
Discrete Applied Mathematics 108 (2001) 23–52

On the �xed parameter complexity of graph enumeration
problems de�nable in monadic second-order logic

B. Courcellea ;1, J.A. Makowskyb;∗;2, U. Roticsc;3
aLabRI, Universit�e de Bordeaux, Talence, France

bDepartment of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
cDepartment of Computer Science, University of Toronto, Toronto, Canada

Abstract

We discuss the parametrized complexity of counting and evaluation problems on graphs
where the range of counting is de�nable in monadic second-order logic (MSOL). We show
that for bounded tree-width these problems are solvable in polynomial time. The same holds for
bounded clique width in the cases, where the decomposition, which establishes the bound on
the clique-width, can be computed in polynomial time and for problems expressible by monadic
second-order formulas without edge set quanti�cation. Such quanti�cations are allowed in the
case of graphs with bounded tree-width. As applications we discuss in detail how this a�ects the
parametrized complexity of the permanent and the hamiltonian of a matrix, and more generally,
various generating functions of MSOL de�nable graph properties. Finally, our results are also
applicable to SAT and]SAT . ? 2001 Elsevier Science B.V. All rights reserved.

Keywords: Fixed parameter complexity; Combinatorial enumeration

1. Prelude: parametrized complexity of permanents and hamiltonians

In this paper we study the complexity of counting or enumeration 4 functions over
graphs which are de�nable in fragments of second order logic (SOL). We also look
at evaluation functions which generalize the counting functions in as much as they
allow us to compute the total weight of the solutions rather than just counting their
number. Special cases of evaluation functions are the permanent and the hamiltonian

E-mail addresses: courcell@labri.u-bordeaux.fr (B. Courcelle), janos@cs.technion.ac.il (J.A. Makowsky),
rotics@cs.toronto.edu (U. Rotics).
1 Supported by the European project GETGRATS.
2 Partially supported by a Grant of the German Israeli Foundation (1995–1998) and by the Fund for

Promotion of Research of the Technion-Israeli Institute of Technology.
3 Partially supported by a postdoctoral fellowship of the University of Toronto and Prof. Corneil’s grant

of the National Science and Engineering Research Council of Canada.
4 In [73] these functions are called enumeration problems. This might be misleading, as we do not enu-

merate the solutions but we count them.

0166-218X/01/$ - see front matter ? 2001 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(00)00221 -3

24 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

of an (n× n) matrix over a �eld K . Without further assumptions on the matrices, both
these functions are]P hard [73]. In this prelude we shall �rst discuss in detail our
results for the case of the permanent and the hamiltonian.
In the sequel of the paper, we extend results from [2,29] and our results about

permanents and hamiltonians to a new framework which includes many combinatorial
polynomials and we extend them further such as to make them applicable also to the
case of bounded clique width (rather than tree-width). A continuation of this work
leads into the heart of algebraic complexity, as pursued in [61].

1.1. Tree-width of a matrix

Let M = {mi;j} be an (n× n) matrix over a �eld K . The permanent per(M) of M
is de�ned as

∑
�∈Sn

∏
i

mi;�(i);

where Sn is the set of permutations of {1; : : : ; n}. The hamiltonian ham(M) of M is
de�ned as

∑
�∈Hn

∏
i

mi;�(i);

whereHn is the set of hamiltonian permutations of {1; : : : ; n}. Recall that a permutation
� ∈ Sn is hamiltonian if the relation {(i; �(i)): i6n} is connected and forms a directed
cycle. We de�ne a directed graph GM associated with M , possibly with loops, as
follows:
(1) The vertices of G are the set V = {1; 2; : : : ; n}.
(2) The edges of GM are the pairs E = {(i; j) ∈ V 2: mi;j 6= 0}
(3) Each edge e ∈ E with e = (i; j) has a weight w(e) = mi;j.
The tree-width tw(G) of a graph G is the least width of any tree-decomposition

of G. For details, cf. [32, chapter 12]. For directed graphs we use the same tree-
decomposition. Hence our tree-width of a directed graph G coincides with the tree-width
of the graph obtained from G by forgetting the orientation. The tree-width of a ma-
trix M is now de�ned as the tree-width of GM , tw(M) =def tw(GM). Knowing the
tree-width of a matrix leads to new algorithms for computing permanents and
hamiltonians:

Theorem 1. Let M be an (n× n) matrix over a �eld K .
(1) The permanent of an (n× n) matrix M of tree-width k can be computed in time

ck · n2 with ck independent of the matrix but possibly super-exponential in k.
(2) The hamiltonian of an (n×n) matrix M of tree-width k can be computed in time

dk · n2 with dk independent of the matrix but possibly super-exponential in k.

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 25

In other words these functions are �xed parametrized tractable problems in the
sense of [33], where the parameter is the tree-width of the matrix. The algorithms can
also be parallelized so as to be in NC, cf. [46] but we shall not pursue this further.

1.2. Linear rank of a matrix

Recall that the linear rank of M over a �eld or ring K is the maximum number of
row (column) vectors of M which are linearly independent over K . It is interesting to
compare our result with recent results by Barvinok [6].

Theorem 2 (Barvinok [6]). There are real-valued functions gper(r) and gham(r) such
that for (n× n) matrices M over Z of linear rank r
(1) the permanent of M can be computed using gper(r) ·O(nb) arithmetic operations

for some constant b=O(r) and
(2) the hamiltonian of M can be computed using gham(r) ·O(nc) arithmetic operations

for some constant c = O(r2).

Kogan in [51] looked at the linear rank of MMT − 1 rather than of M and showed
that in �elds of characteristic 3 and for matrices M with rk(MMT − 1)61 the perma-
nent per(M) can be computed in polynomial time. However, he also shows that for
rk(MMT − 1)¿2 the function is as di�cult to compute as the general permanent. So
this does not give us another choice of parameters for �xed parameter complexity of
computing the permanent.
Barvinok’s results and ours are incomparable in the following sense:

Proposition 3. Tree-width and linear rank are independent of each other. More pre-
cisely
(1) For every n ∈ N there are (n × n) matrices with linear rank n and tree-width

constant k.
(2) For every n ∈ N there are (n × n) matrices with linear rank 1 and tree-width

n− 1.

Proof. (i) Let M be such that GM is the disjoint union of cliques of size at most
k + 1 and containing at least one clique of size k + 1. Then tw(GM) = k. If K has at
least three elements, 5 we can �nd (j × j) matrices Mj with no zero elements which
have rank j. For each clique of j elements we choose the matrix Mj and form M by
placing these along the diagonal. Now M has linear rank n.
(ii) The (n× n) matrix En which has only one’s as its entries has tree-width n− 1

and linear rank 1.

The linear rank of a matrix is a matrix property which depends on all the entries in
the matrix and which can be computed in polynomial time. The tree-width of a matrix

5 As we want the matrix to have only non-zero entries, our �eld must have at least three elements.

26 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

only depends on entries which do not vanish, i.e. only on GM . However, computing
the exact tree-width is NP-hard, [1]. On the other hand, there is a polynomial time
approximation algorithm for tree-width with performance ratio O(log n), [11]. Further-
more, checking tree-width for �xed k can be done in linear time, and if the answer is
positive, the construction of a tree decomposition can be done in linear time as well,
[9,12,13]. All this together makes it attractive to use the tree-width as the parameter
for the study of �xed parameter complexity.

1.3. Sparse matrices

There are various notions of sparsity of matrices.

De�nition 4. An (n× n)-matrix M is k-sparse if the number of its non-zero entries is
bounded by k · n for a �xed constant k.

It is easy to see that

Proposition 5. A matrix of tree-width at most k is at most 2k-sparse.

We discuss now how such sparsity assumptions a�ect the complexity of computing
the permanent or hamiltonian of a matrix.
A stronger notion of sparsity is the following:

De�nition 6. A matrix is strongly k-sparse if in each row (column) there are at most
k non-zero entries.

In [52] it is noted that

Proposition 7 (Kogan). For every (n× n)-matrix M one can �nd in polynomial time
a strongly 3-sparse matrix A and a strongly 2-sparse matrix A1 such that per(M) =
per(A) and ham(M) = ham(A1).

Note that the problem of computing per(M) for M strongly 2-sparse is solvable in
polynomial time.

Proof. Sketch for ham(M): Treat the matrix M as an adjacency matrix of a weighted
graph GM where the weight of a path is de�ned multiplicatively. Like in the construc-
tion which shows that hamiltonicity is NP-complete for graphs of degree at most 3,
we change the graph to make it into a directed graph G′

M where each indegree (outde-
gree) is at most two. The weights of the new edges are chosen to be 0 or 1 in a way
that there is a bijection between the sets of hamiltonian cycles of the two graphs GM

and G′
M .

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 27

Corollary 8. The problems of computing the permanent of strongly 3-sparse matrices
and the hamiltonian of strongly 2-sparse matrices are as di�cult as computing the
permanent in the general case.

In the light of Theorem 1 we see that there are, assuming that the permanent cannot
be computed in polynomial time, strongly k-sparse matrices of unbounded tree-width.
Without this assumption it is known that the adjacency matrices of the two-dimensional
grids have unbounded tree-width but are strongly 4-sparse.
In [42] (n× n)-matrices M over {0; 1} are considered where one knows in advance

that the permanent is bounded by a polynomial, i.e. per(M)6k ·nq for some constants
k; q ∈ N. They prove that

Theorem 9 (Grigoriev and Karpinski [42]). Let M be an (n×n)-matrices over {0; 1}
with per(M) polynomially bounded. Then per(M) can be computed in NC3; and
hence in P.

