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1. Introduction

There are several ways to define sets of finite graphs by finite devices. The

main ones are graph-grammars [21] (and in particular context-free ones, see,

e.g., Courcelle [18, 19]), systems of equations (i.e., their least solutions, see
Bauderon and Courcelle [8] and Courcelle [15]), logical formulas (and in

particular monadic second-order ones, see Courcelle [16–19] and Arnborg

et al. [4]), by forbidden configurations (and in particular forbidden minors, see,

e.g., Robertson and Seymour [29], Arnborg et al. [7]), and finally by reduction.

A terminating reduction system (R, K) consists of a rewriting relation ~~

and a finite set K of accepting graphs. Given any graph G, every sequence of

-+~ -rewritings terminates (with a graph called a normal form of G). A

rewriting system defines a class L of graphs if every normal form of a graph

G = L is in K and if no normal form of H @ L is in K.

Classical examples of graph reduction concern trees, series-parallel graphs,

flowcharts (Hecht and Ullmann [23]). As an example, consider a graph.

Remove a pendant edge with its end vertex. Repeat this process until a graph

with no pendant edge is obtained. This graph is an isolated vertex if and only if

the original graph was a tree.

In this paper, we present an algebraic theory of graph reduction. Our main

theorem says that every set of graphs of bounded treewidth that is definable by

a monadic second-order formula is also definable by reduction. In addition, the

corresponding reduction system can be obtained effectively and a correspond-

ing decision method can be constructed that runs in time linear in the size of

the input graph. Although the construction method is intractable in general, it

can be applied to specific cases of interest, and we provide examples concern-

ing outerplanar graphs and partial 3-trees.

Membership in the classes of trees, forests (partial l-trees), two-terminal

series-parallel graphs, partial 2-trees, and partial 3-trees can be decided with

help of terminating sets of reduction rules [5, 24, 34]. Moreover, using these

reduction rules gives an embedding of a partial k-tree in a (full) k-tree for

k = 1,2,3, and this embedding can be produced in linear time in the size of the

given graph [28]. The straightforward generalization of this method does not

work beyond k = 3 [26]. Once an embedding in a k-tree is given for a graph,

many combinatorial problems can be solved in time linear in the size of the

graph [2–4, 6, 9, 11, 17, 18, 19, 35] (the constant of proportionality depends

however on the value of k). An O(nz ) approximate embedding algorithm was

developed by Robertson and Seymour [30, 31]. Various improvements are

possible (see e.g., Courcelle [17], Lagergren [25], and Bodlaender [12, 13]. A

probabilistic and approximate algorithm with 0( n log rz) performance was

developed by Matou3ek and Thomas [28]. Since no linear-time embedding

algorithm is known for arbitrary k, this problem is in a sense the bottleneck for

fast solution of a large number of combinatorial optimization problems on

partial k-trees (also known as graphs of bounded treewidth, see e.g., [29]). The

method presented here will make it possible to solve some of these problems in

linear time without access to a k-tree embedding, tree-decomposition, elimina-
tion order or parse tree.

We develop the theory of rewriting and reduction systems in a universal

algebra setting. We consider subsets of the carrier of a many-sorted algebra

that are defined as unions of equivalence classes of a congruence with finitely

many classes. Membership in such sets can be decided by a rewriting system
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allowing a value ~[ 1] to be replaced by fir], whenever ~[ 1 is a context and (1, r)

is a pair in a finite list of rewrite rules. In general, this rewriting relation will be

neither computable nor Noetherian and thus of little value algorithmically. But

if there is an integer valued size function defined for the carrier of the algebra

obeying certain monotonicity properties and such that there are only finitely

many objects of each size, then the rewriting system can be modified to a

reduction system that is guaranteed to reduce the size of the object on each

rewrite step. A reduction system will always rewrite an object from the desired

set to one of finitely many representatives of its congruence class, in a number

of rewrite steps bounded by the size of the object. We apply the universal

algebraic framework to algebras of graphs, as developed in [81, [16]. [17], [181,

[191, and [20], in such a way that the reduction relation is easily computable on

the graph itself and not only on the expression evaluating to the graph. The

algebra of graphs that we shall use here is related to the construction of

k-terminal recursive graph families [35, 36]. We have a sequence of domains

(G, );=,] where the domain G, is the family of i-sourced graphs, that is, of

graphs with a sequence of i distinguished vertices or sources. We need only two

operations to combine graphs of G, into a new graph of G,, namely the

generalized parallel and series composition. We also need a set of “lifting”

operators to add sources to a given graph, other operators to remove sources,

and basic nullary operators to introduce vertices and edges. The operator sets

for i-sourced graphs give rise to an infinite sequence of finite signatures, (F~ ):,

with F~ c F L+ 1, where the algebra generated by the signature F~ has a carrier
that is the class of graphs of treewidth at most k.

Based on the algebra of i-sourced graphs, we define a rewriting relation on

graphs. Namely, given a rewrite rule (1, r) of two i-sourced graphs, an applica-

tion of the corresponding graph rewriting rule to a graph G first finds a redex,

a subgraph of G isomorphic to the graph 1 and such that if the bijection of the

isomorphism maps the sources of 1 to a vertex set s in G and the nonsources

to a set i in G, then the nonsourced graph underlying 1 is isomorphic to the

subgraph of G induced by s U i. It then replaces the redex with an isomorphic

copy of r. This leads to a rewriting relation that can be implemented locally on

a graph and thus more efficiently than the rewriting relation that depends on

all global parses of a graph.

The monadic second order logic was used by Courcelle [16–20] and Arnborg

et al. [4] as a powerful tool to formalize graph properties (hereafter, called

iWS-de@zable properties). We prove that all MS-definable properties of graphs

of bounded treewidth can be decided in linear time. We give applications to

some families of outerplanar and planar graphs.

2. Basic Grap[l-Theoretic and Algebraic Definitions

2.1 GRAPHS. We consider graphs that are undirected loop-free multi-
graphsl given by finite disjoint sets V and E of vertices and edges, respectively,

and the incidence relation 1 c V X E that is constrained to make every edge

incident to exactly two vertices. These two end-letiices of the edge are said to

be adjacent. A simple graph is a graph without multiple edges. A subgraph H of

a graph G, H c G, is a graph that has the sets V~, E~, 1~ that are subsets of

1The extension to graphs with loops, edge labels, edge directions or even to directed hypergraphs
1s straightforward.
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the corresponding sets defining G. A partial graph of G is a subgraph of G

with the same vertex set as G. A subgraph is induced by a set S c V if it

contains all edges of G incident only with vertices in S. A set of m vertices is

called a clique in G if it induces a complete subgraph of G (the subgraph itself

is often called the m-clique and is denoted by Km if it is simple).

The number of incident edges is called the degree of a vertex. A graph is

connected if there is a path between any two of its vertices. If there is no single

vertex that disconnects a graph, the graph is called nonseparable. A set of

vertices, S c V, is a separator in a graph G if the removal of S and the edges

incident to its vertices disconnects G. We use other standard concepts of graph

theory presented by Bondy and Murty [14].

A connected graph with no K~, ~ subgraph and such that every minimal

separator (with respect to set inclusion) induces a K~ subgraph is called a

k-tree. An alternative—and more intuitive—definitionof this class of graphs is

given by the following construction process: the k + l-clique is a k-tree, and

any k-tree with n > k + 1 vertices can be constructed from a k-tree with

n – 1 vertices by adding a vertex adjacent to all vertices of a K~ subgraph of

that k-tree (note that we work with multigraphs and thus allow multiple edges

in k-trees). Subgraphs of k-trees are called partial k-trees. A graph G is of

treewidth at most k if a family {X,,},,. ~ of vertex subsets of G can be arranged

as nodes in a tree T so that those nodes containing a given vertex induce a

subtree of T (i.e., a connected subgraph of T’), every pair of adjacent vertices

share membership of some X,,, and IX,II s k + 1 for all n e IV. Such an

arrangement is called a tree-decomposition of width at most k. The class of

partial k-trees is exactly the class of graphs of treewidth at most k (see e.g.,

[35]).

2.2 ALGEBRAS. Let 9 be a finite set of sorts. A set F is a finite P-sorted

signature if F is finite and every f in F has a profile S1 X “” c x SB + s, where

~ is nonnegative and finite (it may be zero, which corresponds to a constant,

i.e., nullary operator), and s ~, ..., SP, s are all in &

An F-algebra is a tuple M = (( M,),. ~, (f~)~~~), where M, n M, = 0 if
s + s‘ and f~ is a total mapping M,l x .”. x M:P - M,, whenever f is of

profile sl X “o” X sB + s. The sets M,,, s = & are Its domains, their union its

cam”er. We denote the carrier IM I = u ,,. ~ikl,, as customary. A finite algebra

is an algebra with a finite carrier.

