Monadic second-order logic for graphs
Language and Graph Theoretical applications
(Part 3)

Bruno Courcelle

Université Bordeaux 1, LaBRI & Institut Universitaire de France

Reference: Graph structure and monadic second-order logic, book to be published by Cambridge University Press, readable on:
http://www.labri.fr/perso/courcell/ActSci.html
An overview chart

Graph operations

Fixed parameter tractable algorithms

Language theory for graphs

Monadic 2^{nd}-order logic

Graph Theory

Monadic 2^{nd}-order transductions
Summary

8. Logic and *graph structure theory*: Comparing encoding powers of graph classes via monadic second-order transductions

9. Graph classes on which monadic second-order logic is *decidable*

10. Some open questions
6. Monadic second-order transductions

\[\Sigma = \text{finite set of relation symbols with fixed arities} \quad (\rho(R) = \text{arity of } R). \]

\[\text{STR}(\Sigma): \text{finite } \Sigma \text{-relational structures } S = < D_S, (R_S)_{R \in \Sigma} >, \]
\[\text{RS relation on } D_S \text{ of arity } \rho(R). \]

An MS-transduction is a partial function
\[\tau: \text{STR}(\Sigma) \times \text{“data” } \rightarrow \text{STR}(\Gamma) \quad \text{specified by MS formulas.} \]

Basic case: \[\tau: \text{STR}(\Sigma) \rightarrow \text{STR}(\Gamma); \quad T = \tau(S) \text{ is defined “inside” } S \]
by MS formulas.

Examples: The edge-complement; the transitive closure of a directed graph.
Next case: \(T = \tau (S, \text{“data”}) \); the “data” is a tuple \(X_1, \ldots, X_p \) of subsets of the domain of \(S \); these sets are called the **parameters**. Parameters \(X_1, \ldots, X_p \) are constrained to satisfy an MS property.

Examples:

\((G, \{u\}) \quad \mapsto \quad \text{the connected component containing } u. \)

\((G, X, Y, Z) \quad \mapsto \quad \text{the minor of } G \text{ having vertex set } X, \)

resulting from the contraction of the edges of \(Y \) and the deletion of the edges and vertices of \(Z \). (This transduction is **MS\(2,2\)**; see below.)

In the second example, no two vertices of \(X \) should be linked by a path of edges in \(Y \).

\(\tau (S) := \text{the set of all } T = \tau (S, X_1, \ldots, X_p) \)

for all “good” tuples of parameters.
General case: T is defined as above inside $S \oplus S \oplus ... \oplus S$: disjoint copies of S with "marked" equalities of copied elements.
The fundamental property of MS transductions

If \(S \models \tau(S) \)

then \(\tau^\#(\psi) \models \psi \)

Every MS formula \(\psi \) has an effectively computable backwards translation \(\tau^\#(\psi) \), an MS formula such that:

\[
S \models \tau^\#(\psi) \text{ if and only if } \tau(S) \models \psi
\]

The verification of \(\psi \) in the object structure \(\tau(S) \) reduces to the verification of \(\tau^\#(\psi) \) in the given structure \(S \) (because \(S \) contain all the necessary information to describe \(\tau(S) \); the MS properties of \(\tau(S) \) are expressible in \(S \) by MS formulas).

Theorem: The composition of two MS-transductions is an MS-transduction.
Example 1 (without parameters): The *square* mapping δ on words: $u \mapsto uu$

For $u = aac$, we have

$S = \cdot \rightarrow \cdot \rightarrow \cdot$

\[
\begin{array}{ccc}
\cdot & \rightarrow & \cdot \\
a & a & c \\
p_1 & p_1 & p_1 \\

\end{array}
\]

$S \oplus S$

\[
\begin{array}{ccc}
\cdot & \rightarrow & \cdot \\
a & a & c \\
p_1 & p_1 & p_1 \\

\end{array}
\]

In $\delta(S)$, we redefine Suc (i.e., \mapsto) as follows:

$Suc(x,y) : \iff (p_1(x) \land p_1(y) \land Suc(x,y)) \lor (p_2(x) \land p_2(y) \land Suc(x,y))$

$\lor (p_1(x) \land p_2(y) \land "x\ has\ no\ successor" \land "y\ has\ no\ predecessor")$

We also remove the "marker" predicates p_1, p_2.
Example 2: From a term to a cograph

Terms are written with \oplus (disjoint union), \otimes (complete join) and constants x,y,z,\ldots denoting vertices x,y,z,\ldots.

