k ?)

 The MS-theory of the set of graphs of clique-width < k is decidable.

 59

Exercises

1) Write an MS-sentence expressing that the considered simple graph is a tree.

2) Write an MS-formula with free variables x,y,z expressing that, in a tree (undirected

and unrooted), if one takes x as root, then y is an ancestor of z.

3) Write an MS2-sentence expressing that a graph has a Hamiltonian cycle.

4) A nonempty word over alphabet {a,b} can (also) be considered as a directed path

given with unary relations laba and labb representing the sets of occurrences of letters

a and b. Prove that every regular language over {a,b} is MS-definable.

5) A complete bipartite graph Kn,m has a Hamiltonian cycle iff n=m. Construct such a

graph “over” any word in {a,b}+ having at least one a and at least one b. Deduce

from 4) that Hamiltonicty is not MS-expressible.

6) Write an MS2-sentence expressing that a graph has a spanning tree of degree < 3.

Show as in 5) that this property is not MS-expressible.