We denote by T(F) the initial F-algebra (term algebra over F), and write

h~: IT(F) I -+ IMl for the unique homomorphism associated with M. Let t be a
linear term with variables x,,.. ., x,, (i.e., each variable x, occurs exactly once

and has a fixed sort o-(x, ) compatible with its usage in t).Let d, = Mm(x,) for

1 s rn < i s n. Then we have a mapping f of profile O(xl) x “.. x a(x,n) --+

a(t) defined by f(ai, . . ..a~) = t[al, . . ..a.d, d+l,l, d.. ,d. ]. These mappings

will be called deri~~ed operations or, if m = 1, contexts. If in addition n = 1, that

is, if t is an expression over F in which only variable xl occurs, and it occurs

exactly once, then we say that the context is generated by F. Note that, if
hfif(l T(F)I) is a proper subset of IM 1,then some contexts may not be generated

by F. We shall write f[ ] for a general context. In this way, we need not specify

the variable used to represent the argument; f [t ] denotes the result of the

substitution of t for this variable (and assumes that the resulting expression

has correct sorts of subexpressions).
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An equivalence relation = is stable under the operations of M if, for every

f,,, of ~ and pairs (LI1, U,)?=l, if L1, = u, for 0< i s P, then ~v, (L,,..., LIB) =
fl,(u,,..., UP). The class that includes an element d is denoted [d] when the

intended equivalence is clear from the context.

A congruence on M is an equivalence relation = on IM such that

(i) any two elements equivalent under = are of the same sort and
(ii) the relation = is stable under the operations of A4 (and, as a conse-

quence, under the derived operations of M).

Let L c IMI. We denote by -[, the congruence on ill defined by: ~n -[ nz’

if and only if, for every context f [ ]. f [m] G L if and only if f [nz’] G L. We say

that L is generated by F if L c hfi~(l T(F)l), that is, if every member of L can

be written as an expression over F. We say that L is M-recognizable if L is a

union of classes of a finite congruence on lf, all of the same sort.

LEMMA 2.1. Let M be ml F-algebra and L c M, for some s E Y’. The

follo~’itlg conditiotls are equivalent:

(1) L is M-recognizable.
(~) -,2 is jinite.

(3) L = h -1(C) wilere h is all F-ilot?lo~?lorpllisnl onto a finite algebra M’ and
C c M,:.

PROOF

(1) - (2): Every class of the congruence used to recognize L must be

contained in a class of the congruence -I . So if (2) is violated, every

congruence defining L as a union of its classes must have infinitely many

classes and L is thus not recognizable.

(2) ~ (1): If -[ is finite, it can be used in the definition of recognizability

to define L. The equivalence of (3) is no more difficult. see [17]. ❑

3. Rewriting Systems on an Algebra

A rewriting system R on an algebra M of signature F is a finite list of pairs of

elements of IMI, R = {(1,, r,), ~ ,}, where each r, is of the same sort as the
corresponding ll. We write m +( ~, F, m ‘ if and only if m =f[l, ], m’ =f[r, ]

and m + m’, for some context f and some i G 1. Let - ~’}<,F, be the reflexive

transitive closure of the relation ~( ~, F, . For a subset ~ of INf and a

rewriting system R, we let L,V((R, F), K) be the set {nzl there is an m‘ such

that m + ~~,~)m’ and m‘ G K}. When the set of operations F is clear from

the context, we write ~~ and L,,,(R, A7). We say that LW((R, F), K) is the set
twokly defined by (R, F) and K.

PROPOSITION 3.1. Let L c jM I be M-recognizable and generated by F. T~wn,

L = L W(R, K) for sotne rewriting system R and some jinite subset K of L.

PROOF. L is recognizable and therefore is the union of classes of a finite

congruence = . Let D be a set of representatives, one from each equivalence

class of = . For every rn c IMI, we let R be the representative of [nz]. Let us

construct a rewriting system R as follows: For every nullary operator ffi[ of F

and such that fh~ ( ) # fL[( ), we add the pair ( fk, ( ), f~~ ( ) ) to R. For every

operator ~11 of profile s, X . . . x SD + ,s and every sequence of representatives

all,.. ., dP m D such that d, is of sort s,, and f~(d[, . . . . d~) = d is such that
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C[d] E L~or some context c, and d is not the representative of [d], we add the

pair (d, d) to R. Let K be the finite set {film ● L}. Since the rewriting

relation respects the congruence = , we have LW(R, K) c L. On the other

hand, every 1 ● L is the value (under hlf ) of some expression t G IT(F)I since

F generates L, and it is not difficult to show by induction over the structure of

t that either 1 = j or 1 can be rewritten into j using a sequence of rules and

contexts that can be obtained from the syntactic structure of t. ❑

An explicit membership decision algorithm for L will follow from some

assumptions on computability and termination of rewritings.

The relation ~~ is said to be Noetherian if there is no infinite sequence

nzcl, m[, m~,. . such that ml +~ m,+, for all i >0. An element m’ such that

m‘ ~(~, ~, m“ for no m“ is called (R, F)-irreducible or if (R, F) is clear from

the context, irreducible. If m + ~~ ~, m’ and m’ is irreducible, then m’ is called

a (R, F)-normal form of m or just a normal fornl.

Let R be a rewriting system and K be a finite subset of IMI. We say that

((R, F), K) defines L and we write this L = L(( R, F), K) if the following

conditions hold:

(i) L = LW((R, F), K),

(ii) ~(~ ~, is Noetherian,

(iii) K is’ a set of ( R, F)-irreducibles;

(iv) For every m, and for every (R, F)-normal form m‘ of m, either rn’ ● K

and m E L, or m’ @K and m @L

l?~OPOSI~lOiN 3.2. Let L, R, K, F be as constructed in the proof of Proposition

3.1. Assume also that K is a set of iweducibles and that +~ is Noetherian. Then

L = L((R, F), K) ami eL!eiy elenlent of L has a unique normal fotm.

PROOF. Let = be the finite congruence used to construct R. Let m ● IMl.

Since -~ is Noetherian, m has normal forms. Let m‘ be one of them. Since

+~ respects = , m = m“ for every normal form m“ of m.

If m‘ G K, then m E L since m = m‘ = K c L. Let m“ be any normal form

of m. By the same argument, m = m“ and m“ G K. But [m] has only one

representative in K, so m‘ = m“ and the normal form is unique.

Otherwise, m‘ @ K. By the preceding case, no other normal form of m is in

K, and thus m @ L. ❑

We now consider how to find a Noetherian ~~ in an important special

case. A size function on an algebra Al is a mapping m + Im I associating a

nonnegative integer Im I G N with every m E IM 1. We require that there are

only finitely many elements in 1M I of each given size and that if Im I < Im‘ 1,

then If [ m]l < \f [ m ‘]1 for every context f [ ] (recall that a context contains

exactly one occurrence of the variable and thus cannot be constant). Note that

this definition requires f [m] to depend on nz, so that, for example, annihilators

are not permitted in an algebra with a size function.

We call a rewriting system R a reduction system if Irl <111 for every pair ( 1, r)
in R. Obviously, a reduction system is Noetherian. It produces a normal form

of m in at most Im I steps.

PROPOSITION 3.3. If M has a size jimction, then eL)e~ recognizable set L in

IMI is dejined by ((R’, F), K) for sonle reduction systenl R‘ and some finite set K.
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PROOF. Consider, as in Proposition 3.1, a finite congruence = such that L

is the union of some of its classes. For each congruence class [m], select one

element m of minimum size as representative of the class and let D~ be the

set of elements in the class that are of minimum size (by our assumptions. each

D~l is finite). Let D be the union of the sets D,.. For every sort-compatible

combination of an operation ~ and operands d,, . . ., dP from D, consider

d= f(dl,..., d~j such that c[d] ● L for some context c. If d @ D, then put in

R’ the pair (d, d). Since D contains all smallest elements of [d], 1~1 < Idl and

the system R‘ will be a reduction system. Also, all normal forms of elements

generated by F are in the finite set D. Let K = D n L. Since the rewriting

relation +( ~,, ~ ~ respects the congruence, LW((R’, F), K) = U ~1~ ~[ml, and

this set is equal to L since K is the set of normal forms in L. By an argument

similar to that in the proof of Proposition 3.2. L is defined by (( R‘, F), K) (but

normal forms need not be unique’). ❑

The following easy observation will be useful for applications:

PROPOSITION 3.4. If L = L(R, K) atld R’ c R is such that G ~~G’ for
elley (G, G’) ● R, then L = L(R’, K).