To the best of our knowledge no similar theorem is known for ham(M).
The bound on the size of the permanent of M is in no way related to bounded

tree-width by k or k-sparsity.
(1) Let M2 be the (2 × 2) matrix with all entries 1. The (2n × 2n)-matrix A which

consists of n M2’s in the diagonal is strongly 2-sparse, has tree-width 1 and
per(A) = 2n.

(2) The matrices Tn ti; j = 1 i� i6j are not k-sparse or of tree-width 6k for any k
independent of n, but per(Tn) = 1.

1.4. Novelty of results

Theorem 1, as stated, is new. In [2,29] certain evaluations of terms over weighted
graphs are considered, but their general de�nition does not include the permanent and
hamiltonian. However, Theorem 1 could also be proved using the automata theoretic
methods from [2,29].
In [27], the results of [2,29] were extended to optimization problems on graphs of

�xed cliquewidth, a notion introduced by Courcelle, Engelfriet and Rozenberg [25,30].
We shall give the detailed de�nitions in Section 3. The proofs in [27] are model
theoretic rather than automata theoretic.
The purpose of this paper is to state and prove extensions of Theorem 1. These are

Theorem 31 of Section 4 and Theorem 35 of Section 5. The novelty is twofold: We
replace in many cases the boundedness of the tree-width by the weaker assumption
of bounded clique-width and we apply it to a wide class of generating functions of
graph properties which are de�nable in monadic second-order logic. We also show
that many variations of the classical problem SAT are �xed parameter tractable. Both
these applications are to the best of our knowledge new. We shall again use a model
theoretic proof similar to that presented in [27].

28 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

In the statement of Theorems 1 and 2 we were a bit sloppy concerning the model of
computation. We count arithmetic operations and manipulations of data structures, but
arithmetic operations on real numbers are counted with unit cost. This can be made
precise in several ways, but the most convenient model of computation for our purpose
is the model introduced by Blum et al. cf. [7]. We shall usually omit the nitty gritty
details of computation but they can be provided in this model. In Section 2.5 we shall
discuss the choice of computational model in greater detail.

1.5. Organization of the paper

In Section 2 we set up our logical framework of counting and evaluation functions
which are de�nable in monadic second-order logic. In Section 3 we collect the de�ni-
tions and examples around the notion of clique-width. In Section 4 we state the main
results in detail and discuss the advantages and disadvantages of clique-width with re-
spect to tree-width. In Section 5 we apply our main results to generating functions of
graph properties and to many variations of the classical problem SAT . In Section 6 we
give a detailed proof of the Feferman–Vaught–Shelah theorem of monadic second-order
logic for disjoint unions of structures and use it to prove our main result. Finally, in
Section 7, we draw conclusions and discuss further research.

2. Logical framework

We now present the logical and computational framework in which we work.

2.1. Second-order de�nable counting and evaluation problems

We assume the reader is vaguely familiar with second order logic (SOL) over
�xed relational vocabularies �, cf. [34]. Second-order logic is the natural language of
graph theory and most, but not all, graph theoretic concepts are de�nable in SOL. In
second-order logic over graphs one allows quanti�cation of typed relation variables. The
typing �xes the arity of the relations over which the variables range. It also speci�es
whether a relation variable ranges over tuples of vertices, edges or a mixture of the two.
In the case of relational structures over a �xed vocabulary (sometimes called similarity
type or signature) the generalizations are straight forward. In the next subsection we
shall introduce two restrictions on SOL which will give us two variations of monadic
second-order logic, cf. [22] for a survey.
Over �nite relational structures with no restrictions on the vocabulary � (besides

having no function symbols and being �nite), an SOL(�) de�nable counting problem
consists in determining, for each �nite �-structure U with universe A, the cardinality

|{X ⊂Am: 〈U; X 〉 |= �(X)}|;

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 29

where � is a second-order �-formula with X as its free variable which ranges over
subsets of Am. If � has no free variables, this can be interpreted as a decision problem.
The corresponding evaluation problem assumes that the elements of Am are weighted

with values in some ring or �eld, say the reals R, given by a function

w :Am → R:

Sets X ⊆Am are then given either the additive or multiplicative weight

|X |w =
∑
a∈X

w(a) or ||X ||w =
∏
a∈X

w(a):

It consists in determining the value of
∑

{|X |w: X ⊂An and 〈U; X 〉 |= �(X)}
or

∑
{||X ||w: X ⊂An and 〈U; X 〉 |= �(X)};

respectively. The multiplicative version gives us back counting in the case where the
graph G = 〈V; E〉, w(i; j) = 1 for (i; j) ∈ E and w(i; j) = 0 for (i; j) 6∈ E and X ⊆E.
The instances of counting and evaluation problems are called counting and evaluation
functions, respectively.
Instead of using an m-ary set variable X we can also use �nite sequences of such

variables (of �xed length). The generalization is obvious and just complicates the
notation. Less obvious is the use of parametrized families of de�nable sets of m-tuples
instead of set variables. In this case X ranges over the sets of the form

{ �a ∈ Am: 〈U; Y1; : : : ; Yt〉 |= �(�a; Y1; : : : ; Yt)}
and Y1; : : : ; Yt are �rst or second-order parameters ranging over elements and subsets
of A such that

〈U; Y1; : : : ; Yt〉 |= (Y1; : : : ; Yt):

Clearly, both � and are required to be SOL(�) formulas. In this case we shall write
the evaluation term as

∑
 (Y1 ;:::;Yt)


 ∏

�(�a;Y1 ;:::;Yt)

w(�a)


 or

∑
 (Y1 ;:::;Yt)


 ∑

�(�a;Y1 ;:::;Yt)

w(�a)


 :

2.2. MSOL-de�nable evaluation problems on graphs

When dealing with graphs we shall impose two kinds of restrictions: on the vocab-
ulary and on the arity of the quanti�ed and free second-order variables.
The logic MS(�1) = MS1 over graphs allows one-sorted structures, the universe of

which consists of V , the vertices, and one binary relation symbol RE for the edges,
and an arbitrary but �nite number of constant symbols and unary predicate symbols.
In this case the set variables range over subsets of V .

30 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

The logic MS(�2) =MS2 over graphs allows two-sorted structures, the universes of
which consist of V and E, the vertices and edges respectively. We have additionally
one binary relation symbol R (in the undirected case) or two binary relation symbol
Rsrc(v; e) and Rtrg(v; e) (in the directed case) for the incidence relation or source and
target relations between edges and vertices. Furthermore, we allow an arbitrary but �nite
number of constant symbols and unary predicate symbols, where the set variables range
over subsets of V or E.
We speak of an MSi (FOL) de�nable decision, counting or evaluation problem if the

de�ning SOL formula is actually given as an MSi formula (as a �rst-order formula).

2.3. MS-transductions

An MS-transduction f is a function which maps �-structures A into �-structures B
in such a way that the universe of B and the relations from � in B are MSi-de�nable
in A. If the universe of B is de�nable as a subset of the universe of A (rather than
as an n-ary relation over A) we call the transduction scalar. An MS-transduction f
induces a (contravariant) translation f∗ of MS(�)-formulas into MS(�)-formulas such
that for every MS(�)-formula � and for every �-structure A

A |= f∗(�) i� f(A) |= �:

Furthermore f∗(�) can be computed given � in linear time (in the size of �).
MSi-transductions are MS-transductions which map �i-structures into �i-structures.

2.4. Some classical examples

SOLi denotes second-order logic with second-order variables restricted to relations
of arity at most i.
We �rst look at counting problems.

]Triang: The number of triangles in a graph is FOL de�nable and computable in
polynomial time.

]k-Cliques: Counting cliques of size k is SOL2 de�nable (here k is given as the
size of a unary predicate). For �xed k it is computable in polynomial time.

The following are MS1 de�nable.

]MaximalClique: Counting maximal cliques (with respect to inclusion).
]k-colorings: Counting the number of di�erent k-colorings.

Using well-known model theoretic methods, cf. [34], it is not hard to show that the
following are (provably) not MS1 de�nable. However, the �rst four are MS2 de�nable,
the �fth is SOL2 de�nable and the last is SOL3 de�nable.

]PHam: Counting hamiltonian paths (circuits).

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 31

]PerfMatch: Counting perfect matchings in a bipartite graphs.
]TriangPart: Counting partitions into induced subgraphs isomorphic to triangles.
]H -Part: Counting partitions into induced subgraphs isomorphic to H . This includes

PerfMatch and TriangPart as special cases.
]MaximumCliques: Counting maximum cliques (with respect to size).
]3D-Match: The number of three dimensional matchings in three partite graph.

Each of these counting problems can be turned into an evaluation problem by in-
troducing appropriate weight functions. In particular, the permanent is the evaluation
problem arising from]PerfMatch, and the hamiltonian is the evaluation problem aris-
ing from]PHam.

