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History :  Confluence of  4  independent  research  directions,   

   now  intimately related : 
 

1. Fixed-Parameter Tractable algorithms for parameters reflecting hierarchical 

structurings : tree-width, clique-width. This research started with case studies for 

series-parallel graphs, cographs, partial k-trees. 
 

2. Extension to graphs of the main concepts of Formal Language Theory : 
grammars, recognizability, transductions, decidability questions 

 

3. Excluded  minors and related notions of forbidden configurations  
            (matroid minors, « vertex-minors »). 
 

4. Decidability of  Monadic  Second-Order logic  on  classes  of  finite  graphs. 
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Two  ways   of   considering  graphs       
 

1) A  graph  (finite, up to isomorphism)  is  an  algebraic object,  

   an  element  of  an  algebra  of  graphs  
   (Similar  to  words, elements of monoids) 

 

   2)  A  graph  is  a  logical structure ; 

   graph  properties  can  be  expressed  by  logical  formulas 
   (FO = first-order, MS = monadic second-order, SO = second-order) 
 

 Consequences:  

   a)  Language  Theory   concepts   extend   to  graphs 

   b)  Algorithmic  meta-theorems 
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 An  overview  chart  

 

Graph                   "Context-free" 

operations             sets  of  graphs 

 

Fixed   parameter  tractable 

algorithms             Language  theory 

                      for  graphs  

              Recognizable 

                                 sets of graphs        

Monadic  2nd-order           Monadic  2nd -order  

logic              transductions 
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  Key  concepts  of  Language  Theory  and  their  extensions 
 

Languages Graphs 

Algebraic structure : 
monoid  (X*,*,ε)  

Algebras based on graph operations : ⊕, ⊗, // 
quantifier-free definable operations 

Algebras :  HR,  VR 
Context-free languages : 

Equational subsets of (X*,*,ε) 
Equational  sets  of  the 

algebras   HR,  VR 
Regular languages : 
Finite  automata  ≡ 

Finite congruences   ≡ 
Regular expressions   ≡ 

Recognizable  sets  
of  the  algebras HR, VR 

 
defined by finite congruences 

≡   Monadic Second-order 
definable sets of words or terms

∪ 
Monadic Second-order definable sets of graphs 

Rational and other types of 
transductions 

Monadic Second-order transductions 
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Summary 
1.  Context-free   sets   defined   by   equation  systems          

2.  Two  graph  algebras; tree-width  and  clique-width.        

3.  Recognizability :  an  algebraic notion. 

4.  Monadic second-order  sentences  define  recognizable  sets.  

5.  Fixed-parameter  tractable  algorithms : constructions  of   automata                             

6.  Monadic second-order  transductions. 

7.  Robustness  results : preservation of classes  under  direct and inverse monadic  

     second-order  transductions. Short  proofs  in graph theory.           (black= graph theory) 

8.  Logic  and  graph  structure theory :  Comparing   encoding  powers   of    

      graph  classes   via   monadic second-order   transductions 

9.  Graph  classes   on  which  monadic    second-order  logic  is   decidable 

10.Open questions 



 7 

1.  Equational   sets    (generalization  of  context-free  languages) 

 
Equation  systems  =  Context-Free  (Graph)  Grammars   

in  an  algebraic  setting 
 
 

In   the  case  of   words,   the  set  of  context-free  rules  

X  → a X Y ;    X  → b  ;  Y  → c Y Y X ;   Y  → a 
 

is equivalent to  the system  of  two  equations: 

    X  =  a X Y     ∪    { b }  

    Y  =  c Y Y X    ∪        { a } 

 

where   X   is  the language generated  by   X      (idem for Y  and  Y). 
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In  arbitrary  algebras   (  in graph  algebras)   we consider  equation systems  like: 

 

  X  =  f( k( X  ), Y  )     ∪   { b }  

  Y  =  f( Y , f( g(Y ), m( X )))   ∪   { a } 

where : 

 f      is  a  binary  operation,   

g, k, m    are  unary operations on  graphs,   

a, b     denote  basic objects      (graphs  up  to  isomorphism).  

 

An  equational set  is  a component  of the least  solution  of such  an  

equation system.  This  is  well-defined in any  algebra. 
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 The  general  algebraic  setting 
 

F :  a  finite  set  of  operation  symbols  with (fixed) arities, called  a  signature 

M  = < M, (fM)f ∈ F >  :   an  F-algebra. 

P(M)  its power-set  algebra  with domain  P(M)  and  operations  extended to 

sets :  fP(M)(A,B) =  { fM(a,b)  /  a ∈ A, b ∈ B }. 