4. Graph Reductions

A comprehensive account of algebras defined to construct graphs is given in

[8]. We will consider an algebraic definition of unlabeled, undirected multi-

graphs. It is easy to extend or modify this algebra to vertex- and edge-labeled

graphs, simple graphs, directed graphs, hypergraphs, and combinations of

these.

4.1 GENERATING PARTIAL k-TREES. Let Sk be the set {gO, ..., g~}, where

g, is the sort of i-sourced graphs. An i-sourced graph is an undirected Multi-

graph and a sequence of i distinct vertices, G( V, E, 1, s ), where P’ and E are

finite disjoint sets (the vertices and edges, respectively), 1 c V x E is the

incidence relation required to make every edge incident to exactly two vertices,

and s:

{l,..., i} ~ v is the injective map indicating the jth source for 1 < ~ < i.

The graphs of sort g, form the domain Gl of i-sourced graphs. A vertex that is

not a source will be called an internal Lertex and a source vertex is also called

an external (Iertex. The underlying graph of an i-sourced graph is the same graph

without its source map, an ordina~ graph. Most graph properties of an

i-sourced graph can be inherited from the underlying graph in a natural way.
Consider a sequence of operation sets, (D,);= ~,. For i >0, the set L), consists

of the following operators:

P,: G, X G, - G,; the parallel composition of two i-sourced graphs. It is

obtained by fusing corresponding sources of the two i-sourced graphs. P. is

the special case of disjoint union of two graphs.
1/: G,_l ~ G, for 1 < j < i. The lifting of an (i – 1)-sourced graph to an

i-sourced graph by insertion of a new isolated source vertex at position j

among the sources.

r~: Gz ~ GZ–l, i z 1. This removes the last element from the sequence of

sources of an i-sourced graph (but keeps the corresponding vertex).
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S1: G; = G, X . . . x G, - G,. The series composition of i i-sourced graphs into

new i-sourced graph. S,(G,,. . ., G,) can be defined in terms of the opera-

tors 1~+1, r,+l and P,+l as

r,+,(~+,(l~+l(G, ), P,+1(l~+1(G2),...,l~ +l(G,) ..))),

for i >2. Intuitively, each of the operands will have i – 1 of its i sources

identified with i – 1 sources of the result and one with an (i + l)th vertex

that is subsequently not regarded as a source. For i = 1, S,(G, ) is defined

to have a new vertex that is a source and is connected by an edge with the

source of the argument (which is not a source of the result). Thus,

SI(GI ) = r2(P2(e2, l~(G1 ))), where ez is defined below.

e, = G, for i = 1, 2 is a nullary operator that evaluates to an edge with its two

end-vertices. One (i = 1) or both (i = 2) of the end-vertices are sources.

(Note that el = rz(ez).)

i = G, is the empty graph if i = O. For i > 0, i is a derived nullary operator,

evaluating to the i-sourced edgeless graph 1: ( “”” l;(0) “.” ).

r;: G, - Gf) is introduced as a derived operator, r~(G) = rl(rz( “” - r,(G) “”” )),

that is, r,* is the operator that removes all sources (as sources, not as

vertices) from an i-sourced graph.

Thus, for instance, Do consists of the operators O and PO, DI consists of P,,

SI, l;, r,, 1 and el. D2 consists of the ordina~ parallel composition P2 and a

variant of the usual series composition, Sz, as well as l;, l;, rz, and ez.

If we were interested in labeled graphs or hypergraphs, more operators

would be needed to define labels and hyperedges of different sizes (see [8] and

[18]). We let the signature F~ be the union of operator sets D, for i = O,..., k.

We let Fx be the union of the signatures F~. We shall denote by A4~ the

FA-algebra with set of sorts {g.,..., g~} and domains {G[J,. ... G~}. Sometimes,

we shall call parse of a graph G over a signature F an expression over F that

evaluates to G. Let us make precise here that we consider abstract graphs, that

is, isomorphism classes of concrete graphs. This is necessa~ for a correct

algebraic treatment.

The following proposition shows that FL generates a proper subset of the

domains of ikl~.

PROPOSITION 4.1. The graphs of sort gO generated by F~ are the graphs of

tree-width at most k.

The proposition will follow from these two lemmas:

LEMMA 4.2. For any term t = lT(F~ )1 evaluating to a graph G, and elle~

partial graph H of G, there is a term t‘ E IT(F~)l which eualuates to H.

PROOF. Those edges introduced by the nullary operators el and e2, can be

removed in G by replacing a pendant edge e ~ by l; (rI(l)) and an edge ez by

l;(l) in t. If an edge was introduced by operator S{, we can remove it by
replacing S,(x) by l~(rl(x)). ❑

LEMMA 4.3. For a K~-subgraph induced by vertex set K in any k-tree T, there is

a term t E IT(F~ )1 that eualuates to the graph T with the uertices in K as sources,
in any given order.

PROOF. Let T be the smallest k-tree in which there is a k-clique K of

vertices ordered (L) ~, ..., Uk ), contradicting the hypothesis of the lemma (i.e.,

there is no term evaluating to T with sources (u ~, ..., LJk)). T must have more
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than k + 1 vertices (since rk+ ,( ~~ +, ) = ,$L( ~~, . . . . ~~ ), where ~~ is KL with

all vertices made sources, and K[ is generated by FA ). By the construction

process of k-trees, there is a vertex r,+ , such that K is contained in a

k + l-clique of T induced by Q = K U {[!k+ l}. For any z’ ● {~’l,. . .,~’~+l}, let

K“ = Q – {L} and let ~, be the subgraph of T induced by K“ and those

vertices separated from L) by K“. For edges between vertices in Q, we require,

however, that the edge is present in exactly one of the T,,. The sources of ~

are the vertices K“ ordered as L,, . . . . LIL+,. By the assumption about T, and

since T,, is at least one vertex smaller than T, T,, = h ~,(t,, ) for some t,, in

IT(FL)I. Moreover, t = r~(PL(Sk(t,,,,....t,,,),t,,,+,)),a contradiction. ❑

PROOF (OF PROPOSITION 4.1). By the previous two Lemmas, every partial

/c-tree is generated by FL. For an expression t = lT(F’~)1, we can produce a

tree-decomposition of width at most k for lzkf(t)as follows: The tree of the

decomposition is the undirected tree T corresponding to the parse tree of t.

The vertex set X,, for node n of T consists of the sources of the value of the

subexpression corresponding to n, except if the operation of n is el or S,,

1 < i < k. In the latter case, the set X,l is the union of the sources of the

operands of n (these are merged by the operator S,, so there are i + 1 vertices

for such a node). In the former case, both end points of the edge will be in the

corresponding vertex set. It is easy to show by induction over the structure of t

that this gives a tree-decomposition of width at most k for hJ1(t). ❑

COROLLARY 4.4. All l-sourced graph G, has a tree-cleconlposition oj’ width at

most k such that all sources of G, are in otle [ertcx set of the tree-decomposition, if

and only if G, is generated by FL.

The monadic secon[i-order logic over unlabeled graphs is an extension of the

standard first-order predicate logic consisting of individual variables, ranging

over vertices and edges, parentheses, logical constants A, v, T, ++ , + , Y,

and 3, augmented with set variables, quantification over set variables, and

symbols = , = , c . We also use unary predicates E and V, and binary

predicate 1 to denote the sets of vertices and edges, and the incidence relation,

respectively. The unary predicate P, denotes the ith source of the graph.

A k-sourced graph G can now be represented as a relational structure

(A, V, E, I, Pi,..., PL)

where A is the set of edges and vertices, V denotes the set of vertices, E the

set of edges, 1 the incidence relation and P, the ith source (if any). Finitely
labeled graphs could be represented by introduction of a finite set of unary

predicates. A formula ~ can be used to define a set of graphs via the

satisfaction relation which is a straightforward generalization of the first-order

satisfaction relation, (see e.g.. [4]). Sets definable by a formula in monadic

second order logic will be called MS-definable. More extensive accounts for the

logic and its power for defining graph properties can be found in [4] an [16-1 9].