2.5. Complexity of de�nable counting problems

2.5.1. Turing machines
We assume here that the reader is familiar with basic complexity theory for discrete

problems to be solved on Turing machines as presented, say, in [50,65]. In particular we
have P (polynomial time), NP (non-deterministic polynomial time) and]P (counting
accepting guesses in non-deterministic polynomial time computations). Here we have
the inclusions

P⊆NP⊆]P:

The permanent and the hamiltonian are in]P if we restrict them to, say, (0; 1)-matrices.
Then they are also]P-complete. We denote by FP (FPSpace) the class of functions
computable in polynomial time (space).

MS(�) de�nable counting problems over arbitrary vocabularies are computable in
FPSpace, but it is not clear whether they are in]P.

Open Problem 1. Assume that FPSpace −]P 6= ∅. Are there SOL (MSi) de�nable
counting problems which are in PSpace−]P? Note; that it still may be the case that
FPSpace−]P 6= ∅ but all its members are not SOL-de�nable.

By a result of Saluja et al. [68], every counting problem in]P is SOL de�nable,
actually by a particularly simple SOL formula with second-order variables for the ob-
jects to be counted, and one binary relation variable which ranges over linear orders
and is existentially quanti�ed. All other quanti�cations are �rst order. Note that al-
ready the MS(�) decision problems can be arbitrarily complex within the polynomial
hierarchy, cf. [62]. Further investigations into logical de�nability of counting function
were pursued by Compton and Gr�adel [18] and Sharell [69].

2.5.2. Valiant circuits
In dealing with evaluation problems over a �eld K , say the reals R, we have to extend

the computational model. In the literature there are two such models which deal with

32 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

real numbers as atomic entities. The �rst is the non-uniform model of algebraic circuits
and the associated complexity classes VPR (non-uniform polynomial time) and VNPR
(non-uniform non-deterministic polynomial time) introduced by Valiant in [73]. More
detailed references would be [17] and [16]. In this setting both the permanent and the
hamiltonian (without restrictions) are in VNPR and VNPR-complete. This requires an
elaborate proof. For certain other SOL-de�nable counting problems B�urgisser [16], has
determined their complexity in terms of Valiant circuits. But no general result has been
proved.

Open Problem 2. Are there SOL (MSi) de�nable evaluation problems which are not
in VNPR ?

We note that over the reals R we have

FP⊆VPR and]P⊆VNPR:

2.5.3. Blum–Shub–Smale machines
The other is the uniform model of branching (and looping) programs over a kind

of register machines with real numbers in the registers, as introduced by Blum et al.,
cf. [7]. For short we call it the BSS-model of computation. Its complexity classes
are denoted by PR (polynomial time), DNPR (digital non-deterministic polynomial
time) and NPR (non-deterministic polynomial time). Here non-determinism consists
in guessing an auxiliary input. In the case of DNPR, this auxiliary input consists of
(0; 1)-sequences of length polynomial in the size of the input, whereas for NPR we
may guess sequences of real numbers. It is easy to see that

P⊆PR and NP⊆DNPR⊆NPR:
It is not clear whether PR⊆VPR, DNPR⊆VNPR or NPR⊆VNPR should be expected
to be true. The reason being, that in Valiant’s model no branching is allowed.
Meer [64] has introduced an analogue for]P over the reals in the BSS-model,

denoted by]PR. However, this class contains only functions of the form f: R → N,
hence the permanent of real matrices is not in the class]PR. To the best of our
knowledge the description of the exact complexity of generating functions of graph
properties has not been studied.

De�nition 10. Let GenPR consist of the families of generating functions of weighted
graph properties which are veri�able in PR. Formally, GenPR consists of evaluation
functions of the form

∑
〈V;E′ ;w〉∈K; E′ ⊆ E

∏
(i; j)∈E′

t(i; j);

where t(i; j) is a weight term, K is a class of weighted graphs and membership in
K is in PR.

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 33

Open Problem 3. Is the permanent (hamiltonian) complete for GenPR? If no; �nd
other complete problems for GenPR.

2.5.4. Lower and upper bounds
Our analysis of the complexity of graph counting problems yields positive results

by placing parametrized versions of these problems in PR and also in VPR. To show
that the general version of the problem is hard, we usually quote results which show
that they are VNPR-hard. The statement that a problem is in PR seems to be stronger
than the statement that it is in VPR, because of its implied uniformity. However, the
absence of branching in Valiant’s model suggests that PR and VPR are incomparable.
A purist might object that we work in di�erent models of computation. To remedy

this, one has to �nd an extension of the BSS-model such as to accomodate permanents,
hamiltonians and the like. Makowsky and Meer are studying such extensions, cf. [60].

3. Clique width and tree width

3.1. Graph operations and clique-width

In this section we de�ne the notions of graph operations and clique-width, as pre-
sented in [30]. Recall that we consider only graphs without loops and without double
edges.

De�nition 11 (k-graph). A k-graph is a labeled graph with (vertex) labels in
{1; 2; : : : ; k}. A k-graph G is represented as a structure 〈V; E; V1; : : : ; Vk〉, where V
and E are the sets of vertices and edges respectively, and V1; : : : ; Vk form a partition
of V , such that Vi is the set of vertices labeled i in G. Note that some Vi’s may be
empty. A non-labeled graph G = 〈V; E〉 will be considered as a 1-graph such that all
the vertices of G are labeled by 1.

De�nition 12 (G ⊕ H). For k-graphs G;H such that G = 〈V; E; V1; : : : ; Vk〉 and H =
〈V ′; E′; V ′

1 ; : : : ; V
′
k〉 and V ∩V ′=∅ (if this is not the case, then replace H with a disjoint

copy of H), we denote by G ⊕ H , the disjoint union of G and H such that

G ⊕ H = 〈V ∪ V ′; E ∪ E′; V1 ∪ V ′
1 ; : : : ; Vk ∪ V ′

k〉:
Note that G ⊕ G 6= G.

De�nition 13 (�i; j(G)). For a k-graph G as above, we denote by �i; j(G), where i 6= j,
the k-graph obtained by connecting all the vertices labeled i to all the vertices labeled
j in G. Formally:

�i; j(G) = 〈V; E′; V1; : : : ; Vk〉; where

E′ = E ∪ {(u; v): u ∈ Vi; v ∈ Vj}:

34 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

De�nition 14 (�i→j(G)). For a k-graph G as above, we denote by �i→j(G) the re-
naming of i into j in G such that:

�i→j(G) = 〈V; E; V ′
1 ; : : : ; V

′
k〉; where

V ′
i = ∅, V ′

j = Vj ∪ Vi, and V ′
p = Vp for p 6= i; j.

These graph operations have been introduced in [25] for characterizing graph gram-
mars. For every vertex v of a graph G and i ∈ {1; : : : ; k}, we denote by i(v) the
k-graph consisting of one vertex v labeled by i.

Example 15. A clique with four vertices u; v; w; x can be expressed as

�2→1(�1;2(2(u)⊕ �2→1(�1;2(2(v)⊕ �2→1(�1;2(1(w)⊕ 2(x))))))):

De�nition 16 (k-expression). With every graph G one can associate an algebraic ex-
pression, built using �i→i ; �i; j and ⊕; which de�nes G. We call such an expression a
k-expression de�ning G, if all the labels in the expression are in {1; : : : ; k}. Clearly,
for every graph G, there is an n-expression which de�nes G, where n is the number
of vertices of G.

De�nition 17 (The clique-width of a graph G; cwd(G)). Let C(k) be the class of
graphs which can be de�ned by k-expressions. The clique-width of a graph G, de-
noted cwd(G), is de�ned by cwd(G) =Min{k: G ∈ C(k)}.

The clique-width is a complexity measure on graphs somewhat similar to tree width,
which yields e�cient graph algorithms provided the graph is given with its k-expression
(for �xed k). A related notion has been introduced by Wanke [74] in connection with
graph grammars.
C(1) is the class of edge-less graphs. Cographs are exactly the graphs of clique

width at most 2, and trees have clique width at most 3 (cf. [38]).

Open Problem 4. Is there a structural characterization of C(k) for k¿3?

In the following sections, when considering a k-expression t which de�nes a graph G,
it will often be useful to consider the tree structure, denoted as treecw(t), corresponding
to the k-expression t. For that we shall need the following de�nitions.

De�nition 18 (treecw(t)). Let t be any k-expression, and let G be the graph denoted
by t. We denote by treecw(t) the parse tree constructed from t in the usual way. The
leaves of this tree are the vertices of G, and the internal nodes correspond to the
operations of t, and can be either binary corresponding to ⊕, or unary corresponding
to � or �.

In [30] a notion of directed clique-width of a graph G is also studied, which we
denote by dcwd(G). If a directed graph G has directed clique-width 6k, then the

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 35

graph G′ obtained from G by forgetting the direction and disregarding double edges
has (undirected) clique-width 6k. We shall use directed clique-width in Section 5.

3.2. Classes of bounded clique-width

In this section we list examples of classes of bounded clique-width, (cf. [30]).
Cliques Kn have clique-width 2. Actually, cographs are exactly the graphs of clique-

width 62. Trees (and hence the paths Pn) and their complements have clique-width
63. The simple cycles Cn have clique-width 64 and for n¿7 this bound is sharp,
cf. [63].
Cographs can be characterized by the absence of induced P4s. The study of graph

classes having few P4s have been very active in recent years. Example for such
graph classes are the classes of cographs, (extended) P4-sparse graphs, (extended)
P4-reducible graphs and P4-tidy, studied in [20,38,39,47,48]. Babel and Olariu intro-
duced in [4] the class of (q; t) graphs which for t= q− 3 extends all the graph classes
mentioned above. In such a graph no set with at most q vertices is allowed to induced
more than t distinct P4s. Clearly, we assume that q¿4. In a series of papers (cf. [5,3])
Babel and Olariu studied the classes of (q; q− 4) and (q; q− 3) graphs.
In [67,63] the clique-width of the (q; t) graphs for almost all combinations of q and

t was determined.

