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1 Introdu
tion
Formal language theory studies sets of �nite and in�nite words and terms (usu-ally 
alled trees) that are �nitely des
ribed by means of grammars, automata,or logi
al formulas. It also investigates transformations of words and terms ina similar perspe
tive. Its s
ope now extends to des
riptions of sets of graphs,hypergraphs, partial orders, and related 
ombinatorial stru
tures, and to thatof transformations of these obje
ts, whi
h we will 
all, as for words and terms,transdu
tions. Universal algebra and logi
 are fundamental for developpingthis extension, and this arti
le 
ontributes to showing why.
Algebras, equational and re
ognizable sets
Context-free languages 
an be 
hara
terized as least solutions of systems ofre
ursive equations, while regular languages 
an be 
hara
terized as union of
lasses of �nite 
ongruen
es on the free monoid. Both 
hara
terizations arebased on the algebrai
 stru
ture on words asso
iated with 
on
atenation. Asobserved by Mezei and Wright in [1℄ the two notions of least solution of asystem of re
ursive equations and of a 
ongruen
e with �nitely many 
lassesare meaningful in every algebra, not only in the monoid of �nite words andin the algebra of �nite terms. In every algebra, they yield two families ofsets, the family of equational sets and the family of re
ognizable sets. Thesenotions generalize those of 
ontext-free languages and of regular languages,respe
tively.The advantage of this algebrai
 approa
h, espe
ially for des
ribing sets ofgraphs, is that it depends neither on rewriting rules nor on automata. Thisis essential be
ause graph rewriting rules are 
ompli
ated to de�ne and tostudy, and graph automata satisfying good 
losure and de
idability propertiesdo not exist, ex
ept for very parti
ular 
lasses of graphs. By 
ontrast, thefamilies of re
ognizable and equational sets of any algebra satisfy useful 
losureproperties: the family of re
ognizable sets is 
losed under union, interse
tion,and di�eren
e, and the interse
tion of an equational set with a re
ognizableone is equational.A 
lass of graphs is made into an algebra by equipping it with graph operations.These operations form the signature of the algebra. A graph operation linkingtwo graphs 
an be 
onsidered as a generalized 
on
atenation. However, graphs
an be 
on
atenated in several ways, and di�erent operations are spe
i�ed interms of labellings of the verti
es. We will also use unary graph operations thatmanipulate labellings. In every algebra of graphs, we have thus equational setsand re
ognizable sets. Their de�nitions only use 
on
epts of universal algebra
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and need not deal with the spe
i�
 
ombinatorial properties of the graphsunder 
onsideration.In the above des
ription, we have written �graphs� for simpli
ity, but it equallyapplies to hypergraphs, partial orders, and a
tually all 
ombinatorial obje
tsrepresented by relational stru
tures with a �nite set of relations. For example,a graph G is represented by the relational stru
ture whose domain is the set ofverti
es and that has a binary relation des
ribing the edges. (The multipli
ityof edges is lost in this representation. There exists another one for graphs withmultiple edges, see [2℄).Several signatures 
an be de�ned on the same 
lass of relational stru
tures.However, in many 
ases, �small� variations of the signature do not modify the
lasses of equational and re
ognizable sets, a fa
t indi
ating the robustnessof the algebrai
 framework. We will say that two signatures are equivalent ifthe 
orresponding 
lasses of equational and re
ognizable sets are the same.One of the purposes of this arti
le is to investigate equivalen
es of signatures.Another one is to relate these algebrai
 notions with monadi
 se
ond-orderlogi
. We now explain the role of logi
 in this theory.
The role of logi

Logi
 is used for three purposes: �rst to spe
ify the operations on relationalstru
tures in the signatures, se
ond to de�ne re
ognizable sets of relationalstru
tures, and third to spe
ify transformations of relational stru
tures. Letus 
omment ea
h of these uses.The basi
 signature of operations, denoted by QF , 
onsists of disjoint union,of all unary operations that 
an be de�ned by quanti�er-free formulas (
alledquanti�er-free operations), and of 
onstants denoting stru
tures with a singleelement. The edge 
omplement is an example of a quanti�er-free operation: theedge relation of the output graph is just the 
omplement of the edge relation ofthe input graph, hen
e the former is de�nable by a formula without quanti�ersin terms of the latter. Quanti�er-free operations 
an be 
ombined with disjointunion to form various kinds of graph 
on
atenations.This de�nition generalizes and uni�es previously de�ned algebras, the algebraof graphs 
alled VR, and the algebra of hypergraphs 
alled HR. They havebeen de�ned in su
h a way that their equational sets are the sets of graphsand hypergraphs de�ned by 
ertain 
ontext-free graph grammars, based re-spe
tively on vertex repla
ement and on hyperedge repla
ement (see [2℄ andother 
hapters of the same book on graph grammars). Many results proved in-dependently for these two algebras 
an now be proved as parti
ular instan
esof more general results relative to QF .
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Monadi
 se
ond-order logi
 (MSO) is the fundamental language for de�n-ing re
ognizable sets and transdu
tions of relational stru
tures. That MSOis useful is not too surprizing given that, for sets of words and terms, MSO-de�nability is equivalent to de�nability by �nite-state automata, and thatmany types of tree transdu
tions 
an also be des
ribed by MSO-formulas(see [3,4,5℄). A fundamental result says that every set of relational stru
turesthat is the set of �nite models of an MSO-formula is QF-re
ognizable (i.e., isre
ognizable with respe
t to the algebra of relational stru
tures de�ned by thesignatureQF). On the other hand, it is mu
h easier to 
he
k that a property isde�nable by an MSO-formula than to 
onstru
t a �nite 
ongruen
e saturatingthe 
orresponding set. In the 
ases of words and trees, �nite-state automatao�er su
h a 
onvenient spe
i�
ation language for re
ognizable sets, but theydo not work on graphs and, a fortiori, on relational stru
tures. Hen
e MSOtakes their pla
e in a natural way. Transdu
ers whi
h de�ne transformationsof words or terms into words or terms are �nite-state automata with outputs.Hen
e, they 
annot be generalized to graphs on the basis of automata, and
MSO, again, o�ers a powerful and easy to use spe
i�
ation language.Furthermore, there are quite 
lose 
onne
tions between equational sets andre
ognizable sets of relational stru
tures, and MSO-transdu
tions: for exam-ple, a set is equational i� it is the image of a re
ognizable set of �nite termsunder an MSO-transdu
tion, and it follows that the 
lass of equational setsis stable under MSO-transdu
tions. Further, we prove in this arti
le that theinverse image of a QF -re
ognizable set under an MSO-transdu
tion is QF-re
ognizable.
The main results
We will only 
onsider �nite terms, graphs, hypergraphs, and relational stru
-tures. Furthermore, we will 
onsider relational stru
tures only up to isomor-phism. There are several reasons for doing so. First, we have no use for dis-tinguishing isomorphi
 relational stru
tures. This is also a requirement forapplying logi
 sin
e logi
al formulas 
annot distinguish between isomorphi
stru
tures. In order to derive algorithms from this theory as done in [6℄, weneed to use whenever possible �nite signatures and we do not want to introdu
ein�nitely many 
onstants to des
ribe in�nitely many isomorphi
 stru
tures.Hen
e a term will not de�ne a single relational stru
ture but the isomorphism
lass of some relational stru
ture.Our starting point is the signature QF of operations on relational stru
tures
onsisting of disjoint union, quanti�er-free operations (there are 
ountablymany, the use of in�nite signatures for dealing with graphs, even �nite ones, isunavoidable), and 
onstants denoting relational stru
tures having a singleton
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domain.We prove in Se
tion 5 that the inverse image of a QF -re
ognizable set underan MSO-transdu
tion isQF -re
ognizable. This result, of whi
h weak forms arealready known, 
on�rms the robustness of the formal framework asso
iatinggraph operations and MSO.In Se
tion 6, we prove that the signature QF 
an be restri
ted to an equiva-lent subsignature. This �small� (although still 
ountably in�nite) signature isbased on quanti�er-free operations of three types: we 
an forget a relation R(i.e., delete all tuples in R without modifying the domain of the 
onsideredstru
ture), rename a relation R into S (where R and S have same arity; if
R and S are both present in the input stru
ture then this operation mergesthem into a single relation), and we 
an add either a new relation T or tuplesto an existing relation T (roughly, given two relations R and S we 
on
ate-nate the tuples of R with those of S and add the resulting tuples to T ). If thesignature Σ 
ontains only relations of arity at most n then we 
an de�ne anequational set of Σ-stru
tures by a system of equations where the operationsonly use the relations of Σ and auxiliary relations of arity at most n − 1. Inthe 
ase of graphs, that is for n = 2, we obtain known results about the sig-nature VR (
f. [7,8℄) where the auxiliary relations are unary, i.e., they en
odevertex labels.In Se
tion 7, we develop a method for enlarging the signature QF to anequivalent one, and we apply this method to the fusion operation 
onsideredby Cour
elle and Makowsky in [9℄. This operation fuses all elements satisfyinga given unary relation. It is not quanti�er-free. Roughly speaking, we provethat adding it to QF yields an equivalent signature. This generalizes theresults of [9℄.In Se
tion 8, we 
onsider the algebra HR whose equational sets are thosede�ned by hyperedge repla
ement 
ontext-free graph grammars. This is an al-gebra of relational stru
tures with distinguished elements 
alled sour
es. Theoperations 
onsist of 
onstants for singleton stru
tures and parallel 
omposi-tion whi
h 
ombines two stru
tures with sour
es into the one obtained fromtheir disjoint union by fusing the sour
es with same label. One 
an repla
ea relational stru
ture with sour
es by a purely relational one by introdu
ing,for ea
h 
onstant c, a unary relation labc whi
h 
ontains as single element thevalue of c. However, if we do so, quanti�er-free de�nable operations on rela-tional stru
tures with sour
es are no longer quanti�er-free de�nable on the
orresponding relational stru
tures without sour
es. We over
ome this di�-
ulty by showing that nevertheless the operations of HR 
an be handled inthe general framework of purely relational stru
tures.These results 
ontribute to build a robust foundation for the extension of for-
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mal language theory to sets of graphs, hypergraphs, and relational stru
tures.Let us say a few words about the tools we use for establishing them. Themain one is the 
lassi
al notion of a logi
al type used, e.g., in [10,11,12,13℄.Given a �nite set Φ of formulas with n free variables (for instan
e, the set of
MSO-formulas of quanti�er height at most k, up to logi
al equivalen
e), wede�ne the Φ-type of an n-tuple of elements ā of a relational stru
ture as theset of those formulas of Φ that are satis�ed by ā. There are thus �nitely manypossible Φ-types. If the formulas in Φ are quanti�er-free or if their quanti�
a-tions are restri
ted to a �neighbourhood� of ā, then the Φ-type of ā en
odeslo
al information asso
iated with ā. Given a stru
ture A, its Φ-annotation isthe stru
ture MΦ(A) with same domain where, for ea
h Φ-type p, we have anew n-ary relation Tp 
ontaining all n-tuples of A with type p. The annotation
MΦ(A) provides information about A that is immediately available from therelations without the need to use formulas with quanti�ers. In the languageof database theory, this 
onstru
tion builds an extensional database out of anintensional one. In this arti
le, a typi
al use is the following: a transdu
tion ofstru
tures A, de�ned by MSO-formulas of quanti�er height at most k 
an berepla
ed by a quanti�er-free transdu
tion a
ting on the annotated stru
tures
MΦ(A) where Φ is the set of MSO-formulas of quanti�er height at most k.
Related works
This arti
le develops the algebrai
 and logi
al extension of formal languagetheory to sets of relational stru
tures intiated by Cour
elle and presentedin [14℄ (its algebrai
 ba
kground) and [2℄ (its appli
ation to graphs and hy-pergraphs, and its relationships with graph grammars). This theory also usesresults from [3,15,16℄. Se
tions 6 and 8 elaborate the de�nition given in [7℄ ofan algebra for relational stru
tures with 
onstants. Se
tion 7 generalizes thede�nition of fusion given in [9℄ and establishes new results. Closure proper-ties of the family of HR-re
ognizable sets of hypergraphs have been studiedin [17℄, and Se
tion 5 
ontinues this work. The stability of the family of re
og-nizable sets under modi�
ations of signatures is studied in [8℄, and the notionof equivalen
e of signatures investigated in Se
tions 6, 7, and 8 extends thisstability requirement to also in
lude the family of equational sets.
Summary of the arti
le
The arti
le is organized as follows. Se
tion 2 reviews algebras, equational andre
ognizable sets, and it introdu
es an extension of the notion of derived op-eration 
losely related to linear deterministi
 bottom-up tree transdu
tions.It also extends the notion of a homomorphism to that of a heteromorphism,
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making it possible to relate algebras of di�erent signatures. Se
tion 3 reviewsrelational stru
tures, monadi
 se
ond-order logi
, monadi
 se
ond-order trans-du
tions, and operations on relational stru
tures de�ned by quanti�er-freeformulas. Se
tion 4 introdu
es monadi
 types (sets of monadi
 se
ond-orderformulas of bounded quanti�er height) as a �rst form of type information,and establishes several te
hni
al results. Se
tion 5 establishes the preserva-tion of re
ognizability under inverse MSO-transdu
tions. Se
tion 6 shows theequivalen
e of the basi
 signature QF on relational stru
tures with a propersubsignature that generalizes the signature VR to relational stru
tures and,hen
e, to hypergraphs. Se
tion 7 takes the opposite dire
tion. Its obje
tiveis to extend QF by operations that are not quanti�er-free de�nable, but toobtain nevertheless an equivalent signature. A method for doing so is intro-du
ed and applied to the fusion operation. Se
tion 8 shows how the operationsde�ning the HR-equational and HR-re
ognizable sets 
an be studied in termsof relational stru
tures without 
onstants.