The concept of MS-definability is very powerful since many NP-hard problems

for graphs correspond to MS-definable sets. A substantial list of such problems

can be found in Arnborg et al. [4]. As a simple example, consider two-colorabil-

ity of graphs. It is defined by the last formula below which uses the definition
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of adjacency expressed by the first formula:

Adj(x, y) = (T x = y) A ~e(I(x, e) A I(y, e))

Twocol= SX2Y[VXV(X) ~ ((.x eXVx G Y) A -(x=XAX E Y))]

Courcelle [16, 18, 19] defines a recognizable set of graphs L to be a set

definable as the union of classes of a congruence with finitely many congru-

ence classes of every sort. The notion of a congruence is defined with respect

to the infinite signature Fm.

THEOREM 4.5 (COURCELLE [16]). E1’ery monadic second-order definable set of

graphs is recognizable?

Courcelle [16] proved the above theorem by exhibiting a finite congruence

over lf~ fine enough to recognize all sets definable with a formula of height at

most h (the height of logical formula is the largest level of nesting quantifiers).

Under this congruence, two graphs G and G’ are congruent if, for every

monadic second-order formula @ with height at most h, G i= @ if and only if

G‘ + ~. We can explain the finiteness of the resulting congruence by observing

(and proving, e.g., by induction over h) that there are only finitely many such
formulas that cannot be proven equal using renamings of quantified variables

and the laws of propositional calculus. An alternative proof using interpretabil-

ity into classes of labeled binary trees can be found in [4].

4.2 GRAPH REWRITING SYSTEMS. Graph rewriting systems can be either

defined as concrete substitution mechanisms (by which a subgraph of a graph is

replaced by another graph) or by a rewriting on the algebra of graphs. These

two aspects are investigated and shown equivalent in [8]. The graph rewriting

systems introduced below are simpler than the most general ones considered in

[8], but are sufficient for our purposes.

A graph rewriting system is a finite set S of pairs of i-sourced graphs such

that two graphs in any pair are of the same sort. We associate with S a binary

relation -s on (0-sourced) graphs defined as follows:
G =s G‘ if and only if, for some pair (H, ~’) in S with H and H’ of some

sort g,, there is an i-sourced graph K such that G = r~( P,(H, K)) and

G‘ = r~(P,( H’, K )). Intuitively, G +$ G’ means that if G can be expressed as

a parallel composition of H, a left side in S, and a context K, then H can be

replaced by H’ (the corresponding right side in S) in that context to form G‘.

In other words, this means that some ~, isomorphic to H, is a subgraph of G

such that the edges and vertices of G not in ~ and the vertices corresponding

to sources of H span a subgraph ~ of G, isomorphic to K, (that we shall call

the context of H in G), with the property that the vertices common to ~ and

~ correspond to the sources of H and K in the considered isomorphisms.

PROPOSITION 4.6. Let S be a graph rewriting system and let k be the smallest

number such that evey graph occurring among the pairs in S is generated by Fk.

For elery k’ > k, for all graphs G and G’, G *s G’ if and only if G ~(,S,F,,j G’.

PROOF. Recall that the contexts involved in the definition of -(~,.~) are

not required to be generated by F. So the necessity is clear. For the sufficiency,

we must prove that whenever G = f [ H ] for a context f [ ], we also have

‘The first version of the proof of this theorem appeared in 1986.
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G = r~(l’,(11, K)) for some K. We prove this by induction, for all values of H

and i over the depth of the argument place in ~[ ]. The base case where ~[ ] is

the context that removes all sources is easy:

G =rl*(H) =r~(P, (H, i)).

The inductive case has four subcases according to the operator of which H is

an argument in the expression:

(i) G =~[Hl =~’[r[+l(H)l,

(ii) G =jlH] =~’[lj(H)],

(iii) G =f[H] = f’[P,(H, K)],

(iv) G =~[Hl =f’[S,( . . ..H. . .)1.

In each case above, the depth of ~’ is less than that of ~. In case (i), we have by

the inductive hypothesis that there is a ~’ such that G = Y,”( f’l(rl+ l(H), K’)).

But this can also be written r,: [(1’, + ,(H, 1:+ 1(K’))) where H occurs as re-

quired. Likewise, we have for case (ii) that G = r~~ ,( P,+ ,(1~+ ,(H ), K’)) =

rl*( F’,( H, K“ )), where K“ is obtained from K‘ by removal of the jth source (it

follows from Corollary 4.9 that any source of a graph can be removed). For

case (iii), we have G = rl*(F’l(P,( H, K), K’)) = r,*(P, ( H, K“ )), where K“ =

P,( K, K ‘). Finally, the expression of S, in terms of other operators proves the

last case (iv). ❑

We can take the total number of edges and vertices as the size of a graph.

Now the notion of a graph reduction system follows from that of a graph

rewriting system analogously to the algebraic rewriting systems in Section

3—we only add a size function and require that the left-hand side of every rule

has larger size than the corresponding right-hand side. The following is our

main characterization result for graph reduction systems.

THEOREM 4.7. Let L be a recognizable set of graphs of treewidth at most k.

Then L = L( R, K] for some graph reduction system R and some finite set K c L.

PROOF. It follows from Proposition 4.1 that L is generated by Fk. We

consider the results in Section 3 for the Fk-algebra MA. This algebra has a size

function. So it follows from Proposition 3.3 that L = L( R, K) for some finite

reduction system R and some finite subset K of L. ❑

Remark. The sets of graphs L as in Theorem 4.7 are definable by hyper-

edge replacement (HR) graph grammars. This follows from the closure prop-

erty of HR sets of graphs with respect to intersection with recognizable sets

and from the fact that the set of graphs with tree-width at most k is HR. Some

HR sets of graphs are definable by reduction without being recognizable. An

example can be constructed from the nonrecognizable context-free language
{a’’b”In > 1},which is defined by the reduction system {a’b: ~ ab} with the

accepting word ab.

PROPOSITION 4.8. Let G = f [ H ] where G and H are gelzerated by F~. Then

G = f ‘[H] for a context f‘[ ] generated by Fk and k’ < 2k.

PROOF. By the proof of Proposition 4.6 and Corollary 4.4, such a graph G

can be written as r,*(P, (H, K)) for some i not greater than k. Consider a

tree-decomposition of width at most k of G, (T, {X,,},,. ~ ). Consider an X,l

that contains one source s of H (and thus also of K). Add every source of K

except s to every K., n‘ ● N, and remove all non-source vertices of H from

every X~. This results in a tree-decomposition of width at most k + i – 1< 2k
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for K. Thus, K is generated by FL, by Corollary 4.4, and so is the context

Ax.r~(P,(x, K). ❑

4.3 EFFECTIVENESS OF THE MAIN RESULT. If we are given a recognizable

set L of graphs, we can only construct the reduction system for L if we have

-~ or one of its finite refinements available. It turns out that this is not

necessarily the case. As an example, each minor-closed class that excludes a

planar graph is recognizable and of bounded treewidth, but an algorithm that

constructs representatives of the congruence classes or decides congruence

with respect to a given such property is not known.

We can construct the reduction system R and the set K of Theorem 4.7 if L

is defined by a known MS-formula q and if we know an upper bound on the

treewidth of graphs in L (but we have no method to decide the existence of

such a bound from p). By the proof of Theorem 4.5 given in [16] one can

construct from p a family of finite sets of formulas {@,},~=”, with the following

property: Let G = G‘ if and only if G and G‘ are of the same sort g,,

O < i s k and for every * G @, we have G % y!I if and only if G’ R *. This

equivalence relation is a decidable congruence with respect to F~, and it is a

refinement of -, . We can thus construct the (finite) set X of minimum size

graphs generated by FL in each of the (finitely many) congruence classes, since
every minimum size graph in a class must be produced by an operator with

minimum size arguments. It is now easy to produce R and K using the

procedure indicated in the proofs of Theorem 4.7 and Proposition 3.3.

Suppose, on the other hand, that we do not know a bound on the treewidth

implied by q, but we are given L as {GIG 1= q, treewidth of G is at most k}.

We know by results of Robertson and Seymour [30-32] and Courcelle [17, 19]

that the class of graphs of treewidth at most k is MS-definable (by means of a

set of forbidden minors) but the corresponding MS-formula, @~, is not known

for k >4. So L is MS-definable (with the formula p A @L) but we cannot find

R and K of Theorem 4.7. It appears difficult to find @L—once it is available

one could effectively find the minimal forbidden minors for partial k-trees. It is

not enough to know an algorithm deciding the membership in L to be able to

construct WI . One must also know at least an upper bound on the number of

equivalence classes of -~ , see also Lengauer and Wanke [27]. Fellows and

Langston [22] show how to find the minimal forbidden minors from an

algorithm deciding -~ or one of its finite refinements, for a minor-closed

family L and when a tree-width bound is known for these minors.