Vertices $= \{x,y,z,u,v,w\} =$ occurrences of constants in the term.

Two vertices are adjacent if and only if their least common ancestor is labelled by \otimes (like y and z, or u and w).

These conditions can be expressed by MS formulas on the labelled tree.
Edge quantification and edge description

There are 2 representations for an input graph and 2 for the output: type 1: \(G = (V_G, \text{edg}_G) \) and type 2: \(\text{Inc}(G) = (V_G \cup E_G, \text{in}_G) \).

Hence 4 types of graph transductions, denoted by:

- \(\text{MS}_{1,1} \) (or \(\text{MS} \) to simplify), \(\text{MS}_{1,2} \), \(\text{MS}_{2,1} \) and \(\text{MS}_{2,2} \)

\(\text{MS}_{i,o} \) means \(i = \text{type of input}, o = \text{type of output} \).

For *sparse* graphs, type 2 is equivalent to type 1.
Example 3: From a tree to its incidence graph (also a tree)

$T = \langle N, \text{edg} \rangle$; we use parameter $\{ r \}$ to make T rooted and directed

$\tau(T, \{ r \}) = \langle N \cup (N - \{ r \}) \times \{ 1 \} , \text{inc}(.,.) \rangle$

$\text{in}(x,y)$ is defined by:

$x = (y,1) \lor \exists z \ [x = (z,1) \land \text{edg}(y,z)$

$\land \ "y \ is \ on \ the \ path \ from \ r \ to \ z" \]$

From trees (or terms) to graphs:

$\text{MS}_{1,1} = \text{MS}_{2,1}$ and $\text{MS}_{1,2} = \text{MS}_{2,2}$.
Main Results (will be made more precise):

(1) MS-transductions preserve bounded clique-width and the (corresponding) class of VR-equational sets.

(2) MS$_{2,2}$-transductions preserve bounded tree-width and the (corresponding) class of HR-equational sets.

Meaning: Robustness of the two graph hierarchies based on clique-width and tree-width.
MS - transductions and MS$_{2,2}$ - transductions are incomparable

Why? For expressing graph properties, MS$_2$ logic is more powerful than MS$_1$ logic (the “ordinary” MS logic).

For building graphs with MS$_{2,2}$ - transductions, we have more possibilities of using the input graph, but we want more for the output: to specify each edge as a copy of some vertex or some edge of the input graph.

Transitive closure is MS = MS$_{1,1}$ but not MS$_{2,2}$

Edge subdivision is MS$_{2,2}$ but not MS

Proofs: Easy since, if S is transformed into T by an MS-transduction:

\[|D_T| \leq k \cdot |D_S| \quad \text{for fixed } k \]
Exercises

1) Construct an MS-transduction that associates with a simple directed graph G the directed acyclic graph D of its strongly connected components. (The vertices of D are chosen among those of G).

2) Let G be undirected. For each k, $G(k)$ is the simple graph with same vertices and an edge $x-y$ iff x and y are at distance at most k. Define an MS-transduction that transforms G into $G(k)$.

3) If G has clique-width $\leq d$, then $G(k)$ has clique-width $\leq f(k,d)$ for some function f. Try to prove this (without looking at the next section). No such function does exist for tree-width.

4) Prove that the transformation of a simple graph G into its incidence graph $\text{Inc}(G)$ is a MS-transduction on graphs of maximal degree d, for each fixed d.
7. Robustness results: Preservation of widths

For every class of graphs C:

1) If C has tree-width $\leq k$ and τ is an MS$_{2,2}$ – transduction, then $\tau(C)$ has tree-width $\leq f_\tau(k)$

Follows from:

C has bounded tree-width $\iff C \subseteq \tau(\text{Trees})$ for some MS$_{2,2}$ – transduction τ (the proof is constructive in both directions)

2) If C has clique-width $\leq k$ and τ is an MS – transduction, then $\tau(C)$ has clique-width $\leq g_\tau(k)$.