 

Equation   systems   of   the   general   form : 

S   =  <  X1 = p1, …, Xn  = pn >  

X1,…,Xn  are  unknowns  (ranging over sets)  

p1,…,pn are  polynomials  for example : 

   f( k( X1),X2)  ∪  f(X2, f( g(X3), X1)))  ∪  c  
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Its   solutions   are   the   fixed-points   of   the  (recursive)  equation : 

X  =  SP(M)(X)                      (1)               where   X  =  (X1,…,Xn)   

SP(M)(X) : = (p1P(M)(X) ,…, pnP(M)(X)) 

 

The   set   P(M)n  ordered   by   component-wise  inclusion  is  ω-complete,   

the  mapping   SP(M)  is  monotone  and  ω-continous,  hence   Equation (1)  

has   a   least  solution  defined   by  iteration : 

µX.SP(M)(X)    =  U i >0 SP(M)(X)i(∅, …,∅)        (increasing sequence)   

         

An  equational  set  of  M  is  a  component  of  µX. SP(M)(X)     

for   some  equation  system  S  
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Classical  examples  

Algebra          Equational   sets  
 

<A* , ., ε , a,b,…,d>                       Context-free  languages 

 

<A* , ε , (λu∈A*.ua)a∈ A >               Regular  languages 

 

T(F), terms  over F,  (initial F-algebra)   Regular  sets  of  terms  

 

<Nk, + , (0,…,0), … (0,…,1,0,…,0) …>    Semi-linear  sets  =  

finite  unions  of  sets  { u + n1.v1+…+ np.vp  ⎜ n1,…,np ∈ N } 

for  u,v1,…,vp ∈ Nk 
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Properties  of context-free  languages  valid  at  the  algebraic  level  

1)  If  K and L  are  equational  sets  of  M, so are   K ∪ L  and  fP(M)(K,L). 

2)  The   emptiness  of  an  equational  set  is  decidable  

Proof :  A  system  S  can  be  solved  in  P(T(F))  where  T(F)  is   the    

F-algebra  of  terms  over  F.  

 “Transfer”   of  least  fixed-points   by   homomorphisms :  

If   h : M’    M    then    h(µX.SP(M’)(X))  =  µX.SP(M)(X) 

Hence, µX.SP(M)(X) =  valM(µ X.SP(T(F))(X))   (valM = value mapping : T(F)   M ) 

Each  component  of  µX.SP(T(F))(X) is a  context-free  language (terms are 

words  written  in  Polish  prefix  notation).  Emptiness   can   be  checked. 
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3)  If  M  is “effectively given”  and  the components  of  µX.SP(M)(X)  are all 

finite sets, µX.SP(M)(X)  can  be computed   (by  straightforward  iteration  and  by 

stopping   as   soon  as   SP(M)(X)i(∅,…) = SP(M)(X)i+1(∅,…) ). 

 

4)  Finiteness   test  (with  some  natural   “size” conditions). 

 

5)  For every context-free  language  L  over k  letters :  a,…,d,  the set of k-

tuples  (⎜u⎜a, …., ⎜u⎜ d )  in  Nk  for  all  u  in  L  is  semi-linear  (using  transfer  

theorem  for   least   fixed-points;  “Parikh’s Theorem”). 

Here : each  function  f  has  a  weight  w(f)  in  Nk , the weight  w(t)  of  a  

term t  is  the  sum  of  weights of  its  symbols ; if  L  is  equational  w(L)  is semi-

linear. 
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2.  The  graph algebras   HR   and    VR 
 

We  define  two  graph algebras   Equational  sets  of graphs, two 
generalizations  of  context-free  languages. 
 

HR operations :  Origin: Hyperedge Replacement  hypergraph   grammars  
associated  graph  complexity  measure : tree-width 

 

Graphs have  distinguished vertices called sources, (or terminals or boundary vertices) 

pointed  to  by  source  labels  from  a  finite set  :    {a, b, c,  ..., d}. 

Binary operation(s)  : Parallel  composition 

G // H     is  the  disjoint  union of  G  and  H  and sources  with  same  label  are   fused.  

(If  G  and  H  are  not  

disjoint,  one   first  makes   

a  copy  of  H 

disjoint  from  G). 
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Unary operations   :     

 Forget   a   source   label  
     

    Forgeta(G)   is  G  without  a-source:   the  source  is  no  longer  distinguished ;  

(it  is  made  "internal"). 

       Source renaming : 
 

Rena     b(G)  exchanges  source  labels  a  and b     

(replaces  a  by  b   if  b  is not  the label of any source) 
 

Nullary operations   denote   basic graphs  : edge  graphs,  isolated  vertices. 
 

 

Terms  over  these  operations  define  (or denote)  graphs  (with or without sources) 
 



 16

Example : Trees  

Constructed  with  two  source  labels, r  (root)  and   n  (new root).  

Fusion   of   two   trees   

at  their  roots  :  

 

 

 
 

  

 

 

 

 

 

Trees   are  defined  by  :    T =  T // T  ∪  extension(T)  ∪  r  

 

Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root"  as  current  root : 

e  =  r  •_________•  n 

Renn         r  (Forgetr (G // e ))  
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Example : (Directed)  series-parallel  graphs  
  defined   as  directed  graphs   with  sources  1  and  2,   

  generated from  e = 1          2  by  the operations  //  (parallel-composition)   

and  the   series-composition   defined   from  the  basic  operations by : 

G • H =  Forget3(Ren2        3 (G) // Ren1      3 (H)) 

Example  :  

 

  1 •        G              •        H                            •  2 

        3 

 

   1   •                   • 2 

 

Their   defining   equation   is  :      S  =  S // S  ∪  S • S  ∪  e  
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Relation  to   tree-decompositions   and    tree-width 

 

 

                                                  Tree   T 

 

         Graph  G                                                                                 Tree-decomposition  

                   (T,f)   of   G  

Dotted  lines  - - - -   link  copies  of  a  same  vertex.  