In the examples that follow, we do not derive the classes automatically.

Instead, we start with the nullary operators and generate new values using

combinations of old values as arguments to the operators of the algebra. Each

time a new value has been obtained, we must decide if it is congruent by -~

to one previously obtained, and if so generate a reduction rule. Here, it is fatal

to conclude that two graphs are congruent when they are not, but the opposite

mistake only results in more classes than strictly necessary. The congruences

must ultimately be proved, but often it turns out that there is a small set of

congruent pairs that generates all congruences. Only if one infinitely often fails
to identify two congruent values as such does this procedure fail to terminate.

4.4 AN EXAMPLE. We illustrate the theory with a simple example. Consider

the class Lz of partial 2-trees and the algebra Mz as defined above. Fz

generates exactly the class Lz by Proposition 4.1. But since we allow contexts
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not generated by Fz to distinguish values, -~, is a finer congruence than the

trivial one with only one class of each sort. By-Proposition 4.8 it is sufficient to

consider the class Lz in the algebra 114~. We find the following equivalence

classes of -L, , given by their representatives. The class of graphs that are not

in L~ for any-context is omitted.

g,): o
g,: 1

g?: 2,ez, Kj

Here, K~ (KJ minus an edge) is obtained by regarding two vertices of KJ as

sources and deleting the edge between them. There are quite many classes of

sort g~ that we do not list since we will not need them. We also note that it is

not necessary to consider congruence classes not generated by Fz, since F,

generates the whole class Lz. The reason for this is that if a graph is in a class

L generated by a subsignature F‘ of F, then it is always possible to parse it

with respect to F‘ and to reduce it using only rewrite rules whose both

members are generated by F’. In our example, the last class of sort gz cannot

be generated by Fz and need not be further considered. This class, however,

constitutes the context that under parallel composition, distinguishes the first

two classes. The procedure given in the proof of Proposition 3.1 leads to the

familiar series-parallel reduction system, R = (( SJ(ez, e2), ez),

(Pz(el, ec ), ez ), (Sl(l), 1), ( Kl, 0)), with four rules for degree 2 vertex elimina-

tion, parallel edge elimination, pendant edge removal and isolated vertex

elimination, respectively. The construction process of Proposition 3.1 generates

also a number of rewrite rules that are immediate consequences of those

above, like (Sz(l~(l), 1~(1)), i;(l)) (removal of an isolated vertex on condition

that there are two more vertices in the graph), and the same rule can be

generated several times.

It will often be convenient to consider a graph algebra generating only

i-sourced graphs, for some i, and consider such a graph “equivalent” to the

corresponding graph with sources removed by the operator rl*. We can find

representatives (or all minimum size members) of all congruence classes of sort

gO if we have them for sort g,: If S, is a set containing a minimum size

representative (or every minimum size member) from each class of sort g,,

then the set S contains a minimum size representative (all minimum size

members) from each class of gO, where S is the union over i of the set r,*(Sl )

of graphs from S1 with sources removed, and the set of graphs with fewer than

i vertices. The latter set is not finite, since there is no limit on the multiplicity

of edges. But in every finite congruence, a minimum size member of a class has
a finite bound (usually, 1 or 2) on the multiplicity of an edge.

4.5 A LINEAR-TIME DECISION METHOD. We now describe an algorithm for

deciding membership in a recognizable set L of graphs with treewidth bounded

by some known number k. The algorithm is based on a graph reduction system

that is used to successively update a data structure initially representing a given

graph. The results of applications of reduction rules to identified subgraphs

isomorphic to left-hand side of rewriting rules are recorded in the data

structure. (Each such instance is called a redex and the resulting graph a

reduct.) When no redex can be found, the membership of the irreducible reduct

graph in the finite set of accepting graphs determines the membership of the

original graph in L.
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The distinguishing property of a special graph reduction system admitting a

linear-time algorithm is that each left-hand side of a rule is a parallel

composition of internally connected graphs with identical sources. We say that

an i-sourced graph is internally connected if the underlying graph is connected,

its source vertices do not constitute a separating set, and there are no edges

between sources except when the graph itself is an edge between two sources.

The internally connected parts of an i-sourced graph are obtained from the

components into which the graph is split by the source vertices, together with

the original source vertices as sources. Moreover, in a special graph reduction

system not too many of its left-hand-side components with the same source

sequence can be composed in parallel without constituting a redex. Finally, let

us call a reduction system auto-reduced if none of its left-hand sides properly

contains a redex. The special reduction system is also auto-reduced. To

summarize, a reduction system R is special if

(i) Every left-hand side is a parallel composition of a number of internally

connected i-sourced graphs, for some i, O < i s k,

(ii) There is an upper bound on the number of parallelly composed internally

connected parts from left-hand sides of R whose parallel composition is

irreducible, and

(iii) R is auto-reduced.

~EIVIMA 4.9. ELWV recognizable set of graphs L of bounded treewidth can be

defined by a special reduction system.

PROOF. We show how such a special reduction system can be obtained from

a given recognizable class L. For this purpose, assume that the set D originally

contains all smallest elements of every congruence class of W~ . (We can

construct D using the method described in the proof of Proposition 3.3.) We

shall construct D‘ and R, by adding elements starting from the empty set. Let

c be the size of a largest element in D. Repeat the following process until it

results in no more changes of R and D‘: Construct all sort-compatible

expressions f(dl, ..., dp ) with operands from D U D‘ and operators from F~.

Consider the value d of such an expression and split d into its internally

connected parts. For an index i denoting a subset of the sources of d, let

{di,, Ii < ~ s J,} be the set of all internally connected parts of d having the
same sources. The parallel composition d, of these graphs is congruent to

some d, in D. If Id, I = I~1, then process the next i or d. Otherwise, first find

every rule (e, f) in R such that e is reduced by {(d,, ~)} to some e‘. Remove

each such rule from R and if Ie‘ I > If I and e‘ is a parallel composition of

internally-connected parts, then add ( e‘, f ) to R, else add e‘ to D:. Now add

(di, ~) to R and apply all rewrites in R to obtain a normal form ~ of d, and

add ~to D’.

This procedure will terminate, since no element of D‘ will be larger than c2k

(each of the 2~ source subsets can receive a reduct of size at most c), a rule
once removed from R will not be added again, and left-hand sides of rules are

obtained from expressions of the form f(d,, ..., dP ), with the operands from
D u D’. The class L is defined by L = L(R, (D U D’) n L), and the reduction

system is of the required type. Moreover, R can be augmented so that no

left-hand side of R consists of more than c internally connected parts and so

that every set of c internally connected components from lefthand sides of R

has a subset among the left-hand sides of R. ❑
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By a pmf in a graph reduction system R, we subsequently mean an

internally connected part of a left-hand side of R. By a partiul match in G, we

mean a part and its isomorphic subgraph of G together with the isomorphism.

The following lemma shows that we do not have to find and explicitly remove

those partial match indicators that have become invalidated (i.e., are no longer

applicable after a reduction step), because a vertex matching one of its sources

has disappeared and we never find the same separator in the reduced graph.

LEMMA 4.10. Let S be a set of partial matches of a special reduction system in

a graph G. An application of a red~lction rule LlpOtZ discoLe~ of a redex in S

invalidates exact~ those partial matches in S that hale a source lerte.x that does not

appear in the reduct. Thlis, the imalid partial matches will not be refen-cd to in

SLlbSL?qLle?W redex searches.

PROOF. Restating the lemma, let us assume that a vertex L’ of G matches

an internal vertex of a part RI of a redex completed by some partial matches

from S. Let us assume further that L matches also a vertex of a part R2, not a

part of the redex, in another partial match ot’ S. We have to show that there is

a vertex }V in G that matches an internal vertex of RI and a source of RJ. In

the subgraph of G isomorphic to R,, consider all paths from L to the vertices

that match sources of R,. If none of them contains a vertex matching a source

of R ~, then the vertices of the redex are internal for RQ, which contradicts the

auto-reduced property of the special reduction system. Since the parts R, and

Rz are internally connected, if the vertices matching sources are identical, so

are the matching parts. ❑

Algorithm 4.1: Membership Decision.
Input: Graph G, given by its adjacency list,

Special reduction system R, given by the list of rules
and the set of accepting irreducible graphs.