Follows from:

C has bounded clique-width $\iff C \subseteq \tau(\text{Trees})$ for some MS – transduction τ (the proof is constructive)
Proof sketch for the logical characterization of bounded clique-width

1) A k-clique-width term is a rooted binary tree with each node labelled by one of the finitely many operations symbols using labels $1,\ldots,k$.

2) For each k, an MS-transduction can construct the defined graph from this labelled tree. (Extension of the proof for cographs, cf. page 9.)

Hence: If a graph class C has clique-width $\leq k$, then $C \subseteq \tau_k(Trees)$ for some MS–transduction τ_k.

The converse uses technical tools from model theory (Feferman-Vaught)

The proofs for tree-width are similar.
Gives easy proofs (but no good bounds) of facts like:

1) If C has bounded tree-width, its line graphs have bounded clique-width.

2) If C (directed graphs) has bounded tree-width or clique-width, the transitive closures of its graphs have bounded clique-width.

3) If C (directed graphs) has bounded clique-width, the transitive reductions of its graphs have bounded clique-width.
 (Not trivial because clique-width is not monotone for subgraph inclusion).

4) The set of chordal graphs has unbounded clique-width
 (because an MS transduction can define all graphs from chordal graphs, and graphs have unbounded clique-width).

5) k-leaf powers and similar “power” graphs of trees have bounded cwd.
6) Circle graphs

Theorem: Graphs Δ have bounded tree-width \iff $G(\Delta)$ have bounded clique-width.

1) MS-transduction from $G(\Delta)$ to Δ;

2) use “$\text{split decomposition}$” (Cunningham) and an MS-transduction from prime circle graphs to their unique chord diagrams.
Encoding a directed graph into a vertex-labelled undirected graph

Each vertex of G is split into 3 vertices labelled by $1,2,3$ in $B(G)$:

![Diagram of a directed graph G and its vertex-labelled undirected graph $B(G)$]

The clique-widths of G and $B(G)$ are related by fixed functions.

(Because the mapping B and its inverse are MS-transductions, hence they preserve bounded clique-width.)

Algorithms for checking rank-width of undirected graphs can be transformed into approximation algorithms for clique-width of directed graphs because rank-width and clique-width are related by fixed functions. (Oum, Hlineny, Seymour, Kanté)
Logical characterizations of equational sets

C is HR-equational $\iff C = \tau(Trees)$ for some $MS_{2,2}$-transduction τ (for bounded tree-width we have \subseteq).

C is VR-equational $\iff C = \tau(Trees)$ for some MS-transduction τ (for bounded clique-width we have \subseteq).

Consequences: Closure of equational sets under the corresponding transductions.
Robustness results for HR- and VR-equational sets

<table>
<thead>
<tr>
<th>Words: rational transductions ((=) inverse rational transductions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC</td>
</tr>
<tr>
<td>Dyck lang. (\rightarrow) Context-free (trees)</td>
</tr>
<tr>
<td>Inverse MS transductions</td>
</tr>
<tr>
<td>Direct MS transductions</td>
</tr>
<tr>
<td>MS-def. (\subset) VR-recog. (1)</td>
</tr>
<tr>
<td>Trees (\rightarrow) VR-equational</td>
</tr>
<tr>
<td>(\bigcup) Cwd((\leq k)) (2)</td>
</tr>
</tbody>
</table>

VR-equational \(\Rightarrow\) bounded clique-width.

(1) : A. Blumensath - B.C.
(2) : J. Engelfriet.
Robustness results: Preservation and generation (2)

<table>
<thead>
<tr>
<th>Inverse MS transductions</th>
<th>Direct MS transductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-def. \subseteq VR-recog. (\triangleleft) (1)</td>
<td>Trees \rightarrow VR-equational \Uparrow (2) (Cwd(<k))</td>
</tr>
<tr>
<td>Inverse MS(_{2,2}) transductions</td>
<td>Direct MS(_{2,2}) transductions</td>
</tr>
<tr>
<td>MS(_{2})-def. \subseteq HR-recog. (\triangleleft) (1)</td>
<td>Trees \rightarrow HR-equational \Uparrow (3) (Twd(\leq k))</td>
</tr>
</tbody>
</table>

VR-equational \Rightarrow bounded clique-width.
HR-equational \Rightarrow bounded tree-width.