Width  = max. size  of  a  box  -1.      Tree- width    =  min.  width  of   a  tree-dec. 
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Proposition:    A  graph  has   tree-width  ≤  k   

if  and  only if   it  can  be  constructed   from  edges   by   using   

the  operations  // , Rena     b  and  Forgeta   with  ≤  k+1  labels  a,b,….   

 

Consequences :  

 

 - Representation  of  tree-decompositions  by  terms.  

 - Algebraic  characterization  of  tree-width. 

 - The  set  of  graphs  of  tree-width  at  most  k  is  equational  for  each  k. 

 - Every  HR  equational  set  of  graphs  has   bounded   tree-width   
(an  upper  bound  is  easy   to  obtain  from  a  system  S : just count  the  number   

of  source  labels  used  in  S). 
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From  an  algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc))            (ab  denotes  an edge from  a   to  b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                         The   tree-decomposition  associated  with  this term. 
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Negative   facts   about   HR-equational  sets  
 

  - The set  of  all  finite  graphs  is  not  HR-equational. 
 

  - Neither  is  the  set  of  all  square  grids    (planar graphs of degree 4) 
 
       - Parsing  is   NP-complete  for  certain  fixed  equation systems  

(graphs  of   cyclic  bandwidth  <  3) 
 

    But  finding  a  tree-decomposition  of  width < k   (if  it exists)  can   be  
done  in  “linear”  time   ( O(2p.n)  where n = number of vertices  and  p  =  32.k2 ) 

 

 Examples  of  HR-equational  sets: 
 

 -  Every context-free  language  but  also  the  language  {anbncn  ⎜  n  > 0 }. 
 

 -  Outerplanar  graphs (having  a planar  embedding  with  all vertices on the  infinite  
(external)  face)  and   Halin  graphs  (planar,  made  of  a  tree  with  a  cycle  linking all 
leaves). 
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The   VR   graph  algebra      
 

Origin : Vertex Replacement  graph  grammars. 

  associated complexity measure:  clique-width. 
 

 

Graphs  are  simple, directed  or  not   
    (the definitions can be extended to graphs  with  multiple  edges)  

We   use   labels  :  a , b , c,  ..., d.    

Each  vertex  has  one  and  only  one  label ;   several  vertices  may  

have  same  label              (whereas  a  source  label  designates  a  unique vertex) 
 

One   binary   operation:   disjoint  union    :   ⊕ 
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Unary   operations:  Edge-addition  denoted   by   Adda,b 
 

Adda,b(G)   is  G  augmented  with  edges  between  every   a-port  and every  b-

port (undirected case)  or  from  every  a-port  to  every  b-port   (directed case).  

 

 

      H = Adda,b(G) ; only  5  edges added  

The   number  of  added  edges  depends  on  the  argument graph. 
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Vertex  relabellings :  
Relaba       b(G)  is  G with every vertex  labelled by a  relabelled into b 

 

Basic graphs   are  those  with  a  single  vertex. 

 

Definition: A  graph  G  has  clique-width ≤  k ⇔ it can be constructed from basic 

graphs  with  the  operations ⊕, Adda,b  and  Relaba       b  by using  k labels. 

        Its  clique-width  cwd(G)  is  the   smallest  such  k 

 

Clique-width  has  no  combinatorial  characterization (like tree-width). It is defined in terms of  

few  very  simple  graph  operations, giving  easy  inductive  proofs. 

Equivalent notion: rank-width (Oum and Seymour) with better structural and algorithmic 

properties  (characterization  by  excluded vertex-minors, exact cubic decomposition algorithm). 
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 Example  1  : Cliques  have  clique-width  2.  

 
 

Kn  is   defined  by  tn  where  tn+1  =   Relabb      a( Adda,b(tn ⊕ b)) 
 

Cliques  are  defined  by  the   equation : 

K =  Relabb        a( Adda,b(K ⊕ b))  ∪  a  
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Example  2  :  Cographs   
 

They  are  generated  by  ⊕   and  ⊗  (the  complete  join) defined  by : 

G ⊗ H  =  Relabb      a( Adda,b (G ⊕ Relaba      b(H))) 

            = G ⊕ H  with  “all  possible”  undirected  edges  between  G  and  H. 
 

Cographs are defined  by : 
 

C  =  C ⊕ C     ∪   C ⊗  C   ∪  a  
 

Fact :  A  simple  undirected  loop-free  graph  is  a  cograph  if  and  only if  it  has 

clique-width  at  most 2. 
 