Outputi YES if the irreducible reduct is an accepting graph, NO otherwise.
Data Structures:

Access structures A,, 1 < ~ < k,

indexed by t-tuples identifying vertex sequences

matched to sources in partial matches,
Current reduct graph,

List of low degree vertices,
Array of current vertex degrees.

Method:
1. Initialize data structure: G becomes current reduct graph

and all vertices of low degree are put on the List.
z. while non-empty List do

Let L’ be a vertex on the List.
2.1 while partial match with [ not found do

Attempt to match 1’ against an internal vertex not already matched against L’
of every internally connected component of a left-hand side
of every rule in R.

Z.Z if a partial match is found,

then record it in the appropriate A, with the appropriate source index.
if the partial match completes a redcx recognition, perform the reduction by

Z.Z. 1 changing the structure of the reduct graph.
2.z.z initializing the new vertex adjaccncics and degrees,
2.2.3 updating the source degrees. and

2.2.4 inserting new vertices of low degree in the List.
2.3 if no match is found, remove L’ from the List.

3. Match the irreducible rcduct graph against the accepting graphs.
if there is a match, output YES, otherwise NO.
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LEMMA 4.11. The Algorithm 4.1 is correct.

PROOF. We show that the algorithm maintains an invariant implying the

desired result upon the exit from the outer loop (2).

The invariant of the inner loop (2.1) states that only the vertices on the List,

together with the partial matches recorded in the A,s, can match a left-hand

side of a reduction rule. This follows easily from the finiteness of the reduction

system (and thus bounded degree of the internal vertices of the left-hand sides

of its rules).

The invariant of the outer loop states that the current reduct graph is

congruent with the input graph and that the data structures are correctly

maintained. This follows from Lemma 4.10. ❑

For our decision algorithm to work in time proportional to the number of

vertices of the input graph, we shall need an access structure where a p-tuple

of vertex indices is used as key to store the necessary information. The

operations are Store(Z ualue), Read(tl, and Remolje. The size of the item

stored is bounded by a constant that depends only on the set L and its

description by a reduction system. First, we investigate the performance achiev-

able. The method is known from Aho et al. [1, exercise 2.12]. We recall it here

for the readers convenience.

LEMMA 4.12. A data structure with access operations Store, Read, and Re-

mole can be implemented so that each operation takes 0(1) time on a RAM with

the uniform cost measure.

PROOF. The data structure consists of an O(n’) array indexed by p indices,

each ranging over O(n) values, and an O(n) size “verification table” contain-

ing $dices of initialized elements and stored values. An array element indexed

by [= (ii,..., iP ) is retrieved by accessing the fih entry of the array. An

initialized entry of the array contains the offset in the verification table where

the index of the entry and the stored value is recorded. If this offset is out of

range or the pointed index does not agree with the index of the array entry,

then this entry consists of uninitialized noise (nothing has been stored). Storing

an element consists of first reading, then either changing or adding an element

in the verification table. ❑

LEMMA 4.13. Initialization of the data structures used in Algotithm 4.1 takes a

linear amount of time and establishes the inlariants of Lemma 4.11.

PROOF. The first step (1) of the decision algorithm is to store the edges,

vertex degrees and adjacency lists of the instance graph as the current reduct

graph. During this phase it is not necessary to store all multiple edges

explicitly, since there are numbers a and b, O s a < b s c (recall that c is an

upper bound on the size of a minimum member of a congruence class), such

that b parallel edges are congruent to ~ m-allel edges, that is, at most b

parallel edges need ever be stored in the ( ~u ! table. The access structures A,

are initialized in constant time (cf. Lemma 4.12). The vertices of low degree are

placed in the List, which becomes non-empty unless the graph is irreducible.

The invariants of the outer and the inner loops are thus trivially established.

The total time of this phase is O(n). ❑
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LEMMA 4.14. Deciding whether a Lertex 1 of a gil)etl graph G matches an

internal LIerte.r w of a part takes only constant amount of time (when the part is

consideredconstant and G Laries).

PROOF. The matching is done by first matching the internal vertices of the

part to vertices in G with the appropriate degrees, and then identifying the

vertices matching the sources. Thus, it will never be necessary to search the

adjacency list of a high degree vertex in G. A symmetrical part will be matched

in many, but only constantly many, ways. A vertex can also only be matched in

constantly many ways in all (to all parts). One has to explore isomorphisms of a

constant number of vertices with degrees bounded by a constant that depends

only on the rewriting system. All vertices of the graph that match internal

vertices of the part must have degrees less than some constant and

other adjacencies of vertices that match sources of the pattern need not be

explored. ❑

LEMMA 4.15. Deciding whether a match of a part completes a search for a

rede.x of a special reduction system (as stated in Lemma 4. 14) takes constant

amount of time.

PROOF. The access structures ~, should maintain, for each initialized

entry, that is, a given sequence of sources, an array of partial match counts for

each match type with the same sequence of sources. The match types are

defined by left-hand sides of the special reduction system and the count

concerns graph vertices corresponding by a match type to part vertices. The

counts are checked against the required counts of the left-hand sides every

time a new partial match is found. By the property (ii) of the special reduction

system, the number of these partial matches is bounded by a constant adding

only a constant amount of time needed when recording a partial match, and

when rediscovering a redex (which requires updating of the counts and lists of

partial matches). ❑

We are now ready to state our main algorithmic result.

THEOREM 4.16. Membership in eleiy monadic second order definable set of

graphs of bounded treewidth can be decided in time linear in the six of the graph

on a RAM with the uniform cost nleasure.

PROOF. Let w be the treewidth of the graph class and let n be the number

of vertices of the graph. Clearly the size of the graph is 0(n) since it has fewer

than wn edges. We know that every MS-definable set of graphs is recognizable

(Theorem 4.5). Hence, if it is also of bounded treewidth, it is recognized by a
graph reduction system (Theorem 4.7), and moreover by a special one (Lemma

4.9). By Lemma 4.11, Algorithm 4.1 based on a special graph reduction system

R is correct. It remains to show that the algorithm decides class membership of

a graph in linear time.

By Lemma 4.13, the initialization step can be performed in linear time. Since

the number of reductions made by a reduction system is linear in the size of

the graph, it now suffices to show that there is a constant bound on the time

required for each reduction step.

By finding the maximum number of nonsource vertices c1 in a right-hand

side of R, we find a bound n(l + c1 ) on the number of original and new

vertices used during the reduction process. We introduce a numbering (internal
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naming) for the parts of left-hand sicles of reduction rules, and introduce an

array A,, indexed by p-tuples for every sort g,, of such a part, where we store

the number of partial matches and the indices of the matches to its nonsource

vertices. One such table has 2 indices and is used to store the edges of the

current reduct graph.

Now we use the arrays to store partial matches to internally connected parts

in the graph in linear time. We examine those vertices with a degree identical

to the degree of some internal vertex of a part. By Lemmas 4.14 and 4.15, this

takes a linear amount of time.

As soon as the multi-set of matches with a given set of source vertices

contains a left-hand side of a reduction rule, the reduction can be performed

regardless of possibly overlapping matches (cf. Lemma 4. 15). The reduction is

done as follows: The vertices corresponding to internal vertices of the reduc-

tion rule’s left-hand side are removed from the graph: Edges involving them

are removed and the adjacency lists are updated. Note that the removed vertex

is of bounded degree so its adjacency list is of constant length. When updating

the neighbors’ adjacency lists, we know which element to remove, so no search

is involved. Next, the right part of the rule is introduced in the current reduct

graph by allocation of new vertex indices for its internal vertices and its edges

are introduced in the edge array. The vertices matched into the sources must

also be considered as having their neighborhood altered and thus must be

regarded as new.

Since the initialization time is O(n) for graph size n and constant work

suffices to reduce the graph size by a constant amount, the time required to

reach a normal form with respect to R is O(}z ). If this graph is too large, we

reject it (as not belonging to L); otherwise, it is compared to the list of

graphs ( D U D’) n L in constant time and is accepted if and only if it is found

there. ❑

For a given k, the class of partial k-trees is recognizable. This follows, for

example, from the fact that it is minor-closed and thus it has a finite set of

minimal forbidden minors (by [29]), and thus it is MS-definable and, by

Theorem 4.5, recognizable. Hence. the following corollary:

CO ROI.I.ARY 4.17. For et ‘cty k, m(~nlbemllip in the class of partial k-trees is

decidable in linear time.