(1) : A. Blumensath - B.C. (2) : J. Engelfriet. (3) : B.C.- J. Engelfriet
Recognizability is preserved under inverse monadic second-order transductions. (A.Blumensath - B.C., 2004)

Recognizability of sets of relational structures is relative to graph operations consisting of:

- disjoint union and

unary operations expressed by quantifier-free formulas (QF)

Examples of QF operations: Edge-complement, relabellings,

\[Add_{a,b} \] (cf. the definition of clique-width).

Proof sketch: Every MS transduction is the composition of MS transductions of 3 particular types:

- Copy\(_k\)

 - Parameterless and noncopying transduction

 - Guessing unary relations

Recognizability is preserved by inverse transductions of each type.
Copy_k :

\[S \rightarrow S \oplus S \oplus \ldots \oplus S \ (k \ \text{times}) \]

Disjoint union with binary relations \(Y_{i,j} \) for \(1 \leq i < j \leq k \) defined as

\[\{ (x,y) / x \ \text{is the i-copy, y is the j-copy of some u in } D_S \} \]

Facts :

a) \(\text{Copy}_k(S \oplus T) = \text{Copy}_k(S) \oplus \text{Copy}_k(T) \)

b) For \(f \) quantifier-free, there is a quantifier-free operation \(g \) such that :

\[\text{Copy}_k(f(S)) = g(\text{Copy}_k(S)) \]

\(\text{Copy}_k \) is “almost” a homomorphism, and recognizability is preserved under inverse homomorphisms.
8. Encoding powers of graph classes via MS transductions

An MS-transduction τ defines a graph H inside a graph G with help of parameters (sets of vertices or edges of G):

say that H is encoded in G: the encoding is represented by the parameters and τ is the decoding function.

The encoding powers of graph classes C and D can be compared as follows:

$$ C \leq D \quad \text{if} \quad C \subseteq \tau(D) \quad \text{for some MS transduction } \tau $$

We get a quasi-order on graph classes.
We consider **MS$_{2,2}$-transductions**: (formulas use edge set quantifications and must construct incidence graphs as outputs.)

For graph classes C and D we let:

$C \leq D$ if $C \subseteq \tau(D)$ for some MS$_{2,2}$-transduction τ

$C \equiv D$ if $C \leq D$ and $D \leq C$

$C < D$ if $C \leq D$ and $C \neq D$

$C <_c D$ if $C < D$ and there is no E with $C < E < D$

What is the structure of $<_c$ (the *covering relation* of \leq)?
With help of Robertson & Seymour: Graph Minors I and V:

\{ \bullet \} < \text{Paths} <_{c} \text{Trees} <_{c} \text{Grids}

These classes encode respectively:
- finite sets,
- sets of graphs of bounded path-width,
- sets of graphs of bounded tree-width,
- all sets of graphs.

Proof: \text{Trees} <_{c} \text{Grids}.

If a graph class \(C \) has bounded tree-width, it is \(< \text{Trees}.

If \(C \) has unbounded tree-width, it contains all grids as minors, hence: \text{Grids} \leq C \text{ and } \text{Grids} \equiv C, \text{ because Graphs} \leq \text{Grids}
Proof: All graphs ≤ Grids

A monadic second-order transduction using parameters X, Y, Z can transform all grids into all incidence graphs Inc(G).
More difficult: What is below Paths?

Answer: (A. Blumensath-B. C., LMCS 2010)

\{ \cdot \} \prec_c T_2 \prec_c \ldots \prec_c T_n \prec_c T_{n+1} \prec_c \ldots \prec_c \text{Paths} \prec_c \text{Trees} \prec_c \text{Square grids}

where \(T_n \) is the class of rooted trees of height at most \(n \) (and unbounded degree).

Idea: \(T_n \) encodes the classes of graphs having tree-decompositions of \textit{height} at most \(n \) and width at most \(k \) (for all \(k \)).
Definition: \textit{n-depth tree-width of } \ G = \ \text{twd}_n(\ G) = \ \text{minimal width of a tree-decomposition of } \ G \ \text{of height at most } \ n.

Related notion: \textit{tree-depth} (Nesetril, Ossona de Mendez).
\td(\ G) = \ \text{minimal } \ k \ \text{such that each connected component of } \ G \ \text{has a depth-first (normal) spanning tree of height at most } \ k.