Theorem 19 (Makowsky, Rotics). For every (q; q−3) graph G such that q¿7; G has
clique-width 6q; and a q-expression de�ning it can be constructed in time O(|V | +
|E|).

3.3. Clique-width vs. tree-width

In the following we compare the strength of the assumptions that a class of graphs
has bounded tree-width versus the assumption that it has bounded clique-width. Read-
ers not familiar with tree-width should consult e.g. [9,31]. Given a (not necessarly
unique) tree decomposition tG of a graph G, we denote the parse tree which al-
lows us to reconstruct G from tG by treetw(tG) or, if the context makes it clear,
by treetw(G).

Fact 20. A class of bounded tree-width has bounded clique-width but not vice-versa.

If a graph has tree-width at most k, it has clique-width at most O(4k), and a corre-
sponding parse tree treecw(G) for G can be constructed in linear time from the a parse
tree treetw(G). On the other hand, cliques have clique-width 2 and are not of bounded
tree-width.
The parsing problem for tree (clique) width k is the problem of �nding a parse tree

for a given graph which is a certi�cate for k being its tree (clique) width.

36 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

Fact 21. The parsing problem for clique-width k is in general in NP. It is known to
be polynomial for clique-width at most 3, [19]; but not known to be either polynomial
or NP-hard for larger values of k. The parsing problem for tree-width k is solvable
in linear time; cf. [13].

De�nition 22. The incidence graph of G=〈V; E〉 is a bipartite graph I(G)=〈I(V); I(E)〉
of edges and vertices of G with I(V)=V ∪E and for e= (v; w) (v; w) ∈ E i� (v; e) ∈
I(E) and (w; e) ∈ I(E). In other words we replace every edge in E by a path of length
2. The total graph of G= 〈V; E〉 T (G)= 〈T (V); T (E)〉 is like the incidence graph, but
the original edges remain, and two original edges are linked i� they have a common
vertex, i.e., T (E) = E ∪ I(E) ∪ E′′ with E′′ = {(e; e′):∃v(e; v) ∈ I(E) ∧ (e′; v) ∈ I(E)}.

Fact 23. If G is an undirected graph and has tree-width at most k; then both its
incidence graph I(G) and its total graph T (G) have tree-width at most k + 1.

However, it follows from [63] that the family of incidence graphs I(Kn) of the
cliques Kn (which have cliquewidth 2) is not of bounded clique-width. The same can
be shown for the total graphs T (Kn).

3.4. MS2 vs. MS1 de�nability

There are properties expressible in MS2 which are not expressible in MS1. For exam-
ple, the class of �nite Hamiltonian graphs, the class of cliques with an even number of
vertices, the class of graphs having a spanning tree of out degree at most 2 are de�nable
by MS2 formulas but (provably) not by MS1 ones. Proofs are easy by Ehrenfeucht–
Fra��ss�e games or by reduction to the Elgot–B�uchi theorem, saying that MS de�nable
languages are regular. For details of these techniques cf. [34].

Fact 24. For every property of weighted graphs expressible by an MS2-formula �
there are MS1-formulas 1; 2 such that

G |= � i� I(G) |= 1 i� T (G) |= 2:

Hence; the MS2 evaluation problems of a graph G are expressible as MS1 evaluation
problems of the incidence graph I(G) of G. Similarly for total graphs.

Facts 23 and 24 together explain why results based on bounded tree-width can be
formulated for MS2 whereas for bounded clique-width they are restricted to MS1.
Although there are formulas in MS2 which are strictly more expressive than those

of MS1 in general, this is not the case on graphs of special types like planar graphs or
graphs of bounded degree or bounded tree-width, cf. [21]. All these cases are subsumed
by the following notion:
Recall that a graph G = 〈V; E〉 is k-sparse if |E|6k · |V |.

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 37

De�nition 25. A graph G = 〈V; E〉 is uniformly k-sparse if every subgraph of G is
k-sparse. We denote by US(k) the class of all uniformly k-sparse graphs.

Courcelle proved in [23] that for each k, one can construct an MS-transduction that
associates with every graph G ∈ US(k) (considered as a relational structure interpreting
the vocabulary �1) a structure isomorphic to I(G).
From this and Fact 24 it follows that

Fact 26. For every property of weighted graphs expressible by an MS2-formula �
there is an MS1-formula such that for every graph G ∈ US(k)

G |= � iff G |= :

Furthermore, if �(X) is an MS2 formula expressing a property of a set of edges X
of such a graph G, then � can be translated into an MS1-formula (X1; : : : ; Xn) where
X1; : : : ; Xn denote sets of vertices and

|X |= |X1|+ · · ·+ |Xn|
and the integer n depends only on k. It follows that

Fact 27. MS2 de�nable evaluation problems are MS1 de�nable on each class of graphs
contained in US(k).

Fact 28. Let C be a sub-class of US(k). Then C has bounded tree-width i� it has
bounded clique-width.

This latter fact follows from the following proposition:

Proposition 29. If C is a class of graphs of bounded clique-width on which the map-
ping G 7→ I(G) is de�nable by an MS-transduction; then it is of bounded tree-width.

Proof (Sketch). It is proved in [24, Theorem 2:1] that if C is a class of graphs
such that I(C) is a subclass of the image of a set of �nite binary trees under an
MS-transduction, then it has bounded tree-width.
Now let C be as in the hypothesis of the proposition. Then it is, by [24, Theorem

3:1], a subset of the image of a set of �nite binary trees under an MS-transduction. By
composing this transduction with the one mapping G 7→ I(G), we get an MS-transduction
de�ning I(C) from trees, and we conclude the proof by using [24, Theorem 2:1].

4. Main results

4.1. Main results

De�nition 30. We say that a class of graphs is m-e�ectively of clique-width (tree-width)
at most k if, for every graph in the class of size n, one can construct in time
O ((|V |+ |E|)m) a parse tree witnessing that its clique-width (tree-width) is at most k.

38 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

By Fact 21 from Section 3.3 every class of tree-width at most k is 1-e�ectively of
tree-width at most k (i.e. m= 1).
Our main result now is:

Theorem 31. Let C be a class of (directed) graphs which is m-e�ectively of bounded
(directed) clique-width k. Then each MS1 de�nable counting problem (given by �)
can be solved in time ck ·O((|V |+ |E|)m); where ck is a constant which depends only
on � and k.
The same holds for evaluation problems; provided we assume that the arithmetic

operations in R take constant time (independently of the size of the values). In other
words; these evaluation problems are in PR. They are also in non-uniform VPR.

Using Facts 20 and 21 from Section 3.3 we get from this the following generalization
of the main theorem of [29,2].

Theorem 32. Let C be a class of graphs which is of bounded tree-width k. Then each
MS2 de�nable counting problem (given by �) can be solved in time ck ·O(|V |+ |E|);
where ck is a constant which depends only on � and k. The same holds for evaluation
problems; provided we assume that the arithmetic operations in R take constant time
(independently of the size of the values). In other words; these evaluation problems
are in PR. They are also in non-uniform VPR.

A direct proof of Theorem 32 would be based on a bottom-up traversal of the �nite
tree representing a tree decomposition of width at most k of the given graph. Hence,
one needs to parse the graph, i.e. to construct such a decomposition. This can be done
in time O (|V |+|E|) by [13]. The algorithm returns either a failure message if the graph
has tree-width more than k or a tree-decomposition of width at most k. The proof of
Theorem 31 will use a bottom-up traversal of an appropriate parse tree treecw(G). The
details will be given in Section 6.

4.2. Discussion

4.2.1. Implementability
Neither Theorem 31 nor 32 do yield an implementable algorithm for various reasons:

(1) Because the bottom-up traversal method based on treetw(G) or treecw(G) uses very
large sets of auxiliary formulas (of cardinality being a tower of exponentials in
the number of quanti�ers).

(2) Because, in the case of bounded tree-width, the algorithm of [13] is not imple-
mentable.

(3) Because, in the case of clique-width 6k, only the case k63, is known to be
tractable, cf. Fact 21.

Usable but nonlinear parsing algorithms to obtain tree decompositions exist, see
[8–11]. In special cases, graph theoretic structure theorems, as used in [63], yield

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 39

feasible algorithms for parse trees of various classes of graphs having few P4’s, cf.
Section 3.
On the other hand, in concrete cases reasonable sets of auxiliary formulas can be

constructed ad hoc by hand, rather than being generated in a blind way from the
formulas, cf. [33].