Remark. The corresponding algorithms are known only for k <3.

Of course, our linear-time method, which uses polynomial space is perhaps

not what would be chosen in every application. Linear space and 0( ~zlog II)

time can also be achicwcd, with some balanced tree structures like AVL or 2-3

trees [1]. Average case linear time and space can be obtained with hashing

techniques [1].

5. Applicatio~ls

5.1 TREES. In the introduction, we have mentioned the well-known process
of deciding membership in the class of trees Li~z leaf pruning. From our point

of view, this process is a rewriting (actually, a reduction) with the single rule

contracting a pendant eclgc. The normal form of any tree is the trivial graph

consisting of tin isolated vertex; any other graph has a nonreduciblc graph as a
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normal form. The same reduction system can be obtained by applying our

formalism to the algebra Ml with operators O, Kl, 1’0, r,, e,, 1, SI, and 1’,.

Building the operation table, we find class representatives O, UO = r,(l),

PO( ~0, UO) = do, 1, l~(~’o) = d,. The equivalence el = 1 gives the pendant edge
rule, and R = {(el, 1)}. The classes do and dl do not generate a tree in any

context, so we do not have to add the corresponding rules (PO( do, L’O), do) and

( Pl( dl, dl ), dl ) to the rewriting system. Thus, ((R, FI ), {~)o}) defines the class of

trees.

5.2 OUTERPLANAR GRAPHS. Let us follow up with another example, to our

knowledge not considered in the literature. Here, the class of interest is that of

biconnected (i.e., nonseparable) outerplanar graphs, P. A graph is outerplanar if

and only if it has an embedding in the plane such that all the vertices lie on the

border of the unbounded region of the plane (“the outer mesh”). These graphs

are isomorphic to convex n-gons with nonintersecting chords. All known

algorithms for recognition of these structures (see, for instance [10] and [33])

use the fact that these graphs are Hamiltonian. Below, we present a reduction

system based on an algebra generating a superclass of biconnected outerplanar

graphs.

Consider the class of 2-sourced graphs Gz, the nullary operation ez evaluat-

ing to a single 2-sourced edge, and two operations Pz, Sz: Gz X Gz - Gz,

denoting respectively the parallel and the series operation with the usual

interpretation. We also have the operation r!, source removal, which can only

be the outermost operator since no operator takes a O-sourced graph as

argument. For this reason, we can restrict our attention to the congruence

classes of sort gz and derive those in go by projection. Let us take the declared

constant graph ez as the representative of the equivalence class 1. Applied to

arguments from equivalence class 1 (see Figure 1), the two operations result in,

respectively, the two-edge, two-vertex graph, which belongs also to class 1, and

the path of length 2, the representative of class 2. Pz(l, 2) and PZ(2, 2) define

the classes 3 and 4, respectively. We take Sz(l, 4) as representative of the class

5 that contains every graph that can not be a subgraph of a graph in P. The

complete tables for these two operations follow. The Pz operator is commuta-

tive, so we give only half the table. The S2 operation is not commutative in the

graph algebra (the sources should be regarded as an ordered set), but it is so in

the quotient algebra as can be seen from the operation table. Script entries

correspond to new class representatives (e.g., Pz(l, 2) is the representative of

class 3) nonscript entries generate reduction rules, by the construction of

Proposition 3.2.

F2 1 ~ 3 4 5

1 1 3 3 4 5

2 4 4 5 5

3 4 5 5

4 5 5

5 5

s? 1 2 3 4 5

1 2 2 2 5 5

2 2 ~ 2 5 5

3 2 ~ 2 5 5

4 s 5 5 5 5

5 5 5 5 5 5

The major task in every such example is to show the equivalence of the

result of some operation with some earlier encountered graph. It is clear that
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an edge can be added or removed parallel to an existing one without violating

outerplanarity or biconnectedness. Similarly, one can add an edge between

vertices with a common degree-2 neighbor, if the local context shows that the

added edge cannot be essential for the outer mesh of the graph. Since any

two-path has to be included in the outer mesh, such a path can be extended by

another degree 2 vertex. We give the five representatives of the equivalence

classes of -P of sort gc in Figure 1. In this and the following figures, we

indicate source 1 by the leftmost unfilled vertex and source 2 by the rightmost

such vertex. The pairs of the reduction system, referring to the operations

giving rise to new reduction rules (according to Proposition 3.2) is shown in

Figure 2. Note that we do not need rules with both sides in class 5, and that

some redundant rules are not included. As an example, the rule l’z(3, 3) -4 is

redundant because we have

PZ(3, 3) = F’Z(F’Z(l, 2), F’z(l, 2)) (definitions)

= Pz( Pz( 1, 1), F’2(2, 2)) (since Pz is associative and commutative)

+ P2(1, P2(2,2)) (by the first rule of Figure 2)

+ P2(2,2) = 4 (by the second rule of Figure 2)

K is the set of O-sourced graphs obtainable as a normal form of a minimum

size member of one of the accepted classes, with sources removed, and the

graphs K. and K1. In this case, 1, 3, and 4 are the accepted classes, and they
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all have unique minimum-size elements. But the representative of class 4 with

sources removed is the cycle of length 4, CJ, which is rewritten by the third rule

to C3 that is the representative of class 3. Thus, in this case ~ will be

{C,, K,, K,, K(, ,}“ the last two being the only graphs in the class not generated

by the operators considered.

Outerplanar graphs that are not necessarily biconnected require a slightly

different treatment. An algebra generating a superclass of these graphs (ex-

cluding the single vertex graph) has, besides the series and parallel operations,

Pz and Sz, two nullary operators 2 and ez. These graphs are the representa-

tives of classes O and 1. Class 2 is defined by S2(1, 1), class 3 by P2(2, 2), and

class 4 by Sz( 1, 3). Class 5 contains all generated graphs that are not outerpla-

nar (for a minor-closed class of graphs, we need only one such congruence

class), and is represented by P,( 1, 4) (see Figure 3). Below, we give the tables of

operations Pz and S2. As in ~he previous example, S2 is commutative in the

quotient algebra.

P? o 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 5 5

2 3 5 5 5

3 5 5 5

4 5 5

5 5

1 1

7 01212 .

3 0 4 4 4 4 5

4 0 4 4 4 4 5

5 5 5 5 5 5 5
I I I I I 1 1 I
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Equivalence class representa-

outerplanar graphs.

The corresponding classes and reduction rules are given below. As in the

previous example, some redundant rules are omitted:

SZ(O, 3) = SZ(O, Pz(l, Sz(l, 2))) (definitions)

+ S2(0,P2(1,2)) (rule 3 of Figure 4)

+ S2(0,2) (rule 2 of Figure 4)

= $(s~(l,o), 1) (by inspection)

+ S2(0,1) (rule 7 of Figure 4)

+0 (rule 7 of Figure 4)

The set K is obtained as in the preceding case. Class 4 has two minimum

size representatives, but application of the r; operator makes them equal.

There are only two representatives in gO of the accepted classes 1, 2, 3, 4: Kz

and its complement. The former represents connected outerplanar graphs, the

second disconnected outerplanar graphs.

5.3 PARTIAL 3-TREES. We describe the reduction system presented in [5]
and [24] in a new perspective. By a minor of an i-sourced graph, we mean the

obvious generalization of a minor of an ordinary graph, with the restriction

that it is not allowed to contract an edge between two sources. Let m‘ <~ m if

and only if, for every context f [ ], f [ml e L implies f [m’1 = L. <~ induces a
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FIG. 4. Reduction rules for outcrplanar graphs.

partial order on the congruence classes of -~ , that is, m <L m‘ and m‘ <~ Hz

implies nz -~ nz’. Obviously, for a minor-closed class L, m‘ <~ m if m‘ is a

minor of m. Let (S,, K,) be a graph rewrite rule where s, is an i-sourced graph

having one nonsource vertex connected with an edge to each of the sources,

and K, is K, where each vertex is a source. We say that nz’ is a k-star-clique

reduct of m if m‘ can be produced from m by repeated application of the rule

(s,, K,), each with some i < k. It is easy to see (and proved in [5]) that in such

case, when L is the class of partial k-trees, m SL m‘.