Notation, 
onventions, and general fa
ts
In this arti
le we only 
onsider equational and re
ognizable sets of �nite stru
-tures. The reason for this limitation is that the algebrai
 de�nitions of thesenotions are not well-suited to in�nite obje
ts. In parti
ular, the re
ognizablesets of in�nite trees are not those de�ned by tree automata. However, our te
h-ni
al 
onstru
tions of transformations of stru
tures based on logi
al formulaswork for in�nite stru
tures as well. But their algebrai
 
onsequen
es are onlymeaningful in the �nite 
ase.
All proofs in this arti
le are e�e
tive. Hen
e every statement of the form �Forevery m,n, there exists an MSO-transdu
tion su
h that . . . � 
an be read as�There exists an algorithm that, given m,n, 
onstru
ts an MSO-transdu
tionsu
h that . . . �.
Let us �x notation and introdu
e some 
onventions. The set N of naturalnumbers 
ontains 0. We set [k] := {1, . . . , k} and [0] := ∅. We denote by P(X)the power set of a set X. For an n-tuple ā = a1 . . . an, we sometimes alsowrite ā for the set {a1, . . . , an} of its 
omponents. In parti
ular, we sometimeswrite ā ⊆ A instead of ā ∈ An. The empty tuple is denoted by 〈〉. We willdenote by |x| both, the 
ardinality of a set x and the length of a word x. (Noambiguity will arise.)
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2 Equational and re
ognizable sets in arbitrary algebras
The notions of an equational set and a re
ognizable set are due to Mezei andWright [1℄. While they were originally de�ned for algebras over one sort, weadapt them to the many-sorted 
ase with in�nitely many sorts. We begin withde�nitions 
on
erning su
h algebras. We refer the reader to [14℄ for more aboutre
ognizable and equational sets.
2.1 Algebras
Let S be a set whose elements we 
all sorts. An S-signature is a set F offun
tion symbols ea
h of whi
h has a type s1 × s2 × · · · × sn → s where
s1, . . . , sn, s ∈ S. We may have n = 0 ; in this 
ase the symbol is 
alled a
onstant. We denote by T (F,X) the set of �nite well-formed terms built withfun
tions from F and variables fromX. They will simply be 
alled terms in thefollowing. In the 
ase X = ∅, we simply write T (F ). Automata de�ning sets ofterms are usually 
alled tree automata, and multivalued mappings from termsto terms are 
alled tree transdu
tions.We will keep this standard terminology,although trees in the sense of graph theory do not 
oin
ide with terms.An F -algebra is an obje
t M = 〈(Ms)s∈S, (fM )f∈F 〉 where ea
h set Ms, 
alledthe domain of M of sort s, is nonempty and, for every symbol f ∈ F of type
s1 ×· · ·× sn → s, we have a total fun
tion fM : Ms1 ×· · ·×Msn

→Ms. Thesemappings are 
alled the operations of M . We assume that Ms ∩ Ms′ = ∅,for s 6= s′. We denote the set ⋃
{Ms | s ∈ S } also by M . We assume that thenotions of a homomorphism, subsignature, subalgebra, et
. are well-known. See[14℄ or [8℄ for details.We 
an de�ne a 
anoni
al F -algebra (the free F -algebra) on the set of terms T (F )su
h that, for every F -algebraM , there exists a unique homomorphism valM :

T (F ) → M . For t ∈ T (F )s, the image of t under valM is an element of Ms,
alled the value of t in M . A term t with variables x1, . . . , xn of sort s1, . . . , snde�nes a fun
tion tM : Ms1 × · · · ×Msn
→ M whi
h is obtained by repla
ingall fun
tion symbols f in t by the 
orresponding operations fM of M . In thespe
ial 
ase that n = 0 we obtain tM = valM(t).A derived operation of the algebra M is an n-ary operation de�ned by a termin T (F, {x1, . . . , xn}) where ea
h variable xi o

urs at most on
e. Su
h termsare 
alled linear. Let F and G be S-signatures and M an F -algebra. If N isa G-algebra with the same domains as M su
h that ea
h operation of N is aderived operation of M then we say that N is a derived algebra, and that it isderived of M . We 
all G a derived signature of F . The signature of all derivedoperations of F is denoted by F der.
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Our notion of a derived operation is restri
ted to linear terms in order toguarantee that the 
lass of equational sets is not 
hanged by adding derivedoperations to a signature. The 
lass of re
ognizable sets stays the same evenif we add derived operations built from nonlinear terms.If G is a derived signature of F every term t ∈ T (G) 
an be translated into aterm δ(t) ∈ T (F ) su
h that δ(t)N = tM , for all algebras M and N as above.The mapping δ is a tree transdu
er of a parti
ular type, namely a deterministi
,bottom-up, linear tree transdu
er with a single state. By a regular set of termswe mean a subset K ⊆ T (F ), for some �nite signature F , that is de�ned bya �nite-state tree automaton. Generalizing the notion of a regular set we willde�ne below the notion of a re
ognizable set in an arbitrary algebra. It is aneasy exer
ise to show that a set of terms in T (F ) is regular if and only if it isre
ognizable in the free F -algebra T (F ).For de�nitions and basi
 results 
on
erning tree automata and tree transdu
-ers, we refer the reader to the books [18℄ or [19℄, and to the surveys [20℄ and [21℄.In the following we will only use �nite-state deterministi
, bottom-up, lineartree transdu
ers and we will 
all them simply tree transdu
ers. Among thebasi
 fa
ts we re
all that the image of a regular set of terms under su
h a treetransdu
er is again regular.Lemma 1 If C is a regular set of terms then so is δ(C), for every tree trans-du
er δ.Let us stress that, by our de�nition, a tree transdu
er always is linear. Withoutthis 
ondition Lemma 1 would not hold.
2.2 Re
ognizable and equational sets
Let F be an S-signature. We say that an F -algebra M is lo
ally �nite if ea
hdomain Ms is �nite. (Note that in universal algebra the term �lo
ally �nite�has a di�erent meaning.)A 
ongruen
e on M is an equivalen
e relation ≈ on ⋃

{Ms | s ∈ S } su
h thatea
h set Ms is a union of equivalen
e 
lasses and su
h that ≈ is stable underall operations of M . It is said to be �nite if, for ea
h sort s, the restri
tion ≈sof ≈ to Ms is �nite, i.e., has �nitely many 
lasses. A 
ongruen
e saturates aset X ⊆M if X is a union of equivalen
e 
lasses.De�nition 2 Let M be an F -algebra and s ∈ S. A subset X ⊆ Ms is M -re
ognizable if it is saturated by a �nite 
ongruen
e on M . We denote the setof all M -re
ognizable subsets of Ms by Rec(M)s, and the union of the sets
Rec(M)s by Rec(M).
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An equivalent de�nition 
an be given in terms of homomorphisms. A subset
X ⊆ Ms is M -re
ognizable if and only if there exists a homomorphism h :
M → A into a lo
ally �nite F -algebra A and a (�nite) subset Y ⊆ As su
hthat X = h−1(Y ). The 
lass Rec(M)s forms a boolean algebra. We have
∅,Ms ∈ Rec(M)s, and X,Y ∈ Rec(M)s implies that X ∪ Y,X ∩ Y,X \ Y ∈
Rec(M)s (see [14℄).Note that in the de�nition of a 
ongruen
e 
onstants play no role. Hen
e,a set X is re
ognizable with respe
t to an F -algebra M if and only if it isre
ognizable with respe
t to the F−-redu
t of M where F− 
onsists of alloperations of F ex
ept for the 
onstant symbols.De�nition 3 A subset L ⊆ Ms is M -equational if it is a 
omponent of theleast solution of a �nite system of re
ursive equations using as operations unionand the extension of the operations of F to subsets of M . We denote the 
lassof equational subsets of M by Equat(M), and by Equat(M)s the sub
lass ofthose in
luded in Ms.For instan
e, the equational sets of a free monoid are exa
tly the 
ontext-freelanguages. Similarly, the equational subsets of graph algebras are exa
tly thosethat are 
ontext-free. See [2℄ for the relationship between graph grammars andequational sets. Instead of the above de�nition we will mainly use the following
hara
terization of M -equational sets.Proposition 4 ([1,14℄) LetM be an F -algebra. A set L ⊆Ms isM -equationalif and only if there exist a regular set K ⊆ T (F )s su
h that L = valM(K).Note that, by de�nition, if K ⊆ T (F )s is a regular set of terms then there isa �nite subsignature F0 ⊆ F with K ⊆ T (F0)s.Corollary 5 A set K ⊆ T (F )s is regular if and only if it is equational.In parti
ular, if F is a �nite signature that generates M , i.e., su
h that ev-ery element of M is the value of a term in T (F ), then every re
ognizableset is equational. This 
ondition is satis�ed for the usual algebras of �nitelygenerated monoids, but not for the algebras of graphs that we will 
onsider.See [14℄ for a thorough treatment of the basi
 results about re
ognizable andequational sets.In 
ertain 
ases, for instan
e when 
onsidering graphs, there is a 
anoni
al
hoi
e for the domains Ms, s ∈ S, while there are several possible signa-tures F . To simplify terminology and notation we will speak in su
h 
asesof F -equational and F -re
ognizable sets instead of introdu
ing a separatename MF for the stru
ture obtained from the signature F and using the term�MF -equational� and �MF -re
ognizable�. Similarly we will write Equat(F ) and
Rec(F ) instead of, respe
tively, Equat(MF ) and Rec(MF ).
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2.3 Finite-state derived operations and homomorphisms
We will need some extensions of the 
lassi
al notions of a derived operationand a homomorphism that are 
losely related to tree transdu
ers.De�nition 6 LetM be an F -algebra. A mapping α : M → X fromM into anarbitrary set X is M -
omputable if the sets As := α(Ms) ⊆ X, for s ∈ S, are�nite and pairwise disjoint, and there exists an F -algebra A with domains As,for ea
h s, su
h that α : M → A is a homomorphism. In other words, the latter
ondition means that, for every f ∈ F of arity n and all a1, . . . , an ∈ M ofappropriate sorts, the value α(fM(ā)) 
an be 
omputed from α(a1), . . . , α(an).De�nition 7 Let M be an F -algebra and α : M → A be M -
omputable. An
n-ary mapping g : Ms1×· · ·×Msn

→Ms, n ≥ 1, is a �nite-state derived oper-ation (based on α) if, for ea
h ā ∈ An, there is an n-ary derived operation t[ā]of M su
h that we have
g(x1, . . . , xn) = t[α(x1), . . . , α(xn)]M(x1, . . . , xn) ,for all elements x1, . . . , xn ∈M of sorts, respe
tively, s1, . . . , sn.Example 8 Let X be a set and F the signature 
onsisting of one binary op-eration · and 
onstant symbols ε and a, for every a ∈ X. Let M be the freemonoid over X, that is, the F -algebra with domain X∗ where ·M is 
on
atena-tion, εM the empty word, and aM := a, for a ∈ X. Fix some element a ∈ X.We de�ne a binary operation ⊛ on X∗ by
u⊛ v :=




uv if neither u nor v 
ontains an o

urren
e of a,
a otherwise.