4.2.2. Tree-width vs. clique-width
In the following we compare Theorems 32 and 31.
Theorem 31 concerns more classes of graphs than Theorem 32, cf. Fact 20 of Section

3.3.
From Fact 21 of Section 3.3 we know that the parsing problem for clique width is

in general in NP. For this reason Theorem 31 has an additional hypothesis that the
given graphs are parsable (with respect to clique width) in polynomial time, in order
to yield a global polynomial algorithm. This hypothesis is perhaps super
ous, but this
remains an open problem.
If we leave out the parsing problem, i.e. if we assume that the graphs are given

with their appropriate parse trees, then Theorems 31 and 32 have weaker forms. Let
us call them 31a and 32a, respectively, where the corresponding algorithms are linear
in the sizes of the parse trees. More precisely

Theorem 31a. Let C be a class of (directed) graphs and tG be a parse tree for G ∈ C

with nG nodes. Then each MS1 de�nable counting problem over C (given by �) can
be solved in time ck · O(nG); where ck is a constant which depends only on �.

and similarly for 32a.
Then Theorem 32a is also a consequence of Theorem 31a.
However, Theorems 32a and 31a are equally powerful on subclasses of US(k), the

uniformly k-sparse graphs.
Let us summarize the discussion for a class of graphs of interest C:

• either C⊆US(k) for some k. Then Theorems 32 and 31 are applicable i� C has
bounded tree-width, and both these theorems solve the same problems; Theorem 32
gives actually the best complexity if combined with Bodlaender’s parsing algorithm
[13];

• or C * US(k) for any k. Then only Theorem 31 is applicable, provided C has
bounded clique-widh and a polynomial parsing algorithm is available.

5. Applications: generating functions and satis�ability

Here we give some new applications of our main results.
The �rst three concern algebraic complexity theory in the style of [17]. We show

how a wide class of families of multivariate polynomials over a ring or �eld K , which
in general are VNPK -complete, are tractable if the indices of the non-zero coe�cients

40 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

have a certain structure. The examples are all taken from [16, Chapter 3]. Theorem
35 below generalizes Theorem 1 to a large class of multivariate polynomials. None of
these examples is covered by the framework of [2]. For these applications we need
bounded tree-width, as they concern MS2-de�nable evaluation problems.
The forth application concerns the boolean satis�ability problem SAT , its counting

version]SAT , and some variations thereof. All of these are MS1-de�nable and hence
the assumption of bounded clique-width su�ces.

5.1. Generating functions of graph properties

Let G = 〈V; E; w〉 be an edge-weighted graph with weights in a �eld K and E be a
class of (unweighted) graphs closed under isomorphisms. We extend w to subsets of
E by de�ning w(E′) =

∏
e∈E′ w(e). The generating function corresponding to G and

E is de�ned by

GF(G;E) =
def

∑
{w(E′): 〈V; E′〉 ∈ E and E′ ⊆E}

Strictly speaking GF(G;E) is a function with argument w and value in K . Furthermore,
w is a function

w : {1; : : : ; n}2 → K

which can be interpreted as an (n × n) matrix over K . If we view w(i; j) = Ui;j as
indeterminates, GF(G;E) is a multivariate polynomial in K[Ui;j: i; j6n].
The permanent is the generating function for G = Kn, the clique on n vertices, and

Eper the perfect matchings, and similarly, the hamiltonian is the generating function for
Eham the class of n-cycles.
We denote by Km;n the complete bipartite graph on m and n vertices, by Rn the

two-dimensional (n× n) grid and by Cn the corresponding three-dimensional grid.
In [16] the complexity of many generating functions is discussed. Among his exam-

ples we �nd the following:
Cliques: EClique, the class of cliques, is an MS1 property. By [16], GF(Kn;EClique)

is]P hard (or VNPK -complete).
Maximal clique: EMaxClique, the class of maximal cliques, is an MS1 property. By

[73], GF(Kn;EMaxClique) is]P hard (or VNPK -complete).
Perfect matchings: EPerfM , the class of perfect matchings, is an MS2 property.

By [73], GF(Cn;EPerfM) is]P hard (or VNPK -complete).
Partial permanent: EPartM , the class of partial matchings, is an MS2 property. By

[49], both GF(Kn;Epm) and GF(Rn;Epm) are]P hard (or VNPK -complete).

5.2. Cycle format polynomials

Let � = (�(1); �(2); : : : ; �(n)) denote a partition of n in frequency notation, i.e.,
�(i) ∈ N and

∑
i i�(i)=n. We associate with � the graph property CF� describing all

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 41

graphs on n nodes consisting of �(i) disjoint i-cycles. The corresponding generating
function

CF� = GF(Kn;CF�)

is called the cycle format polynomial of �. This includes the generating function of
perfect matchings (for �(2) = n=2) and the undirected Hamiltonian cycle polynomial
UHCn (for �(n) = 1). The property CF� is MS2 de�nable but not MS1 de�nable, cf.
[57].
The complexity of CF� was determined in [16] as follows:

Theorem 33 (B�urgisser [16]). Let �n be a sequence of partitions of n such that n−
�n(1)¿n� for all n and some �xed �¿ 0. Then the sequence CF�n of cycle format
polynomials is VNPK complete.

5.3. F factor polynomials

Let F be a connected graph. Let the graph property FA(F) describe the graphs
all of whose connected components are isomorphic to F . A spanning subgraph of a
graph G which has the property FA(F) is called an F-factor of G. The corresponding
generating functions

Factn(F) = GF(Kn;FA(F))

are called the F-factor polynomials. This subsumes CF� = Factn(F) for F an m-cycle
and �(m)=r and n=mr. The property FA(F) is MS2 de�nable but not MS1 de�nable.
Deciding the existence of an F-factor is NP-complete, provided F has at least three

nodes, cf. [37, Problem GT12]. B�urgisser showed in [16], that

Theorem 34 (B�urgisser [16]). The family Factn(F) is VNPK -complete if F has at
least two nodes.

From Theorem 32 we get immediately

Theorem 35. Let E be a class of graphs which is MS2-de�nable and let Gn be a
family of graphs of tree-width k and size n. Then GF(Gn;E) can be computed in
time ck · O(np). In fact GF(Gn;E) is in VPK .

Remark 36. B�urgisser only considers cases where w :E → K is a weight function for
edges. For MS1 de�nable generating functions it is sometimes more natural to look at
weight functions on vertices. In the case of cliques both approaches make sense, but
in the case of colorings, the vertices should be weighted.

42 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

5.4. Satis�ablity of propositional formulas

Our next application is SAT and]SAT , the corresponding counting problem. We
shall phrase it as a graph theoretic problem. But the clique-width of sets of clauses
seems an interesting concept in itself.

] SAT:
Input: A set of clauses �= {C1; : : : ; Cm} over variables p1; : : : ; pk . We denote by N

the size of �, i.e. the sum of the sizes of the clauses.
Output: The cardinality of the set of assignments making � true, i.e.

|{z : {p1; : : : ; pk} → {0; 1}: z makes all the C1; : : : ; Cm true}|:
Complexity: The counting problem is]P-complete, cf. [73].

We can code this as an MS1-counting problem by looking at the bipartite directed
graph G� = 〈Var; �;E〉 connecting a variable from Var with a clause from � in one
direction for positive, and in the other direction for negative occurence in the clause.
Now a satisfying assignment is a subset of vertices V0 of Var such that for every
clause C ∈ � there is v ∈ V0 with (v; c) ∈ E or there is v′ ∈ Var−V0 with (c; v′) ∈ E.
Note that in this coding the directed clique-width dcwd(G�) of G� somehow measures
the complexity of the overlapping occurences of variables in clauses. From the directed
version of Theorem 31 we get

Theorem 37. There exists a function
 :N → N such that]SAT and SAT can be
solved in
(dcwd(�)) ·O(N) time; where
 depends on the clique-width of G� but not
on N.

We do not know the size of
 but it is not bounded by any polynomial. For �xed
clique-width this is ultimately better than the trivial bound given by 2k · O(N).

Open Problem 5. Is there an exponential lower bound for
=
(dcwd(G�))?

Question 1. What are the families of sets of clauses of �xed clique (tree) width and
how can they be characterized in terms relevant to research in satis�ability?

Note that Horn clauses can have arbitrary large clique-width. Note also that for
clauses of bounded size the notions of clique-width and tree-width coincide because
they are uniformly sparse, cf. the discussion in Section 3.4.
The following variations of SAT from [37, Appendix 9] (and also their corresponding

counting problems) are also MS1 de�nable.
3SAT: Given � where each clause has at most three occurrences, is there an as-

signment which makes � true ? Here N63m.
MONOTONE SAT: Given � where each clause has only positive or only negative

occurrences, is there an assignment which makes � true ?

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 43

NOT-ALL-EQUAL SAT: Is there an assignment A which makes � true and such
that for every non-isolated clause C ∈ � there is either a v ∈ Var − A which has a
positive occurrence in C, or there is a u ∈ A which has a negative occurrence in C.
ONE-IN-EACH SAT: Is there an assignment A such that for every non-isolated

clause C ∈ � there is either exactly one v ∈ A which has a positive occurrence in C
and none in A which has a negative occurrence in C, or there is exactly one u ∈ Var−A
which has a negative occurrence in C and none in A which has a positive occurrence.
So Theorem 37 can also be formulated for these problems.

Theorem 38. There exists a function
 :N→ N such that 3SAT, MONOTONESAT,
NOT-ALL-EQUALSAT and ONE-IN-EACHSAT can be solved in
(dcwd(�)) ·
O(N) time; where
 depends on the clique-width of G� but not on N.

This does not apply to
HALF SAT: Is there an assignment A which makes at least half of the non-isolated

clauses in � true ?
as it is not MS1 de�nable.
More detailed application of the methods presented in this paper for SAT and

MAXSAT may be found in [58]. They resemble the decomposition methods as dis-
cussed in [72] and based on [71], but the exact relationship to these decomposition
methods still has to be investigated.