We first present an algebra generating all partial 3-trees differing slightly

from IMq, described previously. Our algebra will have the 3-sourced edgless

graph 3 (representing class O) and the 3-sourced one edge graph 14(e2 )

(representing class 1) as values of two nullary operations. In addition to the
parallel and series operations, we also define the operation C3 resulting in

cyclic shift of source names (C’j( C3( C3( G ))) = G). In this case, we start by

considering the rewrite rule set, given in Figure 5 (in Figures 5 and 6, the top

unfilled vertex is source 1, the lower left is source 2, and the lower right is

source 3). Clearly, the parallel rule does not change any adjacencies and thus

not membership in the class of partial 3-trees either. It is also not difficult to

see that for each of the other rules, the right side is both a minor and a

3-star-clique reduct of the left side. Hence, for each rule (1, r), r s ~ 1 and

1 +~ r; hence, 1 - ~ r, where L is now the class of partial 3-trees. In order to

see that the system of Figure 5 is complete, one has to produce, from the
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FIG. 5. Reduction rules for partial 3-trees.

nullary operators, all combinations of operators and operands and apply the

reduction system to the result. This gives, although with considerable effort,

the finite operation tables of the quotient algebra. The representatives of

congruence classes are shown in Figure 6. For the set of partial 3-trees, there

are thus 9 equivalence classes of 3-sourced graphs generated by the signature.

Since the signature generates exactly the class we are interested in, we obtain

the class of accepted graphs, K, by taking normal forms of the graphs obtained

by removing sources from the representatives of these classes. But applying the

reduction rules to these graphs reduces them all to the empty graph O.

The representatives for the equivalence classes are the 8 subgraphs of the

triangle between three sources (3, c1 = l~(ez), Cz = l~(ez), c~ = l~(ez), P1 =

P3(C2> C3), P2 ) A = P3(cI, pi)), and s == P3(C1, C3), p3 = P3(C1> C2 ,

S3(C1,C2, c1), the vertex of degree three adjacent to three sources.
The parallel composition of s with itself leads to the buddy reduction rule

(cf. [5]). The series composition of three instances of s (recall that S3:

G3 X G3 X G3 -+ G3) leads to the cube rule. The parallel composition of s

with the one-edge graph leads to the triangle rule and the isolated vertex,

pendant edge, parallel and series rules are obtained from nontrivial series

compositions of the smaller graphs.
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5.4 PLANAR PAR-rIAI 3-TREES. The signature F~ generates every partial
3-tree and thus alSO every planar partial 3-tree. It is not very difficult, although

somewhat tedious. to see that all nine graphs of sort gl in Figure 6 as well x

the 16 graphs of sort g] shown in Figure 7 are incongruent with respect to the

property under consideration. Most of them restrict the placement of sources
in planar embedding in different ways. The last graph of figure 7 is congruent

with the triangle with respect to having treewidth at most k, find with the

“star” with respect to planarity. With respect to the intersection of properties,

it is congruent to neither graph and yields a new class. The operation table for

S3 would thus consist of at least 253 entries, and it appears feasible but

unattractive to produce the rewriting system manually in this signature. Some-

what surprisingly, we can get much fewer congruence classes by considering a

more complex signature, generating precisely the class of interest.

Let the i-star be the i-sourced graph with one internal vertex connected by
an edge to every source (the 3-star is denoted s). Let an exterrzal-planar graph

of sort g, be a graph of sort g, such that it is planar and has an embedding in

the plane where all sources arc on the boundary of a common region (or,

equivalently, where all sources are on the outer mesh). Obviously, a graph of

sort g,, or ,q[ is planar ifl it is external-planar. In general, an i-sourccd graph is
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FIG. 7. More congruence class represen-

t~tivcs for planar partial 3-trees.

@@@

external-planar if and only if its parallel composition with the i-star is planar. A

graph of sort g, is strongly connected if it is connected and has at least one

internally connected part with i sources. So a K, of sort g, is not internally
connected or strongly connected if i > 2, but an i-star is. We are interested in

the family of external-planar and strongly connected graphs generated by F’3.

Consider now the signature F:, consisting of the F3 operators rl, ra, V3, 1, ez,

Sz, S3 besides the derived operators in Table I.
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TABLE I

F< Fj

//;(x, y) r3(P3(.x, y))
//,(x,.Y) P,(X5 y)

/’/,(x, y) P2(X, y)

\/2,, (x, y) P2(x, l:(y))

s ,,,,,(x, y.z) S3(1,;(X), /j(y), 1;(2))

//3,1 (~, Y) P3(.Y, 1:(1;(Y)))

/{3, t:%{) F’3(x,lj(y))

3.3 , ‘ S3(X,y, 3)

S3,$x, y) S3,3(X,l;(y))

An intuitive picture of the operators of F: is given by Figure 8. This picture

easily leads us to a proof of

PROPOSITION 5.1. E[wy graph generated by F; is strongij-connected and

externally planar.

It is more difficult to prove:

THEOREM 5.2. &ey stronglv connected external-planar graph generated by Fj

is also generated by F;.

PROOF. Assume the contrary, that is, that there is a smallest i-sourced

graph G with largest possible number of sources, that is external-planar,

strongly connected and generated by an expression t over Fj but not by F:. If

the outermost operator of t is in F: (i.e., it is neither l; or Pj), then it has an

argument that is not generated by F~ and is thus not both external-planar and

internally connected. Our proof will be by case of the outermost operator of t,

and, for each, we show it either impossible or replaceable by an operator later

in the list. The case t = r~(G’) is the most complex and is treated separately.

Let in this proof epsc stand for external-planar and strongly connected. Thus, the

outermost operator of t is not:

rl or rz

Iorez:

S3:

//’1:

//2:

/’/’2,1’
P3 :

//3,2:

//3,1:

S3~:

Its argument would be a preferred counterexample;

These are generated by F~;

The arguments must be external-planar. Thus, some of them are not

strongly connected. Those arguments can be expressed as

//z(x, Sz(y, z)), and t could be expressed with //3,, instead of S3;

Both arguments must be planar and connected and thus generated

by F:;

Both arguments must be external-planar. If one is not connected, we
can generate G using //L, ~ outermost.
Both arguments would have to be epsc and thus generated by F;;

If both arguments were strongly connected, then G would not be

external-planar. So one argument is not strongly connected and we

can produce G with //j, ~ and/or //1, ,;

Both arguments must be external-planar. If the second is not con-

nected, then \/~, ~ could be used. If the first is not internally

connected, then G would not be so either.

Both arguments must be epsc;

Both arguments must be external-planar. If one argument is not

strongly connected, then G can be written with Sz instead; other-

wise, both arguments and thus also G would be generated by F;;
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s
3,2 C$$&Z?Z4fl

S2: If an argument were not strongly connected, G would be discon-

nected; If an argument were not external-planar, nor would G be;

s3,2: Both arguments must be external-planar. If the first is not strongly

connected, then it can be written with S2, ~,z;
1;: G would not be connected;

s2,2,2: Clearly, all three arguments have to be epsc and thus generated by

F;;

So now the case rq is all that remains. Let G = r-~(G’). G’ is not generated

by F;, since then it would be a preferred counterexample. G is epsc. If G‘ is



1162 S. ARNBORG ET AL.

r~~ o

s
2

//
2

//
3,2

s
3,3

FIG. 9. Rewrite rules for planar partial 3-trees.

s
3,3

s
3 v- Y’

not strongly connected, it can be written using either \\ ~,, or S2 outermost,

and these cases are discarded above. Thus, G’ is not external-planar, but it is

planar and a planar embedding can be constructed so that its first two sources

are on the outer mesh. So, Pl(s, G’) is not planar (recall s is the vertex of

degree 3 adjacent to three sources), but PJ(A, G’) is. Thus, the first of these

graphs has a ~f or KJ, j minor, but not the second. But since ~$ is 4-regular,

it is easy to see- that both or neither of these graphs has a ~< minor, thus the

first has a K3. 3 minor where one vertex and its incidence edies correspond to
the s in P~(s, G‘ ), and the sources to the neighbors of the first vertex in the

Kl,~. The rest of the K~,~ shows that G’ has Pj(s, s) as a minor. Moreover,
each s in this expression corresponds to an internally-connected part of G‘,

since any edge between these parts would create a forbidden minor, A“j, of

partial 3-trees in r*(P~(s, P~(s, s))) [7]. Therefore, G = r~(P~(G1, Gz )), where

GI and Gz are 3-sourced epsc graphs smaller than G and thus generated

by F;. But then g = //~(G1, Gz); thus, G is generated by F~—a contradic-

tion. ❑

Since F{ generates only external-planar graphs, only one of the graphs in

Figure 7 now remains to consider, the last one. It is now easy to produce the

operation tables of the quotient algebra. A complete set of autoreduced rules

is shown in Figure 9.
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