We 
laim that ⊛ is a �nite-state derived operation. We de�ne an F -algebra Non [2] by setting
i ·N k :=





2 if i = k = 2 ,

1 otherwise ,
εN := 2 , aN := 1 , and bN := 2 , for b 6= a .

Let α : M → N be the homomorphism
α(u) :=





1 if u 
ontains an o

urren
e of a,
2 otherwise.

11



Then we 
an de�ne ⊛ by the terms
t[1, 1](x, y) := a , t[1, 2](x, y) := a ,

t[2, 1](x, y) := a , t[2, 2](x, y) := x · y .

If M is an F -algebra and G a set of �nite-state derived operations we obtaina G-algebra N with the same sorts and domains as M . We 
all G a signatureof �nite-state derived operations, and we 
all N a �nite-state derived alge-bra of M . If the operations of G are all based on the same M -
omputablemapping α then we say that G and N are based on α.For ea
h M -
omputable mapping α, we denote by F der
α the signature of all�nite-state derived operations based on α. If F is 
ountable then so is F der

αsin
e we require that the sets As are �nite. Clearly, F der
α 
ontains F der be
ausethe operations t[ā] in the above de�nition may a
tually not depend on ā. Notethat the operations of F der

α depend on M via α, whereas those of F der do not:they are de�ned in a purely synta
ti
 way without referen
e to any algebra.Remark 9 Let F be a �nite signature, M an F -algebra, and G a signatureof �nite-state derived operations based on some fun
tion α : M → A. Let
N be the asso
iated (F ∪ G)-algebra. For every t ∈ T (F ∪ G), there exists aterm δ(t) ∈ T (F ) with tN = δ(t)M . This mapping δ 
an be de�ned by a treetransdu
er.We will see below that adding �nite-state derived operations does not 
hangethe notions of an equational or a re
ognizable set. Hen
e, when we want to
ompare algebras with respe
t to su
h sets we need a kind of homomorphismthat is invariant under this operation. Furthermore, we will need to relatealgebras with di�erent signatures.De�nition 10 Let M be an F -algebra with set of sorts S and N a G-algebrawith set of sorts S ′.(a) A heteromorphism h : M → N is a 
olle
tion of mappings 
onsisting of
hsort : S → S ′ and hs : Ms → Nhsort(s), for ea
h s ∈ S, su
h that, for every f ∈
F of type s1 × · · · × sn → s, there exists a linear term tf ∈ T (G, {x1, . . . , xn})su
h that

hs(fM(b1, . . . , bn)) = tfN (hs1(b1), . . . , hsn
(bn)) ,for all b1, . . . , bn ∈M of sorts s1, . . . , sn.(b) Let α : M → A be an M -
omputable mapping. We will say that a 
olle
-tion h as above is a �nite-state heteromorphism based on α if, for every f ∈ Fof type s1 × · · · × sn → s, there exist linear terms tf [ā] ∈ T (G, {x1, . . . , xn}),

12



for ā ∈ An, su
h that
hs(fM(b1, . . . , bn)) = tf [α(b1), . . . , α(bn)]N (hs1(b1), . . . , hsn

(bn)) ,for all b1, . . . , bn ∈M of sorts s1, . . . , sn.In the following we will write in both 
ases h instead of hsort or hs, withoutrisk of ambiguity.Remark 11 An important spe
ial 
ase of a (�nite-state) heteromorphism 
on-sists of a fun
tion h : M → N from an F -algebra M to a G-algebra N su
hthat there exists a set G′ of (�nite-state) derived operations of N that turns
h : M → N into a homomorphism from M to the G′-algebra N .Example 12 Let M be the free monoid as in the previous example.(a) The fun
tion h : u 7→ ũ that maps every word to its mirror image is aheteromorphism. Sin
e ũv = ṽũ we 
an 
hoose the term t·(x, y) := y · x.(b) An example of a �nite-state heteromorphism is the fun
tion

g(u) :=




ũ if u 
ontains no o

urren
e of a,
an if u 
ontains n > 0 o

urren
es of a.

If we again 
hoose α : M → [2] to be the homomorphism with
α(u) :=





1 if u 
ontains an o

urren
e of a,
2 otherwise,then we 
an de�ne g by the terms

tg[1, 1](x, y) := x · y , tg[1, 2](x, y) := x ,

tg[2, 1](x, y) := y , tg[2, 2](x, y) := y · x .Remark 13 Let h : M → N be a �nite-state heteromorphism. For everyterm t ∈ T (F ), there exists a term δ(t) ∈ T (F ) su
h that h(tM) = δ(t)N . Ifthe signature F of M is �nite then this mapping δ 
an be de�ned by a treetransdu
er.Lemma 14 Let h : M → N be a �nite-state heteromorphism based on αbetween an F -algebra M and a G-algebra N .(a) L ∈ Rec(N) implies h−1(L) ∈ Rec(M).(b) L ∈ Equat(M) implies h(L) ∈ Equat(N).
13



PROOF. (a) Let L ∈ Rec(N) and ≈ be a �nite G-
ongruen
e saturating L.We de�ne a relation ≡ on M by setting
x ≡ y : iff x and y have the same sort,

h(x) ≈ h(y) , and α(x) = α(y) .

It is 
lear that ≡ is an equivalen
e relation. For ea
h sort s, it has at most
|Nh(s)/≈| · |As| 
lasses. If x ≡ y then h(x) ∈ L implies h(y) ∈ L sin
e h(x) ≈
h(y) and ≈ saturates L. Consequently, ≡ saturates h−1(L).It remains to prove that ≡ is a 
ongruen
e. Let f ∈ F be of arity n and let
x̄, ȳ ∈Mn with xi ≡ yi, for all i. By the de�nition of ≡, we have α(xi) = α(yi),and sin
e α is a homomorphism it follows that α(fM(x̄)) = α(fM(ȳ)).It remains to prove that h(fM(x̄)) ≈ h(fM(ȳ)). We have

h(fM(x̄)) = tf [α(x1), . . . , α(xn)]N(h(x1), . . . , h(xn))

= tf [α(y1), . . . , α(yn)]N (h(x1), . . . , h(xn))(sin
e α(xi) = α(yi))
≈ tf [α(y1), . . . , α(yn)]N (h(y1), . . . , h(yn))(sin
e h(xi) ≈ h(yi))
= h(fM (ȳ)) ,whi
h 
ompletes the proof.(b) Ea
h set L ∈ Equat(M) 
an be written L = valM(K), for some regular setof terms K ⊆ T (F ) (see Proposition 4). We have remarked that there existsa tree transdu
er δ asso
iated with h su
h that

valN(δ(t)) = h(valM(t)) , for all t ∈ T (F ) .Hen
e h(L) = valN (δ(K)). Sin
e, by Lemma 1, tree transdu
ers preserve reg-ularity it follows that h(L) is N -equational. 2

De�nition 15 Let F and G be S-signatures for some set of sorts S and
M = (Ms)s∈S a family of domains. Let MF and MG be algebras with thesame family of domains M and signatures F and G, respe
tively. We say that
MF and MG are equivalent if

Equat(MF ) = Equat(MG) and Rec(MF ) = Rec(MG) .IfMF andMG are understood from the 
ontext we will simply say that F and Gare equivalent signatures.
14



Remark 16 For F ⊆ G we obviously always have
Equat(F ) ⊆ Equat(G) and Rec(G) ⊆ Rec(F ) .Hen
e, when testing for equivalen
e we only need to 
he
k the 
onverse in
lu-sions.Consider an F -algebra M and let G be a signature of �nite-state derivedoperations of F that are all based on the same M -
omputable mapping α (
f.De�nition 7). It follows from the next lemma that F ∪G is equivalent to F .Lemma 17 Let M be an F -algebra. For every M -
omputable fun
tion α :

M → A, the signature F der
α is equivalent to F .

PROOF. If ≈ is a �nite F -
ongruen
e on M then the equivalen
e relationde�ned by
x ≡ y : iff x and y are of the same sort, α(x) = α(y), and x ≈ yis a �nite F der

α -
ongruen
e. (The proof is the same as in Lemma 14 (a).) Hen
e,if ≈ witnesses the F -re
ognizability of some set L then ≡ witnesses the F der
α -re
ognizability of L. It follows that Rec(F der

α ) = Rec(F ).Suppose that L is F der
α -equational. Then we have L = valM(K) for some reg-ular subset K ⊆ T (F der
α ). We have noted that there exists a tree transdu
er δsu
h that

valM(δ(t)) = valM ′(t) , for all t ∈ T (F der
α ) ,whereM ′ is the F der

α -algebra with same domains asM . Hen
e, L = valM(δ(K))and sin
e tree transdu
ers preserve regularity it follows that L is F -equational.Consequently, we have Equat(F der
α ) = Equat(F ). 2

3 Relational stru
tures and monadi
 se
ond-order logi

A relational signature is a �nite set Σ = {R,S, T, . . . } of relation symbols ea
hof whi
h is given with an arity ar(R) ≥ 1. We denote by STR[Σ] the set of all�nite Σ-stru
tures A = 〈A, (RA)R∈Σ〉 where RA ⊆ Aar(R). The set A is 
alledthe domain of A. The arity of Σ is the maximal arity of a symbol in Σ. Wedenote it by ar(Σ). The arity of a Σ-stru
ture A is the arity of its signature Σ.Intuitively, a Σ-stru
ture A 
an be seen as a dire
ted hypergraph where A isthe set of verti
es and, for every tuple ā ∈ R, we have a hyperedge with label Rand sequen
e of verti
es ā.
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For a relational Σ-stru
ture A and a set X ⊆ A, we denote by A[X] thesubstru
ture of A indu
ed by X. This is the stru
ture with domain X andrelations
RA[X] = RA ∩Xar(R) , for R ∈ Σ .