Some properties of these variants of tree-width:
\begin{enumerate}
\item \text{pwd}(\ G) \leq n.(\text{twd}_n(\ G) + 1)
\item If \ G \ is a minor of \ H: \ \text{twd}_n(\ G) \leq \text{twd}_n(\ H), \ \text{td}(\ G) \leq \text{td}(\ H)
\item \text{td}(\ G) \leq n \ \text{implies } \text{twd}_n(\ G) \leq n,
\item \text{twd}_n(\ G) \leq k \ \text{implies } \text{td}(\ G) \leq n.k
\end{enumerate}
Excluded Path Theorem

(cf. the Excluded Tree and Grid Theorems of GM1 and GM5)

A class of graphs C excludes some path as a minor
(equivalently, as a subgraph)

\iff for some n, C has bounded n-depth tree-width

\iff C has bounded tree depth.

We use n-depth tree-width rather than tree-depth to characterize
the graph classes encoded by trees of each height n.
Logical properties of n-depth tree-width.

Proposition: For each n and k, there exists an MS$_{2,2}$-transduction that maps every graph of n-depth tree-width at most k to all its strict tree-decompositions of height at most n and width at most k (strict = with certain connectivity properties; every tree-decomposition can be made strict without increasing height and width).

Remark: The obstruction sets of graphs for n-depth tree-width $\leq k$ are computable from each pair n, k because we have monadic second-order characterizations of these classes and bounds on the tree-widths of the obstruction sets. The same holds for the property “tree-depth $\leq k$”.
In the hierarchy:

\[
\{ \bullet \} \prec_c T_2 \prec_c \ldots \prec_c T_n \prec_c \ldots \prec_c \text{Paths} \prec_c \text{Trees} \prec_c \text{Grids}
\]

each level \(T_n \) encodes the sets of graphs of bounded n-depth tree-width.

Proofs to be done:

1) \(T_n \prec \text{Paths} \)

Trees of height \(n \) can be encoded as sequences over \([n]\) and decoded by MS-transductions.

1 2 3 3 3 2 3 3 2 2 3 3 encodes the tree:

```
1
   /\ /
  2 2 2 2
 /\ /\ /\ /
3 3 3 3 3 3
```

3 3
2) \(T_n < T_{n+1} \)

One cannot define by an MS-transduction all trees of height \(n+1 \) from all trees of height \(n \).

The (technical) proof uses an analysis of MS definable relations on trees and some counting arguments.

Case \(n = 2 \).

Trees of height 2 correspond (via MS transductions) to sets (without relations). If a k-copying MS-transduction with \(p \) parameters transforms sets into trees, these trees have less than \(k.2^p \) internal nodes.

We cannot get all trees of height 3 from sets by a single MS-transduction.

3) Hence, we cannot have \(T_n \equiv \text{Paths} \)
“Dichotomy arguments”:

1) Let C be a set of bounded pathwidth (i.e., $C \leq \text{Paths}$):

 Either : it contains all paths as minors, then $C \equiv \text{Paths}$

 Or : (Excluded Path Thm) $\text{twd}_n(C)$ is bounded and $C \leq T_n$ for some n

2) Let C be a set of n-depth tree-width $\leq k$ ($C \leq T_n$):

 Either : for all m, there is G in C s.t., for each n-depth tree-dec. U of width k of G, the tree U contains $T(n,m)$ ($T(n,m)$ = the m-ary complete tree of height n) and then $T_n \leq C$ (because n-depth tree-decompositions of width k are definable by MS transductions)

 Or : for some m, every G in C has an n-depth tree-dec. U of width k, s.t. U does not contain $T(n,m)$. By contracting some edges of U, one gets an $(n-1)$-depth tree-dec. of G of width $m.(k+1)$, hence $C \leq T_{n-1}$.
Open question: What about the hierarchy based for MS – transduction?

Theorem (B.C. & Oum, 2007):
There exists an MS - transduction (using even cardinality set predicates) that transforms every set of undirected graphs of unbounded rank-width into the set of all square grids.

(Uses vertex-minors instead of minors)

We need a result corresponding to Graph Minors 1 about “linear rank-width” and excluding a forest as a vertex-minor.