6. Feferman–Vaught–Shelah Theorem

The proof of Theorem 31 makes use of the Feferman–Vaught–Shelah Theorem for
Monadic Second Order Logic and disjoint unions of relational structures. The theorem
states that the set of MS(�) sentences of quanti�er rank k true in the disjoint union
G1⊕G2 is uniquely determined by the corresponding sets of formulas true in each of the
components. As stated here, this can be easily proved using Ehrenfeucht-Fra��ss�e games,
cf. [34]. We need a stronger version which says exactly how the truth of one sentence in
G1⊕G2 is determined by the truth of certain formulas in each Gi. Such a statement can
be obtained either directly by explicit construction or via the use of Hintikka sentences
(which describe winning positions in the Ehrenfeucht-Fra��ss�e games). The �rst approach
is due to Feferman and Vaught, [36] for generalized products and First Order Logic.
The second approach, also for products, can be found in [45]. Both proofs can be
adapted to disjoint unions, and the �rst to do so explicitely was Y. Gurevich in [44].
The extension to Monadic Second Order Logic was �rst stated without proof in [70].
We present here an explicit version of this theorem for disjoint unions, which allows

us to solve also evaluation problems. In [66] a systematic treatement of the Feferman–
Vaught–Shelah theorem and its use in Database Theory is presented.
Proviso: For the remainder of this section we �x a �nite relational vocabulary � and

look at MS(�) formulas with all the (free and bound) variables among x1; : : : xm1 ; y1; : : :

44 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

ym2 ; X1; : : : ; Xm3 . Put M = m1 + m2 + m3. The quanti�er rank k of MS(�) formulas is
de�ned as usual. We denote by F�

M;k the set of MS(�) formulas of quanti�er rank at
most k with M variables as indicated above. If � is clear from the context we just
write FM;k . For �x; �y; �X vectors of variables among those M variables we denote by
FM;k(�x; �y; �X) the subset of F�

M;k with free variables �x; �y; �X .
The following is folklore, [34].

Proposition 39. Up to logical equivalence FM;k and FM;k(�x; �y; �X) are �nite.

6.1. Hintikka formulas

We can look at the equivalence classes of FM;k(�x; �y; �X) as forming a Boolean algebra
BM;k(�x; �y; �X), with ∧; ∨; @; T; F interpreted in the natural way.
A Hintikka formula h(�x; �y; �X) is a formula equivalent to an atom in BM;k(�x; �y; �X).

We denote by HM;k(�x; �y; �X) the set of Hintikka formulas in FM;k(�x; �y; �X). An explicit
construction of Hintikka formulas is given e.g. in [45, Chapter 3, Theorem 3:3:2].
The following is straightforward (using Proposition 39):

Proposition 40. (1) HM;k(�x; �y; �X) is �nite.
(2) The conjunction of any two non-equivalent Hintikka formulas h1; h2 ∈

HM;k(�x; �y; �X) is inconsistent.
(3) Every formula � ∈ FM;k(�x; �y; �X) is equivalent to a �nite disjunction of Hintikka

formulas of HM;k(�x; �y; �X).

6.2. Disjoint unions

A fundamental property of Hintikka formulas concerns disjoint unions of structures.
G=G1⊕G2 be � structures with universe V; V1; V2 respectively. Furthermore, let z

be an assignment of the variables into G with values of xi in G1 and of yi in G2. We
denote by zi the assignment with zi(Xj)=z(Xj)∩Vi and zi(xj)=z(xj) and zi(yj)=z(yj).

Lemma 41. Assume G = G1 ⊕ G2. Then for every Hintikka formula h(�x; �y; �X) ∈
HM;k(�x; �y; �X) there are unique Hintikka formulas h1(�x; �X) ∈ HM;k(�x; �X) and h2(�y; �X) ∈
HM;k(�y; �X) such that every assignment z as above we have

G; z |= h(�x; �y; �X)

i�

G1; z1 |= h1(�x; �X) and G2; z2 |= h2(�y; �X):

Proof. The proof follows from the connection between Hintikka formulas and
Ehrenfeucht-Fra��ss�e games, as given in, say, [34,45].

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 45

Using Proposition 39 and Lemma 41 we get

Corollary 42. (1) For every G = 〈V; E〉 and �a ∈ Vm1 and �U ∈ P(V)m2 there is a
unique Hintikka formula hG(�x; �X) ∈ HM;k(�x; �X) such that G; �a; �U |= hG(�x; �X).
(2) Similarly; with the notation of Lemma 4:1; for any two graphs G1 and G2; if

G=G1⊕G2 and �a ∈ Vm1
1 and �b ∈ Vm1

2 and (�U) ∈ P(V)m2 ; there are unique Hintikka
formulas hG(�x; �y; �X); hG1 (�x; �y; �X); hG2 (�x; �y; �X) ∈ HM;k(�x; �y; �X) such that G; �a; �U |=
hG(�x; �y �X), G1; �a; �U |= hG1 (�x; �X 1) and G2; �a; �U |= hG2 (�y; �X 2).
(3) As HM;k(�x; �y; �X) is �nite; there are only �nitely many triples G=G1⊕G2 which

di�er with respect to their uniquely determined Hintikka formulas. The same is true
if we allow parameters �a; �b and �U .

Theorem 43 (Feferman, Vaught and Shelah). For every formula (�x; �y; �X)∈
FM;k(�x; �y; �X) there are �nitely many Hintikka formulas h1; �(�x; �X) ∈ HM;k(�x; �X) and
h2; �(�y; �X) ∈ HM;k(�y; �X) (�6� ∈ N) such that for every �-structure G =G1 ⊕G2 and
every assignment z as above we have

G; z |= (�x; �y; �X)

i� for at least one �6�

G1; z1 |= h1; �(�x; �X) and G2; z2 |= h2; �(�y; �X):

The proof follows from Proposition 40 and the lemma.

6.3. Evaluation terms over disjoint unions

Now we want to apply Theorem 43 to compute evaluation terms of the forms
∑

 (Y1 ;:::;Yt)

∏
�(�a;Y1 ;:::;Yt)

w(�a) or
∑

 (Y1 ;:::;Yt)

∑
�(�a;Y1 ;:::;Yt)

w(�a)

in a structure G = G1 ⊕ G2.
We �rst look at the terms

||(Y1; : : : ; Yt)||G;� =
∏

G; z|=�(�a;Y1 ;:::;Yt)

w(�a)

and

|(Y1; : : : ; Yt)|G;� =
∑

G; z|=�(�a;Y1 ;:::;Yt)

w(�a);

where z is an assignment of variables and summation is over all �a in G with z(�x)= �a.
Let h1; �, h2; �, �6� be the two Hintikka formulas associated with � by Lemma 41.

Lemma 44. In a �-structure G = G1 ⊕ G2 we have

||(Y1; : : : ; Yt)||G;� =
∏
�

||(Y1; : : : ; Yt)||G1 ; h1; � ·
∏
�

||(Y1; : : : ; Yt)||G2 ; h2; �

46 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

and

|(Y1; : : : ; Yt)|G;� =
∑
�

|(Y1; : : : ; Yt)|G1 ; h1; � +
∑
�

|(Y1; : : : ; Yt)|G2 ; h2; � :

We shall use the abbreviation

||(Y1; : : : ; Yt)||Gi;�i =
∏
�

||(Y1; : : : ; Yt)||G1 ; h1; �

and

|(Y1; : : : ; Yt)|Gi;�i =
∑
�

|(Y1; : : : ; Yt)|G1 ; h1; � :

Theorem 45. Let h
1; � and h

2; � be the Hintikka formulas associated with as in
Theorem 43. Using the notation of the previous lemma we have∑

G; z|= (Y1 ;:::;Yt)

||(Y1; : : : ; Yt)||G;�

=
∑
�

∑

G1; z1 |= h
1;�(Y1; : : : ; Yt)

G2; z2 |= h
2;�(Y1; : : : ; Yt)

||(Y1; : : : ; Yt)||G1 ;�1 · ||(Y1; : : : ; Yt)||G2 ;�2

and ∑
G; z|= (Y1 ;:::;Yt)

|(Y1; : : : ; Yt)|G;�

=
∑
�

∑

G1; z1 |= h
1;�(Y1; : : : ; Yt)

G2; z2 |= h
2;�(Y1; : : : ; Yt)

|(Y1; : : : ; Yt)|G1 ;�1 + |(Y1; : : : ; Yt)|G2 ;�2 :

6.4. Transductions and evaluation terms

We now want to compute evaluation terms of graphs G=�i; j(G1) and G=�i→j(G1).
The operations �i; j and �i→j are special cases of quanti�erfree FOL transductions.

The following lemma is implicitly already in [2,29] and explicitly in [28].

Lemma 46. Let G;G1 be graphs over the same universe V , G= �i; j(G1) and let z be
an assignment into elements and subsets of V. Let and � be formulas in FM;k ⊆MS1.
Then there are formulas �

i; j and ��
i; j (

�
i; j and ��

i; j) in FM;k such that
∑

G; z|= (Y1 ;:::;Yt)

||(Y1; : : : ; Yt)||G;� =
∑

G1 ; z|= �
i; j(Y1 ;:::;Yt)

||(Y1; : : : ; Yt)||G1 ;��
i; j

and ∑
G; z|= (Y1 ;:::;Yt)

||(Y1; : : : ; Yt)||G;z;� =
∑

G1 ; z|= �
i; j(Y1 ;:::;Yt)

||(Y1; : : : ; Yt)||G1 ; z��
i; j
:

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 47

Remark 47. This lemma can be generalized to other operations besides �i; j(G1) and
�i→j(G1). In fact, any operation de�ned as a scalar quanti�erfree transduction would
do.