A graph G is de�ned as an {edg}-stru
ture G = 〈VG, edgG〉 where VG is theset of verti
es of G and edgG ⊆ VG × VG is a binary relation representingthe dire
ted edges. For undire
ted graphs, the relation edgG is symmetri
. Inparti
ular, graphs are always simple, i.e., without parallel edges.A term t ∈ T (F ) where F is a �nite signature of arity at most k 
an be seenas a dire
ted labelled tree. We en
ode su
h a tree by a relational stru
ture ofthe form S(t) := 〈N, (suci)1≤i≤k, rt, (labf )f∈F 〉 where
• N is the set of nodes,
• suci(x, y) holds i� y is the i-th su

essor of x,
• rt(x) holds i� x is the root, and
• labf (x) is true i� the node x has label f .We denote by ∆(F ) the signature of this stru
ture.We re
all that monadi
 se
ond-order logi
 extends �rst-order logi
 by set vari-ables, quanti�
ation over set variables, and new atomi
 formulas of the form
x ∈ X that express the membership of an element x in the set X. We willdenote by MSO[Σ,W ] the set of all MSO-formulas over the signature Σ withfree variables from W . Similarly, FO[Σ,W ] is the set of �rst-order formulasand QF[Σ,W ] denotes the set of quanti�er-free formulas. Frequently, we willomit the parameters Σ and W if their values are obvious from the 
ontext.The quanti�er height of a formula ϕ, either �rst-order or monadi
 se
ond-order, is the maximal number of nested quanti�ers in ϕ. We denote it by qh(ϕ).The quanti�er-free formulas are those of quanti�er height 0.A subset C ⊆ STR[Σ] is MSO-de�nable if there is some formula ϕ ∈ MSO[Σ, ∅]su
h that

C = {A ∈ STR[Σ] | A |= ϕ } .

3.1 Transdu
tions of relational stru
tures
We will use logi
 for several purposes. First, we use formulae to de�ne trans-formations on stru
tures and se
ond, we label stru
tures by logi
al types thaten
ode properties of tuples. Let C and D be sets of stru
tures. A transdu
tion
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g : C → D is a binary relation g : R ⊆ C × D that we 
onsider as a multi-valued partial mapping asso
iating with 
ertain stru
tures in C one or morestru
tures in D.An MSO-transdu
tion is a transdu
tion spe
i�ed by MSO-formulas. Given astru
ture A and a tuple of parameters W1, . . . ,Wn ⊆ A it 
onstru
ts a newstru
ture B whose domain is a subset of A × [k], for some k ≥ 1. Su
h atransdu
tion g has an asso
iated ba
kwards translation, a mapping that ef-fe
tively transforms an MSO-formula ϕ over B (possibly with free variables)into a MSO-formula ϕg over A whose free variables 
orrespond to those of ϕ(k times as many a
tually) together with those for the parameters. The for-mula ϕg expresses in A the property of B de�ned by ϕ. We now give somedetails. See also [4,2℄.De�nition 18 Let Σ and Γ be two relational signatures and let W be a �niteset of set variables 
alled parameters.(a) A de�nition s
heme (from Σ to Γ) is a tuple of formulas of the form
D = (ϕ, ψ1, . . . , ψk, (ϑw)w∈Γ⊠k)where k > 0,
Γ ⊠ k :=

{
(R, ı̄)

∣∣∣ R ∈ Γ, ı̄ ∈ [k]ar(R)
}
,

ϕ ∈ MSO[Σ,W ] ,

ψi ∈ MSO[Σ,W ∪ {x1}] , for i = 1, . . . , k ,and ϑw ∈ MSO[Σ,W ∪ {x1, . . . , xar(R)}] , for w = (R, ı̄) ∈ Γ ⊠ k .

(b) Let A ∈ STR[Σ] and let γ be a W -assignment in A. We say that D de�nesthe Γ-stru
ture B in (A, γ) if(i) (A, γ) |= ϕ ,(ii) B =
{

(a, i) ∈ A× [k]
∣∣∣ (A, γ) |= ψi(a)

}
,(iii) for ea
h R ∈ Γ,

RB =
{

((a1, i1), . . . , (an, in)) ∈ Bn
∣∣∣ (A, γ) |= ϑR,̄ı(a1, . . . , an)

}
,where ı̄ = i1 . . . in and n = ar(R).(By (A, γ) |= ϑ(a1, . . . , an) we mean (A, γ′) |= ϑ where γ′ is the assignmentextending γ su
h that γ′(xi) = ai, for all i ≤ n.) Note that we do not rede�neequality (in 
ontrast to, e.g., [10℄). Two elements of B are equal if they areequal as elements of A× [k].The stru
ture B is uniquely determined by A, γ, and D whenever it is de�ned,i.e., whenever (A, γ) |= ϕ. Therefore, we 
an use fun
tional notation and we
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write B = D̂(A, γ). The relation
{ (

A, D̂(A, γ)
) ∣∣∣ γ is some W -assignment in A

}
⊆ STR[Σ] × STR[Γ]is 
alled the transdu
tion de�ned by D.Let L be some fragment of MSO. A transdu
tion g ⊆ STR[Σ] × STR[Γ]is an L-transdu
tion if it is de�ned (up to isomorphisms) by some de�nitions
heme D 
onsisting of formulas from L. In the 
ase whereW = ∅, we say that

g is parameterless. (Note that parameterless transdu
tions are fun
tional.) Wewill refer to the integer k by saying that D is k-
opying. If k = 1 we will 
all
D and D̂ non
opying. A non
opying de�nition s
heme has the simple form
(ϕ, ψ, (ϑR)R∈Γ).The quanti�er height of a de�nition s
heme is the maximal quanti�er heightof the formulas it 
onsists of. Sin
e, up to logi
al equivalen
e, there are only�nitely many MSO-formulas of a given quanti�er height k ∈ N, it follows thatthe number of MSO-transdu
tions (de�ned by s
hemes) of quanti�er height kis �nite.Note that sin
e logi
al equivalen
e is not de
idable one 
annot e�e
tively sele
trepresentatives of ea
h 
lass of logi
ally equivalent formulas. However, one 
anrepla
e logi
al equivalen
e by a de
idable �ner equivalen
e relation that stillhas only �nitely many 
lasses. A 
onstru
tion is given in [8℄.Example 19 As an example we re
all from [9℄, Lemma 2.1, that if we havean MSO-de�nable equivalen
e relation ≈ on A ∈ STR[Σ] then there is an
MSO-transdu
tion mapping A = 〈A, (RA)R∈Σ〉 to its quotient stru
ture

A/≈ := 〈A/≈, (RA/≈)R∈Σ〉 ,where RA/≈ :=
{

([a1], . . . , [an])
∣∣∣ (a1, . . . , an) ∈ RA

} and [a] denotes the equiv-alen
e 
lass of a. Note that A/≈ 
an be de�ned from A with the help of any set
X ⊆ A 
ontaining exa
tly one representative of every ≈-
lass. Therefore, we
an write down a non
opying de�nition s
heme with one parameter X wherethe formula ϕ states that X 
ontains one representative of every ≈-
lass and
ψ(x) is the formula x ∈ X. We omit routine details.Let F and G be �nite signatures. By en
oding terms as labelled trees we 
an
onsider a mapping from T (F ) to T (G) as a transdu
tion between relationalstru
tures. Similarly, mappings from T (F ) to STR[Σ] 
an also be given bytransdu
tions.Every operation de�ned by a tree transdu
er 
an be represented by a param-eterless MSO-transdu
tion (see [3,5℄). The fa
t that we only 
onsider lineartree transdu
ers is here essential.
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On several o

asions we will use transdu
tions that transform a stru
ture intothe substru
ture indu
ed by a de�nable subset X of its domain. If ψ(x) is aformula with a single free variable we denote by delψ the transdu
tion thateliminates all elements satisfying ψ.
3.2 The fundamental property of MSO-transdu
tions
Every de�nition s
heme D does not only de�ne an MSO-transdu
tion betweenstru
tures but it also gives rise to a translation of formulas. The followingproposition says that if B = D̂(A, γ) then all monadi
 se
ond-order de�nableproperties of B 
an be expressed by monadi
 se
ond-order formulas over A.The usefulness of MSO-transdu
tions is based on this fa
t.Let D = (ϕ, ψ1, . . . , ψk, (ϑw)w∈Γ⊠k) be a de�nition s
heme with a set of param-etersW . Given a set V of set variables disjoint fromW we introdu
e new vari-ables X(i), for X ∈ V and i ∈ [k], and we set V (k) := {X(i) | X ∈ V, i ∈ [k] }.Let A ∈ STR[Σ] be a stru
ture. For every mapping η : V (k) → P(A), we de�ne
ηk : V → P(A× [k]) by

ηk(X) := η(X(1)) × {1} ∪ · · · ∪ η(X(k)) × {k} .Let Y = {y1, . . . , yr} be a set of �rst-order variables. For a mapping µ : Y → Aand an r-tuple ı̄ = i1 . . . ir ∈ [k]r, we denote by µı̄ : Y → A× [k] the fun
tionwith
µı̄(yj) := (µ(yj), ij) .If k = 1 then we identify A× [1] with A and µ1...1 with µ.Proposition 20 ([22,17℄) Let D be a k-
opying de�nition s
heme from Σto Γ of quanti�er height m with set of parameters W . Let V be a �nite set ofset variables and Y = {y1, . . . , yr} a set of �rst-order variables.For every formula β ∈ MSO[Γ, V ∪ Y ] and all ı̄ ∈ [k]r, one 
an e�e
tively
onstru
t a formula βD

ı̄ ∈ MSO[Σ, V (k) ∪ Y ∪W ] of quanti�er height
qh(βD

ı̄ ) ≤ k · qh(β) +msu
h that, for ea
h A ∈ STR[Σ] and all assignments γ : W → P(A), η :
V (k) → P(A), and µ : Y → A, we have

(A, η ∪ γ ∪ µ) |= βD
ı̄ iff D̂(A, γ) is de�ned, ηk ∪ µı̄ is a

(V ∪ Y )-assignment in D̂(A, γ), and
(
D̂(A, γ), ηk ∪ µı̄

)
|= β .
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PROOF. Let D = (ϕ, ψ1, . . . , ψk, (ϑw)w∈Γ⊠k). For every monadi
 se
ond-order formula β(y1, . . . , yr, X1, . . . , Xs) and all tuples ı̄ ∈ [k]r, we de�ne aformula β∗
ı̄ with �rst-order variables y1, . . . , yr and set variables X(i)

j , for
1 ≤ i ≤ k and 1 ≤ j ≤ s, by indu
tion on β. W.l.o.g. we may assumethat β does not 
ontain universal quanti�ers and 
onjun
tions. In the atomi

ase we set

(x = y)∗ij := x = y ,

(x ∈ X)∗i := x ∈ X(i) ,

(Rx̄)∗ı̄ := ϑR,̄ı(x̄) ,boolean operations remain un
hanged
(¬β)∗ı̄ := ¬β∗

ı̄ ,

(β ∨ γ)∗ı̄ := β∗
ı̄ ∨ γ

∗
ı̄ ,and for quanti�ers we de�ne

(∃yr+1β)∗ı̄ :=
∨

j∈[k]

∃yr+1(ψj(yr+1) ∧ β
∗
ı̄j) ,

(∃Xβ)∗ı̄ := ∃X(1) · · · ∃X(k)β∗
ı̄ .Note that in the 
ase of a se
ond-order quanti�er ∃Xβ we do not need toadd the 
ondition that every x ∈ X(i) satis�es ψi sin
e set variables X areonly used in atomi
 formulas of the form y ∈ X and we require that every ysatis�es the 
orresponding ψi.To 
on
lude the proof we 
an set βD
ı̄ := β∗

ı̄ ∧ϕ. The 
onstru
tion ensures that
qh(βD

ı̄ ) ≤ k · qh(β) +m. (We 
an slightly improve this bound to
qh(βD

ı̄ ) ≤ k · qh2(β) + qh1(β) +m,by distinguishing between the quanti�er heights qh1(β) and qh2(β) of �rst-order and se
ond-order quanti�ers.) 2

Note that, even if B = D̂(A, γ) is well-de�ned, the mapping ηk is not ne
es-sarily a V -assignment in B be
ause ηk(X) may not be a subset of the domainof B.We 
all βD
ı̄ the ba
kwards translation of β relative to the transdu
tion D. If

g is the transdu
tion de�ned by D then we also write βg instead of βD. For
k = 1 and r ≥ 1, we abbreviate βD