Example  3  :  Distance  hereditary  graphs  have  clique-width  at  most  3  (and 

are  the graphs  of rank-width 1).    
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Proposition : (1) Bounded  tree-width   implies   bounded   clique-width  

(cwd(G) < 22twd(G)+1  for   G   directed), but   not   conversely.  
 

(2) Unlike tree-width, clique-width is  sensible  to  edge directions : Cliques 

have  clique-width  2,  tournaments  have  unbounded  clique-width. 
 

Classes  of  unbounded tree-width  and  bounded  clique-width: 
 

 Cographs (2), Distance hereditary graphs (3),  

 Graphs  without  {P5 , 1⊗P4}  (5),   or  {1⊕P4 , 1⊗P4} (16)   

as   induced   subgraphs.  
(many  similar  results  for  exclusion  of  induced  subgraphs  with 4 and 5 vertices).  

 
Classes  of unbounded clique-width : 

 Planar graphs of degree 3,   Tournaments,    Interval graphs,  

 Graphs   without   induced   P5.                  (Pn = path  with  n  vertices)
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Summary  :  Two  algebras   of   (finite)  graphs   HR  and  VR    
 Two  notions  of  “context-free  sets”  :  the equational  sets  of  algebras  HR  
and VR,  (and   below, two  notions  of  recognizable  sets,  based  on congruences). 
 

   1)  Comparison  of  the  two  classes : 
 

 Equat(HR)  ⊆  Equat(VR)   
 

    =    sets  in  Equat(VR)  whose  graphs  are  without   
     some  fixed  Kn,n   as  subgraph. 
 

2) Why not using  a  third  algebra ?    
       One  could,  but  Equat(HR)  and Equat(VR)  are  robust  in the following 
sense : 

 

  *  Iogical  characterizations  independent  of   the  initial definitions, 
*  stability  under  certain  logically  defined   transductions,   
*  generation  from   trees.    
    

    For  other  algebras, we  would  loose  these  properties  (proofs  below). 
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3) Properties  following   from the  algebraic  setting : 
 

- Closure  under  union, // ,  ⊕  and  the unary operations 
   - Emptiness  and  finiteness   are decidable (finite  sets  are  computable) 
   - Semi-linearity  Theorem   (extends  “Parikh’s  Theorem” ) 
   - Derivation  trees 
   - Denotation  of  the  generated  graphs  by  terms, 
   - Upper  bounds  to  tree-width  and  clique-width. 
 
 
   4)  Properties  that do  not  hold  as  we  could  wish : 
 

- The set  of  all  finite  (even  planar)  graphs  is  neither   

    HR-  nor  VR-equational. 

 
   -   Parsing  is  NP-complete    (even  for  some fixed  equation  systems) 
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Exercises   
  
1)     Prove  that   {anbncn  ⎜  n  > 0 }   and   the  set  of  square  words (ww)  are   HR-equational.  
 
2)     Construct  HR equation systems for  the  outerplanar  and  the  Halin  graphs. 
 
3)     Construct  an  HR equation system  for  the  series-parallel  graphs  having  an  even  number  of 
vertices. 
 
4)     Construct  a  VR equation system  for  the  trees  having  an  number  of  nodes  multiple  of  3. 

 
5) Construct  a  VR  equation  system  for  the  cographs  having  an  even number  of  edges. 

 
6)     Prove  that   the  non-context-free   language   {an  ⎜  n=2p for some  p> 0 }  is  HR-equational  for 
some  appropriate  algebra  extending   the  monoid  of   words.   
 
7)     Complete  the  proof  of   the proposition  page  19 :  transform  a  tree-decomposition  of width k  

into  a  term  of  the  HR  algebra  defining   the  same  graph  and using  k+1  source labels. 
 

8)  Prove  that  the  proposition  of  page 19  holds without  the source renaming operations.
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3.   Recognizable  sets  : an   algebraic   definition 
 

M = < M, (fM)f ∈ F >  :   an  F-algebra   where   F  is  a  finite  signature. 

Definition :  L  ⊆ M   is   (M-)recognizable  if  it  is  a  union  of  equivalence 

classes  for  a  finite  congruence   ≈   on   M. 

Congruence   =  equivalence  relation  such  that : 

m ≈ m’   and     p ≈ p’     ⇒     fM(m,p) ≈ fM(m’,p’).   

 Finite   means  that   M / ≈   is  finite,  i.e.,  ≈   has  finitely  many  classes. 

Equivalently, L = h-1(D)   for  a   homomorphism  h :  M → A,  where  

A    is   a   finite   F-algebra    and    D ⊆  A.  