6.5. Proof of Theorem 31

The main Theorem 31 is now proved by the following steps:
(1) Let and � be formulas in FM;k ⊆MS1. We �rst compute all the �nitely many

Hintikka formulas and all instances of Lemma 41 and Corollary 42 of HM;k(�x; �y; �X).
This step depends only on and � and not on the graph G. It uses the explicit
de�nition of Hintikka formulas given e.g. in [45, Chapter 3, Theorem 3:3:2].

(2) For all formulas of FM;k ⊆MS1 we compute their equivalent presentations as �nite
disjunctions of Hintikka formulas, using Proposition 40. This step depends only
on and � and not on the graph G.

(3) Given a graph G de�ned by a k-expression t, let treecw(t) be a parse tree for
G. This step depends on G and t. If we have to compute t from G, we need the
assumption that t can be computed in polynomial time from G alone.

(4) We apply recursively, along tree(t), Theorem 45 and Lemma 46 to evaluate
∑

 (Y1 ;:::;Yt)

∏
�(�a;Y1 ;:::;Yt)

w(�a):

This last step is polynomial (linear) in the number v of vertices of G. There are at
most v many disjoint unions to perform, and the number of transductions between
the disjoint unions is bounded by the number of formulas in FM;k . This establishes
that the problem is in PR. But it the last step can also be used to construct an
algebraic circuit which shows that the problem is VPK .

7. Conclusions and further research

Tree-width, it turns out, is a feasible parameter to study the �xed parameter com-
plexity of generating functions of MS2 de�nable graph properties. Clique-width k of
a graph G might be an equally feasible parameter to study the �xed parameter com-
plexity of generating functions of MS1 de�nable graph properties. But this requires the
following problems to have positive answers:

Open Problem 6. (1) Can one decide in polynomial time if a graph G has (directed)
clique-width k for �xed k ?
(2) Under the assumption of a yes answer to the above; and if one has estab-

lished that G has clique-width at most k; can one construct in polynomial time a
corresponding k-expression for G ?
(3) Can clique-width k of a graph G be approximated in polynomial time with

ration log k ?

48 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

For k = 3, Corneil et al. [19], have given a positive answer in the undirected case
both to the recognition and construction problems.
We have presented here our results for graphs (and problems expressible as graph

problems). Tree-width has been generalized to arbitrary relational structures by Feder
and Vardi [35]. Interesting applications may be found in [56]. Grohe and Mariño [43]
have shown the following remarkable connection between MS(�) and the �-formulas
of the �xed point logic (LFP).

Theorem 48 (Grohe and Mariño [43]). On classes of �-structures of bounded tree-width
every MS(�) sentence (formula) is equivalent a LFP(�) formula.

Similarly, clique-width can also be extended to arbitrary relational structures, cf.
[26]. Our model theoretic proof easily adapts to this situation and Theorem 31 remains
valid.

Open Problem 7. Is Theorem 48 also true if tree-width is replaced by clique-width ?

Another interesting line of research is the extension of our results to Meta�nite Model
Theory, as de�ned in [40]. This combines �nite structures (like here the graphs) with
in�nite structures (like here the ring or �eld where the weight function takes its values)
to form meta�nite structures. Meta�nite Model Theory gives the framework to extend
descriptive complexity theory, cf. [34], to the computational model of Blum, Shub and
Smale, cf. [7,41]. Our evaluation problems �t into this framework. Recent applications
of the methods presented in this paper include also graph theoretic polynomials like the
chromatic polynomials, matching polynomials and Tutte polynomials, and knot theory,
cf. [59–61]. For background on graph polynomials cf. [14,15].
A notion of monadic second-order logic for meta�nite structures is readily de�ned,

and so the class of MS(�) de�nable classes of meta�nite structures is well de�ned. It
seems more general than, but closely related to, the various forms of Extended Monadic
Second Logic EMS as discussed in [2,29].

Open Problem 8. Does the Feferman–Vaught–Shelah Theorem hold for monadic
second-order logic over meta�nite structures ?

Note that there several ways of giving a positive answer by restricting monadic
second-order logic for meta�nite model theory to quanti�cation over unary predicates
over the �nite domain and constant functions from the �nite domain to the in�nite
domain. The real question is whether this is the best we can do ?
We are quite sure that a suitable version of the Feferman–Vaught–Shelah Theorem

can be proved for �rst-order logic using the method of [40, Chapter 5], and extending
this to monadic second-order logic should be possible as well.

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 49

The notion of clique-width and tree-width of a meta�nite structures can now be de-
�ned as depending only on the underlying �nite structure. We conjecture that Theorems
31 and 32 have their suitable analogues.

Acknowledgements

The second author is indebted to Gregory Kogan for introducing him to the world of
permanents as documented in [51,53–55]. He would also like to thank Peter B�urgisser,
who made an early version of [16] available, to M. Grohe, who pointed out the bound
on the treewidth of the incidence graph, and to R. Bar-Yehuda, who reminded us
of SAT. The �nal version of this papers was prepared during a visit of the second
author at the Fields Institute in Toronto (January 2000), where the last author spent the
academic year 1999=2000. They are both indebted to D. Corneil and A. Nabutovsky,
who made the visit of the second author possible and provided us with a stimulating
environment.

References

[1] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of �nding embedding in a k-tree, SIAM J.
Algebraic Discrete Methods 8 (1987) 227–234.

[2] S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree decomposable graphs, J. Algorithms 12
(1991) 308–340.

[3] L. Babel, Recognition and isomorphism of tree-like P4-connected graphs, Discrete Appl. Math. 99
(2000) 295–315.

[4] L. Babel, S. Olariu, On the isomorphism of graphs with few P4s, in: M. Nagl (Ed.), Graph Theoretic
Concepts in Computer Science, 21th International Workshop, WG’95, Lecture Notes in Computer
Science, Vol. 1017, Springer, Berlin, 1995, pp. 24–36.

[5] L. Babel, S. Olariu, On the p-connectedness of graphs — a survey, Discrete Appl. Math. 95 (1999)
11–33.

[6] A.I. Barvinok, Two algorithmic results for the traveling salesman problem, Math. Oper. Res. 21 (1996)
65–84.

[7] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation, Springer, Berlin, 1998.
[8] H. Bodlaender, A tourist guide through tree width, Acta Cybernet. 11 (1993) 1–23.
[9] H. Bodlaender, Treewidth: algorithmic techniques and results, in: I. Privara, P. Ruzicka (Eds.),

Proceedings of the 22th International Symposium on the Mathematical Foundation of Computer Science,
MFCS’97, Lecture Notes in Computer Science, Vol. 1295, Springer, Berlin, 1997, pp. 29–36.

[10] H. Bodlaender, A partial k-arboretum of graphs with bounded tree width (tutorial), Theoret. Comput.
Sci. 208 (1998) 1–45.

[11] H. Bodlaender, J. Gilbert, H. Hafsteinsson, T. Kloks, Approximating treewidth, pathwidth, and minimum
elimination tree height, J. Algorithms 18 (1995) 238–255.

[12] H. Bodlaender, T. Kloks, E�cient and constructive algorithms for the pathwidth and treewidth of
graphs, J. Algorithms 21 (1996) 358–402.

[13] H.L. Bodlaender, A linear time algorithm for �nding tree-decompositions of small treewidth, SIAM J.
Comput. 25 (1996) 1305–1317.

[14] B. Bollob�as, Modern Graph Theory, Springer, Berlin, 1999.
[15] B. Bollob�as, O. Riordan, A Tutte polynomial for coloured graphs, Combin. Probab Comput. 8 (1999)

45–94.

50 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

[16] P. B�urgisser, Completeness and Reduction in Algebraic Complexity Theory, Algorithms and
Computations in Mathematics, Vol. 7, Springer, Berlin, 2000. Expanded version of the
Habilitationsschrift with the same title, Universit�at Z�urich, 1998.

[17] P. B�urgisser, M. Clausen, M.A. Shokrollahi, in: Algebraic Complexity Theory, Grundlehren,
Vol. 315, Springer, Berlin, 1997.

[18] K. Compton, E. Gr�adel, Logical de�nability of counting functions, J. Comput. System Sci. 53 (1996)
283–297.

[19] D.G. Corneil, M. Habib, J.-M. Lanlignel, B. Reed, U. Rotics, Polynomial time recognition of
clique-width 63 graphs, Extended abstract, LATIN’2000, August 1999, to appear.

[20] D.G. Corneil, H. Lerchs, L. Stewart, Complement reducible graphs, Discrete Appl. Math. 3 (1981)
163–174.

[21] B. Courcelle, Monadic second order graph transductions: a survey, Theoret. Comput. Sci. 126 (1994)
53–75.

[22] B. Courcelle, The expression of graph properties and graph transformations in monadic second-order
logic, in: G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph Transformations,
Vol. 1: Foundations, World Scienti�c, Singapore, 1997, pp. 313–400 (Chapter 5).