1...1 by βD. Similarly, we write βD insteadof βD
〈〉 .
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Proposition 21 ([22,17℄) (1) The inverse image of an MSO-de�nable 
lassof stru
tures under an MSO-transdu
tion is MSO-de�nable. The domain ofan MSO-transdu
tion is MSO-de�nable.(2) The 
omposition of two MSO-transdu
tions is an MSO-transdu
tion.We prove a spe
ial 
ase of the se
ond statement.Lemma 22 Let f : STR[Γ] → STR[∆] and g : STR[Σ] → STR[Γ] be MSO-transdu
tions of quanti�er height m and n, respe
tively, and suppose that g isnon
opying.Then f ◦ g is an MSO-transdu
tion of quanti�er height at most m + n. Fur-thermore, if both f and g are parameterless and non
opying then so is f ◦ g.
PROOF. Let D = (ϕ, ψ1, . . . , ψk, (ϑw)w∈∆⊠k) be the de�nition s
heme of f .We obtain a de�nition s
heme of f ◦ g 
onsisting of

(
ϕg, ψg1 , . . . , ψ

g
k, (ϑgw)w∈∆⊠k

)
.By Proposition 20, the quanti�er height of these formulas is bounded bym+n.The se
ond 
laim also follows easily. 2

3.3 Operations on relational stru
tures
Let us introdu
e the basi
 operations on relational stru
tures that 
onstitutethe standard signature QF to whi
h we will 
ompare other signatures.
Disjoint union. The disjoint union A ⊕ B of two stru
tures A ∈ STR[Σ]and B ∈ STR[Γ] is the stru
ture C ∈ STR[Σ ∪ Γ] whose domain C := A ·∪ Bis the disjoint union of A and B and, for ea
h relation R ∈ Σ ∪ Γ, we have
RC := RA∪RB where we set RA := ∅ for R ∈ Γ\Σ, and RB := ∅ for R ∈ Σ\Γ.(We are only interested in properties of stru
tures up to isomorphism. Hen
ewe 
an freely repla
e stru
tures by isomorphi
 
opies.)
Quanti�er-free operations. A quanti�er-free de�nition s
heme is a pa-rameterless non
opying de�nition s
heme D = (ϕ, ψ, (ϑR)R∈Γ) where ϕ = trueand the formulas ψ and ϑR, for R ∈ Γ, are quanti�er-free. The transdu
-tion D̂ : STR[Σ] → STR[Γ] de�ned by su
h a s
heme is total and fun
tional.When 
onsidered to be part of a signature, we will 
all fun
tions of this form
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quanti�er-free operations. (We keep the term transdu
tion for transforma-tions of stru
tures that are, typi
ally, en
odings relating di�erent 
lasses ofrelational stru
tures.)Note that sin
e we require ϕ = true not every parameterless non
opying def-inition s
heme of quanti�er height 0 de�nes a quanti�er-free operation. Byinspe
ting the proof of Lemma 22, one easily sees that the 
omposition of twoquanti�er-free operations is again a quanti�er-free operation.Example 23 The edge 
omplement for simple, loop-free, undire
ted graphs
an be de�ned as the quanti�er-free operation where
ϑedg(x1, x2) := x1 6=x2 ∧ ¬edg(x1, x2) .Another edge 
omplement 
ould be de�ned for graphs with loops by deleting

x1 6= x2 in the above formula.Remark 24 To shorten notation we will usually omit de�ning formulas ϑRof the form ϑR = Rx̄ (= Rx1 . . . xar(R)) that do not modify the relations R.If we have a quanti�er-free de�nition s
heme of the formD = (true, ψ, (ϑR)R∈Σ)where Γ = Σ and ϑR is Rx1 . . . xar(R), for all R ∈ Σ, then we say that D̂ isa (quanti�er-free) domain restri
tion. In this 
ase we have D̂ = del¬ψ and
D̂(A) is the substru
ture of A indu
ed by the set of elements satisfying ψ.If, on the other hand, D = (true, true, (ϑR)R∈Γ), then we 
all D̂ nondeleting.Then the stru
ture D̂(A) has the same domain as A but its relations arerede�ned by the formulas ϑR. Other examples will be given in Se
tion 3.5below.Lemma 25 Every quanti�er-free operation is the 
omposition of a quanti�er-free domain restri
tion and a nondeleting quanti�er-free operation.
PROOF. For every quanti�er-free de�nition s
heme D = (true, ψ, (ϑR)R∈Γ)from Σ to Γ we have D̂ = D̂′ ◦ del¬ψ where

del¬ψ := (true, ψ, (Rx̄)R∈Σ) and D′ := (true, true, (ϑR)R∈Γ) .

2

3.4 The many-sorted algebra of relational stru
tures
We de�ne an algebra STR of relational stru
tures as follows. Suppose that
Σ∞ is a �xed relational signature with 
ountably many symbols of ea
h arity.
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We assume that every �nite relational signature Σ is a subset of Σ∞. Weregard every �nite signature Σ ⊆ Σ∞ as a sort of STR. The 
orrespondingdomain (of sort Σ) is the set STR[Σ] of all �nite Σ-stru
tures.The operations 
onsist of the disjoint union ⊕ and all quanti�er-free opera-tions. Furthermore, we add 
onstant symbols for all singleton stru
tures, thatis, stru
tures whose domain 
ontains exa
tly one element. Note that every set
STR[Σ] 
ontains only �nitely many of them (up to isomorphism).This signature, whi
h we denote by QF , will be our referen
e signature forthe algebra STR. We will 
onstru
t alternative equivalent signatures.If Σ ⊆ Γ we 
ould regard stru
tures A ∈ STR[Σ] as elements of STR[Γ] whereall relations R ∈ Γ \ Σ are empty. However we will distinguish A from itsexpansions, so the sets STR[Σ] are pairwise disjoint. The natural in
lusion
i : STR[Σ] → STR[Γ] is a quanti�er-free operation. In parti
ular, i ∈ QF .The operation symbol ⊕ is overloaded. It a
tually represents 
ountably manybinary operations, one for ea
h pair of sorts.A

ording to our general de�nitions we obtain the 
lasses Equat(STR) and
Rec(STR) of all QF -equational and QF -re
ognizable sets. Sin
e QF is ourstandard signature we will 
all su
h sets simply equational and re
ognizable.Proposition 26 ([7,2℄) Let C ⊆ STR[Σ].(a) If C is MSO-de�nable then C ∈ Rec(STR)Σ.(b) If C ∈ Rec(STR)Σ and D ⊆ STR[Σ] is MSO-de�nable then C ∩ D ∈

Rec(STR)Σ.(
) If Σ ⊆ Γ and i : STR[Σ] → STR[Γ] is the in
lusion map then we have
C ∈ Rec(STR)Σ i� i(C) ∈ Rec(STR)Γ.Proposition 27 ([7,2,16℄) Let C ⊆ STR[Σ]. The following statements areequivalent:(i) C ∈ Equat(STR)Σ.(ii) C = valSTR(K), for some K ∈ Rec(T (QF)Σ).(iii) C = τ(L), for some MSO-transdu
tion τ : STR[∆(F )] → STR[Σ] andsome regular set of terms L ⊆ T (F ) (over an arbitrary �nite signature F ).Corollary 28 Let C ∈ Equat(STR)Σ.(a) If τ : STR[Σ] → STR[Γ] is an MSO-transdu
tion then τ(C) ∈ Equat(STR)Γ.(b) If D ⊆ STR[Σ] is MSO-de�nable then C ∩D ∈ Equat(STR)Σ.(
) If Σ ⊆ Γ and i : STR[Σ] → STR[Γ] is the in
lusion map then we have
C ∈ Equat(STR)Σ i� i(C) ∈ Equat(STR)Γ.
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PROOF. (a) If C ∈ Equat(STR)Σ then there exists a regular set of terms Land an MSO-transdu
tion σ su
h that C = σ(L). Hen
e, τ(C) = (τ ◦ σ)(L)and Proposition 21 implies that τ(C) ∈ Equat(STR)Γ.(b) If D is MSO-de�nable then the identity fun
tion idD : D → D is an
MSO-transdu
tion. Sin
e C ∩D = idD(C) the 
laim follows from (a).(
) follows immediately from (a) sin
e i and its inverse are MSO-transdu
tions. 2

3.5 VR-operations on graphs
Let us 
onsider the spe
ial 
ase of graphs. We re
all the de�nitions of twoalgebras of graphs, 
alledVR and VRp, whi
h are 
onne
ted to 
ertain 
ontext-free graph grammars and to the graph 
omplexity measure 
alled 
lique width(see [2,23,6℄). We show that these algebras 
an be 
onsidered as subalgebrasof STR. In addition to the edge relation edg we �x a 
ountable set Π∞ of unaryrelation symbols that we will use as vertex labels. The algebra of graphs VRhas domains of the form STR[{edg}∪Π], for �nite Π ⊆ Π∞. The 
orrespondingstru
tures are labelled graphs G = 〈VG, edgG, (PG)P∈Π〉 where a vertex v haslabel P i� it belongs to the set PG. Hen
e a vertex may have no, one, or severallabels.We de�ne a signature VR that, apart from the disjoint union ⊕ and 
onstantsymbols for the basi
 graphs with a single vertex, 
ontains the following par-ti
ular quanti�er-free operations. The mapping renP→Q 
hanges every label Pto Q, the operation fgtP (forget P ) deletes every label P , and addP,Q, for
P 6= Q, is de�ned by the quanti�er-free de�nition where

ϑedg(x1, x2) := edg(x1, x2) ∨ (Px1 ∧Qx2) .Hen
e addP,Q adds a new dire
ted edge from every vertex labelled by P to ea
hvertex labelled by Q � unless there exists already one (we deal with simpledire
ted graphs, possibly with loops).A more restri
ted algebra of labelled graphs is VRp. A Π-graph is a stru
ture
G = 〈VG, edgG, (PG)P∈Π〉 in STR[{edg}∪Π] su
h that the unary relations forma partition of the domains. (The supers
ript p refers to this fa
t.) Hen
e everyvertex has one and only one label. The above de�ned operations, ex
ept fgtP ,preserve this property. (Of 
ourse, we have to omit those 
onstant symbolswhi
h de�ne labelled graphs that are not Π-graphs.)For ea
h set Π, we denote by VRp

Π the signature
{P,Ploop,⊕, addP,Q, renP→Q | P,Q ∈ Π, P 6= Q } ,
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where P is a single vertex labelled by P , and Ploop is the same with an in
identloop. We obtain in this way the VRp
Π-algebra of Π-graphs whi
h was �rstintrodu
ed in [15℄.

Remark 29 The algebra VR is obtained from STR by deleting 
ertain sorts,the 
orresponding domains, all operations involving them, and 
ertain unaryoperations between sorts kept in VR. For VRp, we additionally remove thosestru
tures from the remaining domains where the relations of Π do not parti-tion the set of verti
es.
Every term t ∈ T (VRp

Π) de�nes a Π-graph, and every Π-graph is the value ofsome t ∈ T (VRp
Ψ), for a su�
iently large set Ψ ⊇ Π. The 
lique width of Gis de�ned as the smallest 
ardinality of Ψ su
h that G is the value of someterm in T (VRp

Ψ) (see [24,6℄). We re
all that trees have 
lique width at most 3.This signature originates from 
ontext-free graph grammars de�ned by vertexrepla
ement (see [2,15℄).
To generate undire
ted graphs we 
an make the de�nition of addP,Q symmetri
by setting

ϑedg(x1, x2) := edg(x1, x2) ∨ (Px1 ∧Qx2) ∨ (Px2 ∧Qx1) .