   

Rec(M)  =  the  recognizable  subsets  of  M.  This  notion   is  relative  to  the 

algebra   M  (not  only  to   the  underlying  set   M). 
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Classical  examples  

Algebra          Recognizable    sets  
 

<A* , ., ε , a,b,…,d>                       Regular  languages 
             (syntactic  monoid) 
 

<A* , ε , (λu∈A*.ua)a∈ A >               Regular  languages 
             (Myhill-Nerode)  
 

T(F), terms over F, (initial F-algebra)    Regular  sets  of  terms  
On  terms,  h  (cf. page  31)  is  the  run  of  a  finite  deterministic  bottom-up  

automaton 

<Nk, + , (0,…,0), … (0,…,1,0,…,0) …>    Finite  unions  of   Cartesian 

    products  of   k  sets  { u + n.v  ⎜ n  ∈ N }       for  u,v ∈ N 
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The   algebras  HR  and  VR  have  infinite  signatures 
We  introduce  two  notions  of  type  (or  sorts  in  a  many-sorted   framework). 

For  HR :  G   has  type  τ(G)  =  the  set  of  labels  of  its   sources.  

τ   has  a  homomorphic  behaviour :  

      τ(G//H) = τ(G) U τ(G) ; τ(Forgeta(G)) = τ(G) - {a} ;  

τ(Rena     b(G))  =  τ(G)[a/b, b/a]. 

For  VR  : the  type  is  π(G)  =  the  set  of  vertex  labels  having  an  occurrence.  

π  has  a  homomorphic  behaviour : 

τ(G ⊕ H)  = τ(G)Uτ(H) ; τ(Adda,b(G)) = τ(G) ;  

τ(Relaba       b(G) )  =  τ(G)[b/a]. 
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For  defining  recognizability  of  set   L,  we  require  that   the  congruence  ≈  is   

type  preserving   (for  τ  or  π  according  to  the case,  HR  or  VR) : 

   G ≈ H    ⇒  τ(G)  =  τ(H) 

locally  finite  :  it  has  finitely  many  classes  of  each  type. 

and    L    is  a  union  of  classes  (possibly  of  different  types). 

 

 

We can  also  use  many-sorted  algebras  HR  and  VR  with countably many 

sorts, and  τ(G)  and  π(G)  as  respective  sorts   of   a  graph G,  

      (because  the  type  function  has  a  homomorphic  behaviour). 
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Two  notions  of  recognizable  sets  of  graphs, for  algebras  HR  and  VR.  
 

 

Comparison  of the two classes : 
 

 Rec(VR)  ⊆  Rec(HR)   
 

      =   sets  in  Rec(HR)  whose  graphs  are  without   
       some  fixed  Kn,n   as  subgraph.    (B.C. & P. Weil). 
Recall :  
 

 Equat(HR)  ⊆  Equat(VR)   
 

    =    sets  in  Equat(VR)  whose  graphs  are  without   
        some  fixed  Kn,n   as  subgraph. 
 
Intuition  :  VR  has  more  powerful  operations  than  HR, but  they  make 

difference  only  for  graphs  without  some  Kn,n   as  subgraph. 
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Properties  of  recognizable  sets  that  follow  from the  algebraic setting : 
 

  -  Closure  under  ∪, ∩   and   -  (difference), 

-  under inverse homomorphisms  and  inverse  unary derived operations. 
    (Proofs  : clear  from  the definitions). 

 
-  Filtering  Theorem : The  intersection  of  an  equational  set  and  a 

recognizable  one  is   equational   
 

    with  effective  constructions. 
    

           (Proof : cf.  2-colorability  of  series-parallel  graphs detailed below). 
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Properties  of  recognizable  sets  of  graphs  that  do  not  follow  

“algebraically”   

 
Closure  under  the  binary  operations  of  the  algebras : //, ⊕, 

under  the unary operations  fga, rena      b, relaba       b 

 

 

Remarks:  (1) This closure  is  false  for  Adda,b  but  is  true  if  some  “harmless” 

restriction  of   the use  of   this  operation  is made. 

 

 (2)  Compare  with  regular   languages:   

  it  is  more  difficult   to  prove  their closure  under  concatenation   

  than  under  the  Boolean operations ;  

  this  is  reflected   by   the  sizes  of  syntactic  monoids. 
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Properties  that  do  not  hold  as  we  could  wish  or  expect: 
 

-  Emptiness  is  not  decidable  (because  of  infinite  signatures). 

 

  -  Rec  and  Equat  are  incomparable  (for HR  and  VR).    

 

  -  Every  set  of   square  grids  is  HR- and  VR-recognizable.  

 

-  There  are  uncountably  many  recognizable  sets  and  no  

characterization  by  finite automata   or  logical  formulas. 
(To  be contrasted  with  the  cases  of words  and  terms).
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  Inductive  proofs  and  computations 

 

Based  on  equations  like the one that defines  Series-Parallel graphs : 

S  =  S // S   ∪  S  • S  ∪  e 

Examples :  “Proof  that  all  series-parallel  graphs  are  connected”, 

 “Proof   that  all  series-parallel  graphs  are  planar”, 

 “Number  of  directed  paths  from  Entry  to  Exit  in a  given  

  series-parallel graph”. 

 

Sometimes, auxiliary  properties  and / or  functions  are  necessary. 
 