We need also something like “n-depth rank-width” and constructions by MS tranductions of appropriate rank-decompositions.
9. Graph classes with decidable MS theories (or MS satisfiability problems)

Theorem (Seese 1991): If a set of graphs has a decidable MS$_2$-satisfiability problem, it has bounded tree-width.

Theorem (B.C.-Oum 2007): If a set of graphs has a decidable C$_2$MS satisfiability problem, it has bounded clique-width.

Answering a question by Seese: If a set of graphs has a decidable MS satisfiability problem, is it the image of a set of trees under an MS transduction, equivalently, has it bounded clique-width?

MS$_2$ = MS logic with edge quantifications; C$_2$MS = MS logic with the even cardinality set predicate. A set C has a decidable L-satisfiability problem if one can decide whether any given formula in L is satisfied by some graph in C
Proof of the result on MS$_2$-satisfiability and tree-width:

A) If a set of graphs C has unbounded tree-width, the set of its minors includes all $k \times k$-grids (Robertson & Seymour)

B) If a set of graphs contains all $k \times k$-grids, its MS$_2$ satisfiability problem is undecidable

C) If C has decidable MS$_2$-satisfiability problem, so has Minors(C), because $C \rightarrow$ Minors(C) is an MS$_{2,2}$ transduction.

Hence, if C has unbounded tree-width and a decidable MS$_2$-satisfiability problem, we have a contradiction for the decidability of the MS$_2$-satisfiability problem of Minors(C).
Proof of the result on C_{2MS}-satisfiability and clique-width:

D) Equivalence between the cases of all (directed and undirected) graphs and bipartite undirected graphs (with an encoding of directed graphs as labelled bipartite undirected ones; cf. page 15).

A') If a set of bipartite graphs C has unbounded clique-width, the set of its vertex-minors contains all “S_k“ graphs.

C') If C has a decidable C_{2MS}-satisfiability problem, so has $Vertex$-$Minors(C)$, because C \rightarrow $Vertex$-$Minors(C)$ is a C_{2MS}-transduction.

E) An MS-transduction transforms S_k into the $k\times k$-grid.

Hence $A' + B + C' + E$ gives the result for bipartite undirected graphs. The general result follows with the encoding D.
Definitions and facts

Local complementation of G at vertex v

$G * v = G$ with edge-complementation of $G[n_G(v)]$, the subgraph induced by the neighbours of v

Local equivalence (\approx_{loc}) = transitive closure of local complementation (at all vertices)

Vertex-minor relation:

$H \leq_{VM} G : \iff H$ is an induced subgraph of some $G' \approx_{loc} G$.
Proposition *(B.C.-Oum, 2004)*: The mapping that associates with G its locally equivalent graphs is a C_2MS-transduction.

The even cardinality set predicate is necessary:

Consider $G * X$ for $X \subseteq Y$:

u is linked to v in $G * X$ if

$\iff \text{Card}(X)$ is even

$(G * X = \text{composition of local complementations at all vertices from } X)$
Definition of S_k, bipartite: $A = \{1, \ldots, (k+1)(k-1)\}$, $B = \{1, \ldots, k(k-1)\}$

From S_k to $\text{Grid}_{k \times k}$ by an MS transduction

The orderings of A and $B: x, y$ are consecutive $\Leftrightarrow \text{Card}(n_G(x) \Delta n_G(y)) = 2$.

One recognizes the edges from $i \in B$ to $i \in A$, and from $i \in B$ to $i+k-1 \in A$ (thick edges on the left drawing).

One creates edges (e.g. from $1 \in A$ to $2 \in A$, from $2 \in A$ to $3 \in A$ etc...and similarly for B, and from $1 \in B$ to $4 \in A$, etc...) one deletes others (from $4 \in B$ to $6 \in A$ etc...), and vertices like 7,8 in A, to get a grid containing $\text{Grid}_{k \times k}$.
10. A few open questions

Question 1: What should be the clique-width or rank-width of hypergraphs (or relational structures) ?

Question 2: Is it true that the decidability of the MS- (and not of the C₂MS-) satisfiability problem for a set of graphs implies bounded clique-width, as conjectured by Seese ?

More important :

Question 3: What about Question 3 for sets of hypergraphs or relational structures ?