[23] B. Courcelle, The monadic second order logic of graphs, XIV: uniformly sparse graphs and edge set
quanti�cation, submitted for publication, cf. http:==dept-info.labri.u-bordeaux.fr/∼courcell/ActSci.html,
1999.

[24] B. Courcelle, J. Engelfriet, A logical characterization of the sets of hypergraphs de�ned by hyperedge
replacement grammars, Math. Systems Theory 28 (1995) 515–552.

[25] B. Courcelle, J. Engelfriet, G. Rozenberg, Handle-rewriting hypergraph grammars, J. Comput. System
Sci. 46 (1993) 218–270.

[26] B. Courcelle, J.A. Makowsky, Operations on relational structures and their compatibility with monadic
second order logic, Math. Struct. Comput. Sci. xx (2000) xx–yy.

[27] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graph of
bounded clique width, extended abstract, in: J. Hromkovic, O. Sykora (Eds.), Graph Theoretic Concepts
in Computer Science, 24th International Workshop, WG’98, Lecture Notes in Computer Science, Vol.
1517, Springer, Berlin, 1998, pp. 1–16.

[28] B. Courcelle, J.A. Makowsky, U. Rotics, linear time solvable optimization problems on graphs of
bounded clique-width, Theory Comput. Systems 33.2 (2000) 125–150.

[29] B. Courcelle, M. Mosbah, Monadic second-order evaluations on tree-decomposable graphs, Theoret.
Comput. Sci. 109 (1993) 49–82.

[30] B. Courcelle, S. Olariu, Upper bounds to the clique-width of graphs, Discrete Appl. Math. 101 (2000)
77–114.

[31] R. Diestel, in: Graph Decompositions, A Study in In�nite Graph Theory, Clarendon Press, Oxford,
1990.

[32] R. Diestel, in: Graph Theory, Graduate Texts in Mathematics, Springer, Berlin, 1996.
[33] R.G. Downey, M.F. Fellows, Parametrized Complexity, Springer, Berlin, 1999.
[34] H.D. Ebbinghaus, J. Flum, in: Finite Model Theory, Perspectives in Mathematical Logic, Springer,

Berlin, 1995.
[35] T. Feder, M. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction,

STOC’93, ACM, New York, 1993, pp. 612–622.
[36] S. Feferman, R. Vaught, The �rst order properties of algebraic systems, Fund. Math. 47 (1959) 57–103.
[37] M.G. Garey, D.S. Johnson, in: Computers and Intractability, Mathematical Series, W.H. Freeman and

Company, SanFrancisco, CA, 1979.
[38] V. Giakoumakis, F. Roussel, H. Thuillier, On P4-tidy graphs, Discrete Math. Theoret. Comput. Sci. 1

(1997) 17–41.
[39] V. Giakoumakis, J. Vanherpe, On extended P4-reducible and extended P4-sparse graphs, Theoret.

Comput. Sci. 180 (1997) 269–286.
[40] E. Gr�adel, Y. Gurevich Meta�nite model theory, Inform. and Comput. 140 (1998) 26–81. See also:

D. Leivant (Ed.), Logic and Computational Complexity, Selected Papers, Springer, Berlin, 1995, pp.
313–366.

[41] E. Gr�adel, K. Meer, Descriptive complexity theory over the real numbers, Lectures in Applied
Mathematics, Vol. 32, Springer, Berlin, 1996, pp. 381–403. A preliminary version has been presented
at the 27th ACM-Symposium on Theory of Computing, Las Vegas, 1995.

B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52 51

[42] D.Y. Grigoriev, M. Karpinski, The matching problem for bipartite graphs with polynomial bounded
permanents is in nc, 28th Annual Symposium on Foundations of Computer Science, 1987, pp. 166
–172.

[43] M. Grohe, J. Mariño, De�nability and descriptive complexity on databases of bounded tree-width,
in: C. Beeri, P. Bunemann (Eds.), Database Theory-ICDT’99, Lecture Notes in Computer Science,
Vol. 1540, Springer, Berlin, 1999, pp. 70–82.

[44] Y. Gurevich, Modest theory of short chains, I, J. Symbolic Logic 44 (1979) 481–490.
[45] W. Hodges, in: Model Theory, Encyclopedia of Mathematics and its Applications, Vol. 42, Cambridge

University Press, Cambridge, 1993.
[46] H.J. Hoover, R. Greenlaw, W.L. Ruzzo, Limits to Parallel Computation, Oxford University Press,

Oxford, 1995.
[47] B. Jamison, S. Olariu, A linear-time algorithm to recognize P4-reducible graphs, Theoret. Comput. Sci.

145 (1995) 329–344.
[48] B. Jamison, S. Olariu, Linear-time optimization algorithms for P4-sparse graphs, Discrete Appl. Math.

61 (1995) 155–175.
[49] M. Jerrum, Two-dimensional monomer-dimer systems are computationally intractable, J. Statist. Phys.

48 (1987) 121–134. Erratum in 59 (1990) 1087–1088.
[50] D.S. Johnson, A catalog of complexity classes, in: J. van Leeuwen (Ed.), Handbook of Theoretical

Computer Science, Vol. 1, Elsevier Science Publishers, Amsterdam, 1990 (Chapter 2).
[51] G.P. Kogan, Computing the permanent over �elds of characteristic 3: where and why it becomes

di�cult, FOCS’96, IEEE, New York, 1996, pp. 108–114.
[52] G.P. Kogan, The complexity of Schur functions over �nite �elds, Research proposal for Candidacy

Examination, June 1997, http://cs.technion.ac.il/∼admlogic/TR/readme.html.
[53] G.P. Kogan, J.A. Makowsky, The complexity of Schur functions in �nite �elds of characteristic

2, Technical Report, Technion-Israel Institute of Technology, February 1997, Comput. Complexity,
submitted for publication. http://cs.technion.ac.il/∼admlogic/TR/readme.html.

[54] G.P. Kogan, J.A. Makowsky, Computing Schur functions for Borchardt matrices, in preparation.
[55] G.P. Kogan, J.A. Makowsky, Computing the permanent over �elds of characteristic 3: where

and why it becomes di�cult, Technical Report, Technion-Israel Institute of Technology,
February 1996, Computational Complexity, submitted for publication. http://cs.technion.ac.il/
∼admlogic/TR/readme.html.

[56] P. Kolaitis, M. Vardi, Conjunctive query containment and constraint satisfaction, PODS’98, ACM, New
York, 1998, pp. 425–435.

[57] J.A. Makowsky, Model theory and computer science: an appetizer, in: S. Abramsky, D. Gabbay, T.
Maibaum (Eds.), Handbook of Logic in Computer Science, Vol. 1, Oxford University Press, Oxford,
1992 (Chapter I.6).

[58] J.A. Makowsky, Logical methods in graph algorithms, Lecture Notes of a course given at ESSLLI’99
in Utrecht, August 1999.

[59] J.A. Makowsky, Colored tutte polynomials and Kau�man brackets for graphs of bounded tree-width,
Combin. Probab. Comput. xxx (2000) xx–yy, submitted for publication.

[60] J.A. Makowsky, K. Meer, On the complexity of combinatorial and meta�nite generating functions of
graph properties in the computational model of Blum, Shub and Smale, CSL’00, Lecture Notes in
Computer Science, Vol. xxxx, Springer, Berlin, 2000, pp. xx–yy.

[61] J.A. Makowsky, K. Meer, Polynomials of bounded tree-width, in: Formal Power Series and Algebraic
Combinatorics, eds. D. Krob, A.A. Mikhalev and A.V. Mikhalev, Berlin, 2000, pp. 292–703.

[62] J.A. Makowsky, Y. Pnueli, Arity vs. alternation in second order logic, Ann. Pure Appl. Logic 78 (2)
(1996) 189–202.

[63] J.A. Makowsky, U. Rotics, On the cliquewidth of graphs with few P4’s, Internat. J. Found. Comput.
Sci. 10 (1999) 329–348.

[64] K. Meer, On the complexity of quadratic programming in real number models of computation, Theoret.
Comput. Sci. 133 (1994) 85–94.

[65] C. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[66] E. Ravve, Decomposition of Databases with Translation Schemes, Ph.D. Thesis, Department of

Computer Science, Technion-Israel Institute of Technology, Haifa, 1998.
[67] U. Rotics, E�cient algorithms for generally intractable graph problems restricted to speci�c classes of

graphs, Ph.D. Thesis, Technion-Israel Institute of Technology, 1998.

52 B. Courcelle et al. / Discrete Applied Mathematics 108 (2001) 23–52

[68] S. Saluja, K. Subrahmanyam, M. Thakur, Descriptive complexity of]p functions, J. Comput. System
Sci. 50 (1995) 493–505.

[69] A. Sharell, Complexit�e Descriptive et l’approximation des fonctions de d�enombrement, Ph.D. Thesis,
L.R.I.-UPS, Paris, France, 1998.

[70] S. Shelah, The monadic theory of order, Ann. Math. 102 (1975) 379–419.
[71] K. Truemper, Matroid Decomposition, Academic Press, New York, 1992.
[72] K. Truemper, E�ective Logic Computation, Wiley, New York, 1998.
[73] L.G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979) 189–201.
[74] E. Wanke, k-NLC graphs and polynomial algorithms, Discrete Appl. Math. 54 (1994) 251–266.