The notion of 
lique width of an undire
ted graph follows immediately. Every
lique has 
lique width 2. We re
all the following result from [2,16℄.
Proposition 30 A set of �nite graphs has bounded 
lique width if and only ifit is 
ontained in the image of a set of �nite trees under an MSO-transdu
tion.
We have de�ned a many-sorted algebra VR of graphs. The notion of a VR-re
ognizable set of graphs follows from the general de�nitions. This notion isrobust as proved in [8℄ Theorem 4.5: a set of graphs is VR-re
ognizable i� it isre
ognizable w.r.t. VR+ (the signature 
onsisting of the operations from VRΠand all quanti�er-free operations) i� it QF -re
ognizable. We will establishfurther robustness results below.
Example 31 Re
all that, for a �nite signature F , we denote by ∆ = ∆(F )the signature used to en
ode terms t ∈ T (F ) as labelled trees S(t) ∈ STR[∆].We show that the fun
tion STR[∆] × STR[∆] → STR[∆] that 
orresponds tothe mapping T (F ) × T (F ) → T (F ) : (t1, t2) 7→ f(t1, t2), for �xed f ∈ F , 
anbe expressed in terms of ⊕, some quanti�er-free operations, and one 
onstant.Let rt be a 
onstant symbol denoting a single element labelled by rt and noother relation. In addition to the relation of ∆ we will use unary relations
rt1 and rt2, and a 
onstant symbol rt. If t1, t2 ∈ T (F ) are represented by
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S(t1),S(t2) ∈ STR[∆] with disjoint domains then we have
S(f(t1, t2)) =

(
fgtrt1 ◦ fgtrt2 ◦ addrt,rt1,suc1 ◦ addrt,rt2,suc2

)

[
rt ⊕ renrt→rt1(S(t1)) ⊕ renrt→rt2(S(t2))

]
,where the operation addrt,rti,suci

adds all pairs (x, y) with rt(x) and rti(y) to therelation suci. This operation 
an be de�ned by the quanti�er-free transdu
tionwhere
ϑsuci

(x, y) := suci(x, y) ∨ (rt(x) ∧ rti(y)) .

4 Annotated stru
tures
A 
entral notion in many of our proofs is that of a type annotation whi
h we useto en
ode information about a tuple of elements of the 
onsidered stru
ture.We de�ne �nite sets Φn of formulas by 
ertain synta
ti
 restri
tions su
h thatall formulas in Φn have free variables among x1, . . . , xn. With every n-tuple āwe asso
iate the set of those formulas in Φn that are satis�ed by ā. Su
hsets are 
alled logi
al n-types (see, e.g., [13,12,11℄). The synta
ti
 restri
tionsde�ning Φn (we will 
onsider several variants) ensure that ea
h type is �niteand that there are �nitely many types of the 
onsidered form.We enri
h a relational stru
ture A by adding, for every n-type, a new n-aryrelation 
ontaining all tuples of that type. This operation is 
alled annotatingthe stru
ture A. We will examine the relationship between annotations and
MSO-transdu
tions and their e�e
t on re
ognizability.
4.1 Monadi
 types
The monadi
 type of a tuple ā is just the set of all MSO-formulas of a givenmaximal quanti�er height satis�ed by ā. In parti
ular, sin
e it 
ontains allquanti�er-free formulas that hold for ā, su
h a type 
ompletely des
ribes, upto isomorphism, the substru
ture indu
ed by ā.De�nition 32 Let A be a Σ-stru
ture and ā ∈ An a tuple, n ≥ 0. Themonadi
 n-type of quanti�er height k of ā is the set

tpk(ā/A) :=
{
ϕ(x̄) ∈ MSO[Σ, {x1, . . . , xn}]

∣∣∣ qh(ϕ) ≤ k, A |= ϕ(ā)
}
.

We denote by Sn,kM (Σ) the set of all su
h monadi
 n-types realized in some
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Σ-stru
ture 2 , and we write S≤m,k
M (Σ) :=

⋃
1≤n≤m S

n,k
M (Σ) for the union overall n with 1 ≤ n ≤ m. (We need the subs
ript M to distinguish monadi
 typesfrom other kinds of types whi
h we will introdu
e in Se
tion 7.)Types of quanti�er height 0 are also 
alled atomi
 or quanti�er free. They
ontain lo
al information about the given n-tuple. For the empty tuple ā = 〈〉,we use the abbreviation tpk(A) := tpk(〈〉/A).We will treat the monadi
 type of the empty tuple di�erently from the monadi


n-types with n > 0. For n > 0, we 
an introdu
e n-ary relations to label tuplesof the 
orresponding type whereas we do not allow relations of arity 0. Thisis the reason why we ex
lude the 
ase n = 0 in the union de�ning S≤m,k
M (Σ).A type tpk(A) 
ontains a �nite amount of global information 
on
erning Awhi
h, a

ording to Lemma 45 below, is QF-
omputable.As stated in the next lemma types are MSO-de�nable be
ause we only 
onsider�nite relational signatures. Furthermore, for �nite stru
tures we 
an e�e
tively
ompute the type tpk(ā/A) from ā and A.De�nition 33 Let p ∈ Sn,kM (Σ) be a monadi
 n-type. The Hintikka-formulaof p is de�ned by

ψp(x̄) :=
∧
p .(By 
onvention we do not distinguish between logi
ally equivalent formulas sothat the above 
onjun
tion is �nite, 
f. Se
tion 3.1.)It follows immediately from the de�nition that a type is de�ned by its Hintikka-formula.Lemma 34 For every monadi
 n-type p ∈ Sn,kM (Σ), we have qh(ψp) = k and

A |= ψp(ā) iff tpk(ā/A) = p ,for every stru
ture A and ea
h tuple ā ∈ An.Finally, let us remark that quanti�er-free operations indu
e a map on the setof types.Lemma 35 For every quanti�er-free operation f : STR[Σ] → STR[Γ], thereexist mappings fnk : Sn,kM (Σ) → Sn,kM (Γ) su
h that
tpk(ā/f(A)) = fnk (tpk(ā/A)) ,

2 The reader may worry about the fa
t that S
n,k
M (Σ) is not re
ursive (only re
ursivelyenumerable). Instead of S

n,k
M (Σ) we 
ould use the larger set of all sets of formulasover the signature Σ. This will not a�e
t our proofs.
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for every stru
ture A ∈ STR[Σ] and ea
h n-tuple ā in f(A).
PROOF. For every formula ϕ(x̄) of quanti�er height at most k, we have

ϕ(x̄) ∈ tpk(ā/f(A)) iff A |= ϕf (ā) iff ϕf(x̄) ∈ tpk(ā/A) .Note that qh(ϕf) = qh(ϕ), by Proposition 20. Therefore, fnk 
an be de�nedby
fnk (p) := {ϕ | ϕf ∈ p } .

2

4.2 Monadi
 annotations
Sometimes it is useful to have all monadi
 information available via a singlerelation. In order to make the full monadi
 type a

essible we add new re-lations Tp, for every type p. After adding all these relations Tp the originalrelations are super�uous, and we 
an delete them.De�nition 36 Let A be a Σ-stru
ture, m > 0, and k ≥ 0. The monadi
annotations of A are the stru
tures

Mm
k (A) :=

〈
A, (Tp)p∈S≤m,k

M
(Σ)

〉

with the same domain as A where, for ea
h monadi
 n-type p ∈ S≤m,k
M (Σ), weadd the n-ary relation

Tp := { ā ∈ An | tpk(ā/A) = p }of all tuples of type p. We denote the relational signature of Mm
k (A) by

Σm,k
M := {Tp | p ∈ S≤m,k

M (Σ) } .For m = ar(Σ), we simply write Mk(A) and Σk
M.De�nition 37 Let A be a stru
ture. The rank of an n-tuple ā ∈ An is thesize of the set {a1, . . . , an}. An n-tuple is a loop if its rank is less than n.By A|m we denote the stru
ture obtained from A by removing from all relationsevery tuple of rank greater than m. Let STRm[Σ] be the set of all stru
tures

A ∈ STR[Σ] su
h that A|m = A.
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Remark 38 If m ≥ ar(Σ) then we 
an re
onstru
t A from Mm
k (A). For m <

ar(Σ), we 
an only re
over the atomi
 information about tuples of rank atmost m.Example 39 We 
onsider the following vertex labelled graph G ∈ STR[edg , P,Q]with domain {a, b, c, d} and labels P and Q.
a c

b d

Q

P P, QThe annotated stru
ture M2
0(G) is the 
omplete graph where ea
h vertex xhas a unique label tp0(x/G) and every edge (x, y) is labelled by tp0(xy/G).For instan
e,

tp0(a) = {¬Px, Qx, ¬edg(x, x), . . . } ,

tp0(b) = {Px, ¬Qx, ¬edg(x, x), . . . } ,

tp0(c) = {¬Px, ¬Qx, edg(x, x), . . . } ,

tp0(d) = {Px, Qx, ¬edg(x, x), . . . } ,

tp0(ab) = {edg(x, y), edg(y, x), x 6= y, . . . } ∪ tp0(a) ∪ tp0(b)[y/x] ,

tp0(ac) = {edg(x, y), ¬edg(y, x), x 6= y, . . . } ∪ tp0(a) ∪ tp0(c)[y/x] .Note that every type 
ontains a lot of redundant formulas. For the purpose of
larity we have omitted in the above list all formulas that are logi
al 
onse-quen
es of those shown. To improve readability we also have used the variables
x and y instead of x1 and x2. Finally, [y/x] denotes the substitution of y for x.The Hintikka-formula ψtp0(a)(x) of a is thus equivalent to

¬Px ∧Qx ∧ ¬edg(x, x) .

If we delete from M2
0(G) the vertex labels we obtain a symmetri
 labeled 2-stru
ture as de�ned by Ehrenfeu
ht et al. [25℄. Our results show that equationaland re
ognizable sets of graphs 
an be de�ned in an algebrai
 framework basedon vertex and edge labeled 
omplete graphs that are quite 
lose to 2-stru
tures.Monadi
 annotations are 
ompatible with MSO-transdu
tions. First of all, theoperation Mm

k is itself an MSO-transdu
tion.Lemma 40 Let Σ be a relational signature.(a) The mapping Mm
k : STR[Σ] → STR[Σm,k

M ] is a non
opying parameterless
MSO-transdu
tion of quanti�er height k.
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(b) There exists a quanti�er-free non
opying parameterless transdu
tion g :
STR[Σm,k

M ] → STRm[Σ] su
h that
g(Mm

k (A)) = A|m , for all A ∈ STR[Σ] .(
) The restri
tion of Mm
k to STRm[Σ] is inje
tive. Its inverse (Mm

k )−1 :
STR[Σm,k

M ] → STRm[Σ] is an MSO-transdu
tion.
PROOF. (a) We have already seen in Lemma 34 that one 
an de�ne therelation Tp by the formula ψp of quanti�er height k.(b) For n ≤ m, we 
an write an n-ary relation R ∈ Σ as

RA = { ā ∈ An | ā ∈ Tp for some p with Rx̄ ∈ p } .Hen
e, we obtain a de�nition s
heme for g by setting
ϑR(x1, . . . , xn) :=

∨
{Tpx1 . . . xn | p ∈ Sn,kM (Σ), Rx1 . . . xn ∈ p } .For n > m, we need some notation to write down ϑR. With an n-tuple ā ofrank r we 
an asso
iate a surje
tive fun
tion σ : [n] → [r] su
h that ai = ali� σ(i) = σ(l). Given su
h a fun
tion σ we set µi(σ) := min σ−1(i), for i ∈ [r],and

χσ(x1, . . . , xn) :=
∧

i∈[r]

∧

k,l∈σ−1(i)

xk = xl .