Recognizability   means  “finitely  many  auxiliary  properties suffice” 
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Inductive  computation  :   

  Test  of  2-colorability   for  series-parallel  graphs 

Not  all  series-parallel  graphs are  2-colorable  (see  K3)  
 

G, H    2-colorable does not imply that  G//H  is  2-colorable  (because  K3=P3//e). 
 

One can check  2-colorability  with  2  auxiliary  properties : 
 

        Same(G)  =  G is 2-colorable with sources of the same color, 
           Diff(G)    =  G is 2-colorable with sources  of different colors 
 
by  using  the  rules :  
 
    Diff(e)  =  True  ;  Same(e)  = False 
 

Same(G//H)  ⇔  Same(G) ∧ Same(H) 
Diff(G//H)  ⇔   Diff(G) ∧  Diff(H) 
 
Same(G•H)  ⇔  (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H)) 
Diff(G•H)   ⇔  (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧  Same(H)) 
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Application  1  : Linear  algorithm 
 

For every  term t, we can compute, by running a finite deterministic bottom-up 
automaton  on   t,  the  pair  of   Boolean  values   (Same(Val(t)) ,  Diff(Val(t)) ).   

 

 We  get  the answer  for  G  = Val(t)   (the graph  that  is  the  value  of  t )  regarding 
2-colorability. 
 

Example : σ  at node u means that  Same(Val(t /u)) is true,  σ   that it is false,   
δ  that  Diff (Val(t /u))  is true, etc… Computation is done  bottom-up  with the  rules  of   
previous page. 
            
 
 
 
 
 
 
 
 
 
 
 The  graph   is   not   2-colorable. 
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Application 2  :  Equation  system  for  2-colorable  series-parallel  graphs 
 
Sσ,δ  =  the set  of  series-parallel  graphs  that  satisfy   Same (σ)  and  Diff  (δ) 
Sσ,δ  =   the set  of   those  that  satisfy  Same  and  not   Diff , etc  … 
 
From the equation :  S  =  S // S  ∪  S • S  ∪  e ,  we  get  the equation  system : 
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In   equation 
 
 
 

Sσ,δ    is  in  all  terms  of  the  righthand  side :  it  defines  (least solution)   
the  empty  set.  This  proves  (a  small  theorem) : 
 

Fact : No  series-parallel  graph  satisfies  Same  and   Diff. 
 

We can simplify the system {(a), (b), (c), (d)}    into : 

 

 

 

 

 

By replacing  Sσ,δ  by  Tσ, Sσ,δ by Tδ, by  using commutativity  of  //, we get   the  

system (for  the  2-colorable  

series-parallel  graphs) 
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Recognizability  and  inductive  sets  of  properties  
 

Definition : A  set  P  of  properties  on  an  F-algebra  M  is  F-inductive   if,  for  
every  p ∈ P  and   f ∈ F, there exists  a  Boolean  formula  B  such  that  : 
 

p(fM(a,b) )  =  B […,q(a),…,q'(b),….]   for  all  a  and  b  in  M 
   

     q, q' ∈ P ,  q(a),…, q(b)  ∈  {True, False}. 
 

Proposition :  A  subset  L of  M  is  recognizable  if  and  only if  it  is  the 

set  of elements  that  satisfy a property belonging to a  finite  inductive  set  

P  of properties  
 

  Inductive  sets  formalize  the  notion  of  “auxiliary  properties”   

  in  proofs  by  induction. 
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Inductive  sets  of   properties  and  automata  on  terms 

 

The simultaneous computation of  m inductive properties can  be  

implemented by a finite deterministic  bottom-up automaton  with  2m  states 

running  on  terms  t.  
 

This computation  takes time O( ⎜t  ⎜):  this  fact  is  the key  to  fixed-

parameter  tractable  algorithms. 
 

Remark : Membership  of  an element  m  of   M  in  a  recognizable  set  L  

can   be  tested  by  such  an  automaton  on   any   term   t   in  T(F)  defining  m   

       (in some  term  if  L  is  equational, i.e. “context-free” ).
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4.   Monadic Second-Order (MS) Logic  
 

A  logical  language  that  specifies  inductive  properties  and  

functions  
 
=  First-order  logic  on  power-set  structures  
 
=  First-order  logic  extended  with  (quantified)  variables  

denoting subsets  of  the  domains. 
 
 
MS  (expressible)  properties :   transitive closure,  properties  of paths,   
  connectivity, planarity   (via Kuratowski,  uses connectivity),   k-colorability. 
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Examples  of   formulas   for     G  =  ( VG , edgG(.,.) ), undirected 
 
 

G  is  3-colorable  : 
 
∃X,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  
    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 
      } ) 
 
G  (undirected)  is  not  connected : 
 
∃X ( ∃x ∈ X  ∧  ∃y ∉ X  ∧  (∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∈ X)  ) 
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Transitive  and  reflexive  closure  :   TC(R, x, y) :   
 
 ∀ X { “X is R-closed”  ∧  x ∈ X  ⇒ y ∈ X  } 
 

       where   “X is R-closed”    is defined  by :   
  ∀u,v (u ∈ X  ∧  R(u,v) ⇒ v ∈ X)  
 
The  relation  R  can  be  defined   by  a   formula  as  in  : 
 
∀x,y (x ∈ Y  ∧  y ∈ Y ⇒   TC(“u ∈ Y  ∧ v ∈ Y ∧ edg(u,v)”, x, y) 
 
expressing  that   G[Y ]  is connected    (note  that  Y  is  free  in  R). 
 