Then we 
an de�ne R by
ϑR(x1, . . . , xn) :=

∨
{Tpxµ1(σ) . . . xµr(σ) ∧ χσ(x1, . . . , xn) |

1 ≤ r ≤ m, σ : [n] → [r] surje
tive with
µ1(σ) < · · · < µr(σ) , and
p ∈ Sr,kM (Σ) with Rxσ(1) . . . xσ(n) ∈ p } .For example, if σ : [6] → [3] maps [6] to the sequen
e 1, 2, 2, 1, 2, 3 then theabove disjun
tion in
ludes the formula

Tpx1x2x6 ∧ x1 =x4 ∧ x2 =x3 ∧ x2 =x5 ∧ x3 =x5if and only if we have Rx1x2x2x1x2x3 ∈ p.Note that the above disjun
tions are �nite sin
e there are only �nitely manytypes in S≤m,k
M (Σ).(
) In light of (b) we only need to prove that the range of Mm

k is MSO-de�nable. Then we 
an restri
t the transdu
tion g of (b) appropriately. Let
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A ∈ STR[Σm,k
M ]. If A = Mm

k (B), for some B ∈ STRm[Σ], then we have
B = B|m = g(Mm

k (B)) = g(A) ,whi
h implies that A = Mm
k (g(A)). Conversely, if A = Mm

k (g(A)) then A isin the range of Mm
k . We 
an express that A = Mm

k (g(A)) by the formula
∧

p∈S≤m,k

M
(Σ)

∀x̄(Tpx̄↔ (ψp)
g(x̄))

where ψp is the Hintikka-formula for p and (ψp)
g its ba
kwards translationvia g. This formula 
an be used in the de�nition s
heme of the transdu
tion

(Mm
k )−1 : STR[Σm,k

M ] → STRm[Σ] to de�ne the domain. 2

Sin
e, by Corollary 28, QF -equational sets are 
losed under MSO-transdu
-tions it follows immediately that Mm
k preserves equationality.Corollary 41 A set C ⊆ STRm[Σ] is QF-equational if and only if Mm

k (C)is QF-equational.Ea
h non
opying parameterless MSO-transdu
tion of quanti�er height k fa
-tors through Mm
k .Lemma 42 Let g : STR[Σ] → STR[Γ] be a non
opying parameterless MSO-transdu
tion of quanti�er height k and m := ar(Γ). There exists a non
opyingparameterless quanti�er-free transdu
tion f : STR[Σm,k

M ] → STR[Γ] su
h that
g(A) = f

(
Mm

k (A)
)
, for all A ∈ STR[Σ] su
h that g(A) is de�ned .

PROOF. Given a quanti�er-free de�nition s
heme (ϕ, ψ, (ϑR)R∈Γ) of g, we
onstru
t a de�nition s
heme (true, ψ′, (ϑ′
R)R∈Γ) for f by setting

ψ′ :=
∨

{Tpx1 | p |= ψ } and ϑ′
R :=

∨
{Tpx̄ | p |= ϑR } .(|= is the log
ial entailment relation.) 2

4.3 Operations on annotated stru
tures
It turns out that the mapping tpk : STR[Σ] → S0,k

M (Σ) is QF-
omputable(
f. 6). One part of the proof is given by the following (spe
ial 
ase of a)theorem of Shelah [26℄ (see also the thorough study by Makowsky [27℄).
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Proposition 43 Let k,m, n ≥ 0. For every formula ϕ ∈ MSO[Σ∪Γ, {x1, . . . , xm+n}]of quanti�er height k, one 
an e�e
tively 
onstru
t �nite sequen
es of formulas
ψ1, . . . , ψl ∈ MSO[Σ, {x1, . . . , xm}]and ϑ1, . . . , ϑl ∈ MSO[Γ, {xm+1, . . . , xm+n}]of quanti�er height at most k su
h that, for all stru
tures A ∈ STR[Σ] and

B ∈ STR[Γ], and all tuples ā ∈ Am and b̄ ∈ Bn, we have
A ⊕ B |= ϕ(ā, b̄) iff A |= ψi(ā) and B |= ϑi(b̄) for some 1 ≤ i ≤ l .Corollary 44 For all numbers k, n ∈ N and every set I ⊆ [n], there exists abinary fun
tion ⊕k,I su
h that
tpk(c̄/A ⊕ B) = tpk(c̄|I / A) ⊕k,I tpk(c̄|[n]\I /B) ,for all stru
tures A and B and all tuples c̄ ∈ (A ∪B)n su
h that c̄|I ⊆ A and

c̄|[n]\I ⊆ B. (By c̄|I we denote the subtuple of all 
omponents ci with i ∈ I.)Lemma 45 The fun
tion tpk : STR[Σ] → S0,k
M (Σ) is QF-
omputable.

PROOF. It is su�
ient to �nd operations on S0,k
M (Σ) su
h that tpk : STR[Σ] →

S0,k
M (Σ) be
omes a QF -homomorphism. For the disjoint union, we 
an use theoperation ⊕k,∅ introdu
ed in Corollary 44. And, if g : STR[Σ] → STR[Γ] is aquanti�er-free operation then we have shown in Lemma 35 that

tpk(g(A)) = g0
k(tpk(A)) , for all stru
tures A .

2Lemma 46 For every m ∈ N, the mapping Mm
k : STR[Σ] → STR[Σm,k

M ] is a�nite-state heteromorphism based on tpk.
PROOF. We have to show that, for every operation f ∈ QF of arity 0 ≤ n ≤
2, there exist linear terms t[p1, . . . , pn] ∈ T (QF , {x1, . . . , xn}), for p1, . . . , pn ∈
S0,k

M (Σ), su
h that
Mm

k (f(A1, . . . ,An)) =

t[tpk(A1), . . . , tpk(An)]
(
Mm

k (A1), . . . ,M
m
k (An)

)
,for all stru
tures A1, . . . ,An ∈ STR[Σ].First, we 
onsider a quanti�er-free operation f : STR[Σ] → STR[Γ]. Re
allthe mappings f ik : Si,kM (Σ) → Si,kM (Γ) de�ned in Lemma 35. We have

Mm
k (f(A)) = g(Mm

k (A))
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where the de�nition s
heme of the quanti�er-free operation g 
onsists of theformulas
ψ(x) :=

∨
{Tqx | q ∈ S1,k

M (Σ), ψ′ ∈ q } ,

ϑTp
(x̄) :=

∨
{Tqx̄ | q ∈ (f ik)

−1(p) } , for every p ∈ Si,kM (Γ) , 1 ≤ i ≤ m,

where ψ′ is the formula of the de�nition s
heme for f that spe
i�es the domainof the output stru
ture. Note that in this 
ase the term t[tpk(A)] = g(x1) doesnot depend on tpk(A).Se
ond, we 
onsider the 
ase where f = ⊕. We de�ne quanti�er-free operations
h0, h1, and g depending on tpk(A) and tpk(B) su
h that

Mm
k (A ⊕ B) = g

(
h0(M

m
k (A)) ⊕ h1(M

m
k (B))

)
.

The operations h0 and h1 just add a new unary relation P /∈ Σ to their argu-ment su
h that P = ∅ for h0 whereas, for h1, P 
ontains every element. Thesefun
tions are only needed so we 
an tell the elements of the two stru
turesapart. The main work is done by g whi
h updates the type annotation. Re
allfrom Corollary 44, that there exists a binary operation ⊕k,I on S≤m,k
M (Σ), for

n ≤ m and I ⊆ [n], su
h that
tpk(c̄/A ⊕ B) = tpk(c̄|I/A) ⊕k,I tpk(c̄|[n]\I/B) ,

for all stru
tures A and B and all tuples c̄ ∈ (A ∪ B)n with c̄|I ⊆ A and
c̄|[n]\I ⊆ B. Hen
e, we 
an de�ne the de�nition s
heme of g by the formulas

ψ(x) := true ,and ϑTp
(x̄) :=

∨ { ∧

i∈I

¬Pxi ∧
∧

i/∈I

Pxi ∧ Tqx̄|I ∧ Trx̄|[n]\I

∣∣∣∣

I ⊆ [n], I /∈ {∅, [n]}, q ⊕k,I r = p
}

∨
∨ { ∧

i∈[n]

¬Pxi ∧ Tqx̄
∣∣∣∣ q ⊕k,[n] tpk(B) = p

}

∨
∨ { ∧

i∈[n]

Pxi ∧ Trx̄
∣∣∣∣ tpk(A) ⊕k,∅ r = p

}
,

for p ∈ Sn,kM (Σ) . (In the 
ase where A and B have di�erent signatures theargument is adapted in the obvious way.)Finally, we 
onsider the 
ase where f is a 
onstant. Then the value of f is asingleton stru
ture A. Consequently, its annotation Mm
k (A) is also a singletonstru
ture that 
an be denoted by a 
onstant. 2
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Re
all that we write Mk(A) for Mar(Σ)
k (A). As usual we set

Mk(C) := {Mk(A) | A ∈ C } ,for 
lasses C ⊆ STR[Σ].Theorem 47 A set C ⊆ STR[Σ] is QF-re
ognizable if and only if Mk(C) is
QF-re
ognizable.
PROOF. (⇐) By Lemma 46, Mk is a �nite-state derived homomorphismbased on tpk. We have seen in Lemma 40 that Mk is inje
tive. Therefore,we have C = (Mk)

−1(Mk(C)) and, by Lemma 14, it follows that C is QF-re
ognizable.
(⇒) Suppose that C ⊆ STR[Σ] isQF -re
ognizable. Let≈ be aQF-
ongruen
ewitnessing this fa
t.By Lemma 40 (
), the range D := Mk(STR[Σ]) ⊆ STR[Σk

M] of Mk is MSO-de�nable and, therefore, QF -re
ognizable by Proposition 26. We denote the
orresponding QF-
ongruen
e by ≃.To show that Mk(C) is QF-re
ognizable we de�ne
A ≡ B : iff A ≃ B and A ≈ B .Clearly, ≡ is a �nite QF -
ongruen
e.It remains to show that ≡ saturates Mk(C). Let A ∈ Mk(C), that is, A =

Mk(C), for some C ∈ C. If B ≡ A then A ≃ B implies that B = Mk(D),for some D ∈ STR[Σ]. We have seen in Lemma 40 (b) that there exists aleft-inverse g of Mk that is a quanti�er-free operation. Hen
e, A ≈ B implies
C = g(A) ≈ g(B) = D .Consequently, we have D ∈ C and B = Mk(D) ∈ Mk(C), as desired. 2

4.4 Annotating the leaves of a binary tree
We state some de�nitions and lemmas that we will use in Se
tion 6. Let F bea set of binary fun
tion symbols and C a set of 
onstants. As remarked at thebeginning of Se
tion 3 we 
an represented every term t ∈ T (F ∪ C) by a tree

S(t) :=
〈
N(t), suc1, suc2, rt, (laba)a∈F∪C

〉
∈ STR[∆(F ∪ C)] ,
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where N(t) is the set of nodes of t. Let ∆ := ∆(F ∪ C) be the 
orrespondingsignature. We denote the set of leaves by L(t) ⊆ N(t) and by ≤ the usuallinear left-right order on L(t).De�nition 48 Let t be a term, m > 0, and k ≥ 0. A tuple ā ∈ L(t)n isin
reasing if a1 < · · · < an. The restri
ted monadi
 annotations of S(t) arethe ∆m,k
M -stru
tures
Rm
k (t) :=

〈
L(t), (Tp)p∈S≤m,k

M
(∆)

〉

with domain L(t) where, for ea
h monadi
 n-type p ∈ S≤m,k
M (∆), we add the

n-ary relation
Tp :=

{
ā ∈ L(t)n

∣∣∣ ā in
reasing, tpk(ā/S(t)) = p
}
.Remark 49 There are formulae ϕ(x) and ψ(x, y) of quanti�er height qh(ϕ) =

1 and qh(ψ) = 5 su
h that ϕ de�nes the set of leaves and ψ de�nes theordering <:
ϕ(x) := ¬∃y[suc1(x, y) ∨ suc2(x, y)] ,