Application :  G   contains  (fixed)   H  as  a  minor   
where   VH = {1,…,p} : there  exist  disjoint  sets  of vertices  X1,…, Xp 
in  G   such   that   each   G[Xi]  is   connected  and,  whenever  if  i -- j  in  H,  
there  is  an  edge  between   Xi   and   Xj. 
 
Consequence :  planarity  is  MS-expressible  (no minor  K5  or  K3,3). 
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Provably  non-expressible  properties  
 
-   G  is  isomorphic  to  Kp,p  for  some  p   (not  fixed; needs  equipotence  of  two 

sets, hence  quantification  over  binary relations  to  find  if  there is  a  bijection). 

 
-  G  has  a  nontrivial  automorphism,  or  has  all vertices  of  same degree.     
 
-  Card(X)  is a multiple of  p.  (But  this  is  possible   if  the  graph is  linearly   

   ordered  or  some  linear  order  is  definable  by  an  MS  formula). 
 
 
Definition : Adding  these  cardinality  set  predicates  to  MS  logic  gives 

Counting  monadic  second-order  logic  (or  CMS):  all good  properties  of  

MS   logic   hold   for  it.  

 

(Adding   an  equicardinality  set  predicate  to  MS  would  spoil  everything.) 
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Edge  set  quantifications  increase   the  expressive  power   
 

Incidence  graph  of  G  undirected,  Inc(G)  =  ( VG ∪ EG, incG(.,.).) 
 
incG(v,e)   ⇔   v  is  a  vertex  of  edge   e. 
 
Monadic  second-order   formulas   written  with  inc   can  use  quantifications   

on  sets  of  edges  :  they  define   MS2 –expressible  graph  properties. 

 
 The  existence  of  a  perfect  matching  or  a  Hamiltonian  circuit  is  

 MS2 -expressible   but   not   MS-expressible. 

 
Definition :  A  set  L  of  finite  graphs  is  MS-definable  (MS2 –definable)  if  

L  =  { G   finite  /    G  ⎜=  ϕ  }  ( L  =  { G   finite  /    Inc(G)  ⎜=  ϕ  }  )  for  a  fixed  

MS   sentence  (a  formula  without   free  variables)   ϕ.  
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Recognizability  Theorem :  (1) A  language (set  of  words  or  finite terms) 
is  recognizable  (by congruence  or  automaton)  ⇔   it  is  MS  definable  

 
(2) A set of finite graphs  is  VR-recognizable ⇐  it  is  CMS-definable  
 
(3) A set of finite  graphs  is  HR-recognizable ⇐ it  is CMS2-definable  
 
 

Proofs: (1)  Doner, Thatcher &  Wright, (1968 - 1970). 
 

 

(2)  and  (3)  can  be  proved   together  in   two   ways :  

 - by  using  the  Feferman-Vaught   paradigm   

 - by  constructing  an  automaton  on  terms  by  induction  on  the  structure   

   of  the  given  formula.  This  method  (see Section 5 below)  is  better    

   for   concrete  implementation.  
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The  Feferman-Vaught  paradigm   
 

Main  idea : the  validity  of   an  MS  formula  in  the  disjoint  union  of   

two  relational  structures   can  be  deduced  from   those  of   finitely  

many  auxilliary formulas  of  no  larger   quantifier-height  in  each  of   the   

two  structures.    (A  very  simple  case  of  the  “Composition Method”   for  

infinite   combinations   of   structures  by  Feferman & Vaught  and  Shelah.) 

 

This   is   inductivity  / recognizability. 
 

We    consider   the  easiest   case,  that  of   VR-recognizability 
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Notation :   The   result  of   the  query   defined  by  formula  ϕ  with  free 

variables   among  X1,…,Xn ,i.e.,  the  set  of  satisfying   assignments  in  G  is  

  Sat(G, ϕ, X1,…,Xn)  = { (V1,…,Vn)    /  G   ⎜=  ϕ( V1,…,Vn) }   

 

 

Lemma 1 : If  f  is  a  quantifier-free   mapping  on  graphs  (edge-addition, 

vertex relabeling,  edge complement) , every ϕ   has   a   Backwards  

Translation  f #(ϕ)  relative  to  f   such  that  for  all   G  : 
 

    Sat(f (G), ϕ, X1,…,Xn)  =   Sat(G, f #(ϕ), X1,…,Xn)   
 

 where   f #(ϕ)   has  no larger  quantifier-height   than   ϕ. 
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Splitting  Theorem :  One can construct formulas  ψi, θi , i = 1,…,p,  of  no 

larger quantifier-height  than  ϕ   such  that  for  all  disjoint  G  and  H  : 

Sat(G ⊕ H, ϕ, X1,…,Xn)  is  the  disjoint  union  of   the sets  

    Sat(G, ψi, X1,…,Xn)  ◊  Sat(H, θi, X1,…,Xn),  i = 1,…,p, 

where   ◊   combines  “partial  answers”  as  follows :   

A ◊ B = { (A1 ∪ B1,…,An ∪ Bn)  /  (A1,…,An)  ∈  A , (B1,…,Bn)  ∈  B }   

Proof :  Induction  on  the  structure   of  ϕ.  

 

Lemma  2  :  For  each  n  and  h  there  are  finitely  many  formulas  

ϕ(X1,…,Xn)  of  quantifier-height  <  h,  up  to  a  decidable  and  sound 

equivalence.   
Proof :  Routine.  But  yields  large  number  ! 
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Proof  of  the  Recognizability  Theorem  : 
 

For  each  h , the  equivalence  relation  such  that  : 

  G ≈ H  ⇔  Sat(G, ψ)  =  Sat(H, ψ)  ( =  ∅  or ( ) , the empty sequence)   

 for   every   sentence   ψ  of  quantifier-height  <  h  

is  a  type-preserving, locally  finite  congruence  on  VR   that   saturates 

the  set  of  graphs  defined  by  ϕ,  for  each  ϕ  of  quantifier-height  < h  

 
 (The   same  proof  works  for  HR,  the  algebra  of   graphs  with  sources,  

 but  one  more  lemma  is  necessary  to  handle  the   fusion  of  sources   

 in   parallel  composition;  sources  are  represented  by constants  of   

 the logical structures). 
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Extensions   of   the  proof  
 

1) For counting  valid  assignments, i.e.,  for  computing,  for  given  G  and 

fixed  formula  ϕ  the  cardinality  of  the  set  Sat(G, ϕ, X1,…,Xn),  the 

Splitting Theorem  gives  (because  of   disjoint  unions)  the  recursion  :  

  ⎜Sat(G⊕H, ϕ, X1,…,Xn) ⎜  =   

    Σ i = 1,…,p   ⎜Sat(G, ψi, X1,…,Xn) ⎜. ⎜Sat(H, θi, X1,…,Xn) ⎜   

2) Similar  fact   for  optimizing   functions, defined  by  : 

 MaxSat(G, ϕ, X)  =  Max { ⎜A ⎜   /  G   ⎜=  ϕ(A) }   
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Algorithmic  consequences   of  the  Recognizability  Theorem  
 

MS  formulas             MS2  formulas    
                        using   edge  quantifications 

 

 

G = ( VG , edgG(.,.).)     Inc(G) =  ( VG ∪ EG, incG(.,.) ) 

        for  G  undirected :  incG(e,v)   ⇔    

v  is  a  vertex  (in VG )  of edge  e  (EG) 
 
FPT cubic for clique-width  FPT   linear   for   tree-width  

 finding  a VR-term defining the  finding  a  tree-decomposition 

 graph  is possible  in  cubic  time  is possible  in  linear time (Bodlaender) 

 (Hlineny, Oum & Seymour)             (even  in  LogSpace, Elberfeld et al., FOCS 2010) 
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Language  Theoretical  consequences  
  

One  can  filter out  from  HR-  or  VR-equational  sets  the  graphs  which  do  

not satisfy  given  MS2-  or  MS-properties  and  one  obtains  HR- or VR-

equational  sets. 
 

Generalizes :  the intersection  of  a  context-free  language  and  a  regular   

language  is   context-free. 
 

Consequences  for the  decidability  of  logical  theories 
 

 The  MS2-theory  of  the  set  of  graphs of  tree-width  < k  is  decidable. 

      (is  a  given  sentence  true  in  all  graphs of  tree-width  < k  ?) 

 The  MS-theory of  the  set  of  graphs of  clique-width  < k  is decidable. 
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Exercises 
 

1)  Write  an  MS-sentence expressing   that   the considered  simple  graph  is  a  tree. 

2)  Write an MS-formula  with  free variables  x,y,z  expressing that, in  a  tree (undirected 

and  unrooted), if one takes  x  as  root, then  y  is  an  ancestor  of  z. 

3)  Write an  MS2-sentence expressing  that  a graph has  a  Hamiltonian cycle. 

4)  A nonempty  word  over alphabet {a,b} can  (also)  be  considered as a directed path 

given with unary relations  laba  and  labb  representing  the sets  of  occurrences  of  letters  

a  and  b.     Prove  that  every  regular language  over  {a,b}  is  MS-definable. 

5)  A  complete bipartite  graph  Kn,m  has  a  Hamiltonian  cycle  iff n=m. Construct  such a  

graph  “over”  any  word  in  {a,b}+  having  at  least  one  a  and  at  least  one b. Deduce 

from 4)  that  Hamiltonicty  is  not  MS-expressible. 

6) Write an MS2-sentence expressing that a graph  has  a  spanning  tree  of  degree  <  3.  

Show  as   in   5)  that  this  property  is  not  MS-expressible.  