ψ(x, y) := ∃z[∃u1(suc1(z, u1) ∧ u1 � x) ∧ ∃u2(suc2(z, u2) ∧ u2 � y)] ,where the tree ordering � is de�ned by
x � y : iff ∀Z[y ∈ Z ∧ ∀u∀v[v ∈ Z ∧ (suc1(u, v) ∨ suc2(u, v))

→ u ∈ Z]

→ x ∈ Z] .(x � y 
an be read as �x is an an
estor of y�.) Hen
e, there exists a formula
ϑn(x1, . . . , xn) of quanti�er height 5 expressing that x̄ is an in
reasing tuple ofleaves. It follows that, for k ≥ 5, we 
an tell from tpk(ā/S(t)) whether ā issu
h a tuple. Consequently, we 
an obtain Rm

k (t) from Mm
k (S(t)) by

• deleting all nodes that are not leaves,
• removing all relations Tp su
h that p 6|= ϑn.For t ∈ T (F ∪ C) and u ∈ N(t), we denote by t/u ∈ T (F ∪ C) the subtermof t rooted at the node u. Let ∗ be a new 
onstant symbol. We denote by
t \ u ∈ T (F ∪C ∪{∗}) the term obtained from t by repla
ing the subterm t/uby the 
onstant ∗. Hen
e, the unique o

urren
e of ∗ in t/u is u.Lemma 50 Let k ∈ N.(a) For every f ∈ F and all numbers 0 ≤ m ≤ n, there exists a mapping

⊙f
m,n : Sm,kM (∆) × Sn−m,kM (∆) → Sn,kM (∆)
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su
h that we have
tpk

(
āb̄/S(f(t1, t2))

)
= tpk

(
ā/S(t1)

)
⊙f
m,n tpk

(
b̄/S(t2)

)
,for all t1, t2 ∈ T (F ∪C) and all in
reasing tuples ā ∈ L(t1)

m and b̄ ∈ L(t2)
n−m.(b) For every f ∈ F and all numbers 0 ≤ m ≤ n, there exists a mapping

⊙̂
f
m,n : S0,k

M (∆) × Sm,kM (∆) × Sn−m,kM (∆) → Sn,kM (∆)su
h that we have
tpk

(
āb̄/S(t)

)
= ⊙̂

f
m,n

(
tpk(S(t \ u)), tpk(ā/S(t1)), tpk(b̄/S(t2))

)
,for every t ∈ T (F ∪ C) su
h that t/u = f(t1, t2) and all in
reasing tuples

ā ∈ L(t1)
m and b̄ ∈ L(t2)

n−m.
PROOF. (a) We re
all from the example after Proposition 30 that the map-ping 〈S(t1),S(t2)〉 7→ S(f(t1, t2)) is a QF -derived operation. Consequently,the result follows from Lemma 35 and Corollary 44.(b) The 
laim follows as in (a) sin
e we have

S(t) =
(
ren∗→f ◦ fgtrt1 ◦ fgtrt2 ◦ add∗,rt1,suc1 ◦ add∗,rt2,suc2

)

(
S(t \ u) ⊕ renrt→rt1(S(t1)) ⊕ renrt→rt2(S(t2))

)

2

5 Inverse MSO-transdu
tions preserve re
ognizability
In this se
tion we establish the following theorem whi
h is one of the mainresults of the arti
le.Theorem 51 If L ∈ Rec(STR)Γ and τ : STR[Σ] → STR[Γ] is an MSO-trans-du
tion then τ−1(L) ∈ Rec(STR)Σ.The spe
ial 
ase where L is CMSO-de�nable (CMSO is the extension ofmonadi
 se
ond-order logi
 by 
ounting predi
ates whi
h 
ount the 
ardinal-ity of a set modulo a �xed integer) follows from existing results. It is knownthat every CMSO-de�nable set is re
ognizable [7℄ and the inverse image ofa CMSO-de�nable set under an MSO-transdu
tion is CMSO-de�nable. The
ase where L is a re
ognizable set of (simple) graphs of bounded tree width

36



is a 
onsequen
e of a result by Lapoire [28℄ stating that su
h sets are CMSO-de�nable if we allow quanti�
ation over sets of edges (and not only on sets ofverti
es). It follows that L is also CMSO-de�nable by a result of [17℄ where itis shown that, in the 
ase of �nite graphs of bounded tree width, quanti�ersover sets of edges 
an be eliminated.On the other hand, in [8℄ it is shown that there are un
ountably many VR-re
ognizable sets of graphs. Hen
e, un
ountably many of them are not de�n-able in monadi
-se
ond order logi
 or in its extensions like CMSO, be
ausethese languages are 
ountable. This shows that Theorem 51 
annot be provedby redu
tion to the spe
ial 
ase of CMSO-de�nable sets.The proof is based on the fa
t that a k-
opying MSO-transdu
tion τ withparameters W1, . . . ,Wn 
an be written as τ = ̺ ◦ copyk ◦ γ where
• ̺ is a non
opying parameterless transdu
tion,
• γ is a non
opying transdu
tion guessing W1, . . . ,Wn, and
• copyk is a k-
opying parameterless transdu
tion 
onstru
ting the k-fold dis-joint union of its argument, with some additional annotations to tell apartthe di�erent 
opies.We will prove the theorem separately for these three spe
ial 
ases.
5.1 Transdu
tions that repli
ate stru
tures
The simplest MSO-transdu
tion we 
onsider is a parameterless k-
opyingtransdu
tion denoted by copyk. It transforms a stru
ture A into the disjointunion of k 
opies of A, denoted by A1, . . . ,Ak, expanded by
• new binary relations Yi that en
ode the 
anoni
al isomorphisms A1 → Ai,
• new unary relations Pi that �mark� the element of the i-th 
opy Ai.De�nition 52 Let Υk := {Pi | 1 ≤ i ≤ k } ∪ {Yi | 1 < i ≤ k }. We assumethat Υk is disjoint from every other relational signature Σ,Γ,∆, . . . that wewill 
onsider. For ea
h relational signature Σ, we de�ne an operation

copyk : STR[Σ] → STR[Σ ∪ Υk]that maps a stru
ture A = 〈A, (RA)R∈Σ〉 to the stru
ture C = copyk(A) withdomain C = A× [k] and relations
RC :=

{
((a1, i), . . . , (aar(R), i))

∣∣∣ (a1, . . . , aar(R)) ∈ RA , i ∈ [k]
}
,

(Pi)C := A× {i} ,

(Yi)C :=
{

((a, 1), (a, i))
∣∣∣ a ∈ A

}
.
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It is 
lear that copyk is a parameterless k-
opying MSO-transdu
tion.Lemma 53 For every parameterless k-
opying MSO-transdu
tion τ : STR[Σ] →
STR[Γ], there exists a parameterless non
opying MSO-transdu
tion ̺ : STR[Σ∪
Υk] → STR[Γ] su
h that τ = ̺◦copyk and ̺(B) is unde�ned if the argument Bis not of the form copyk(A), for some A.
PROOF. Note that a stru
ture C ∈ STR[Σ ∪ Υk] of the form copyk(A)satis�es the following 
onditions:(1) The sets (P1)C, . . . , (Pk)C form a partition of the domain.(2) For every R ∈ Σ and all tuples ā ∈ RC, there is some i with ā ⊆ (Pi)C.(3) Ea
h relation (Yi)C de�nes an isomorphism between fgtP1

(C[P1]) and
fgtPi

(C[Pi]).Conversely, every stru
ture C ∈ STR[Σ ∪ Υk] satisfying these 
onditions isisomorphi
 to copyk(A) where A is the Σ-redu
t of C[P1]. The 
onjun
tion of(1)�(3) 
an be expressed by a �rst-order formula χ.We denote the relativization of a formula α to the set Pi by α(Pi). Supposethat τ is de�ned by
D = (ϕ, ψ1, . . . , ψk, (ϑw)w∈Γ⊠k) .A de�nition s
heme E = (ϕ′, ψ′, (ϑ′

R)R∈Γ) for ̺ 
an be de�ned as follows. Theformula ϕ′ has to express in C that there is some A with C = copyk(A) and
A |= ϕ. We 
an set

ϕ′ := χ ∧ ϕ(P1) .The formula ψ′ should de�ne the set of all elements (a, i) ∈ C su
h that
A |= ψi(a). This 
an be done by de�ning

ψ′(x) :=
k∧

i=1

(Pix→ ψ
(Pi)
i (x)) .

Finally, we must 
onstru
t formulas ϑ′
R, for R ∈ Γ. We use the relations Yi toobtain a 
opy of a given tuple that lies in the �rst 
opy P1. We have

((a1, i1), . . . , (an, in)) ∈ RD̂(A) iff A |= ϑR,i1...in(a1, . . . , an) .For �xed i1, . . . , in, we 
an express this by the formula
βi1...in(x̄) := ∃y1 · · · ∃yn

( n∧

k=1

Yikykxk ∧ ϑ
(P1)
R,i1...in

(ȳ)
)
.
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(If ik = 1 then instead of Y1ykxk we use the formula yk = xk∧P1xk.) Therefore,we 
an set
ϑ′
R(x̄) :=

∧

i1,...,in

( n∧

k=1

Pikxk → βi1...in(x̄)
)
.

2

Lemma 54 (a) For all stru
tures A,B ∈ STR[Σ] and every k, we have
copyk(A ⊕ B) = copyk(A) ⊕ copyk(B) .

(b) For every k and ea
h quanti�er-free operation f : STR[Σ] → STR[Γ] thereis a quanti�er-free operation f ′ : STR[Σ ∪ Υk] → STR[Γ ∪ Υk] su
h that wehave
copyk(f(A)) = f ′(copyk(A)) , for every A ∈ STR[Σ] .

PROOF. (a) is 
lear. (b) Let D = (true, ψ, (ϑR)R∈Γ) be the de�nition s
hemeof f . We 
an de�ne a de�nition s
heme
D′ =

(
true, ψ′, (ϑ′

R)R∈Γ, (ϑ
′
Pi

)1≤i≤k, (ϑ
′
Yi

)1<i≤k

)

of f ′ by
ψ′(x) := ψ(P1)(x) ∨ · · · ∨ ψ(Pk)(x) ,

ϑ′
R(x̄) := (ϑR)(P1)(x̄) ∨ · · · ∨ (ϑR)(Pk)(x̄) ,

ϑ′
Pi

(x) := Pix ,

ϑ′
Yi

(x, y) := Yixy ,where ϕ(Pi)(x̄) denotes the relativization of ϕ(x̄) to Pi written in su
h a waythat the formula ϕ(Pi)(x̄) implies Pixl, for all l. 2

Proposition 55 Theorem 51 holds for τ = copyk.
PROOF. By Lemma 54, the mapping copyk is a derived heteromorphism forthe subsignature of QF obtained by removing all 
onstants. Therefore, theresult follows from Lemma 14 and the remark that re
ognizability does notdepend on the 
onstants in the signature. 2
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5.2 Parameterless non
opying transdu
tions
Proposition 56 Theorem 51 holds for parameterless non
opying MSO-trans-du
tions.
PROOF. Let τ : STR[Σ] → STR[Γ] be a non
opying parameterless MSO-transdu
tion of quanti�er height k with de�nition s
heme (ϕ, ψ, (ϑR)R∈Γ). Sup-pose that L ∈ Rec(STR)Γ and let ≈ be a 
ongruen
e witnessing the re
ogniz-ability of L. Let m := ar(Γ). By Lemma 42, there is a quanti�er-free operation
f : STR[Σm,k

M ] → STR[Γ] su
h that, if τ(A) is de�ned then τ(A) = f(Mm
k (A)).Consequently, we have

τ−1(L) = {A ∈ STR[Σ] | A |= ϕ } ∩ (Mm
k )−1(f−1(L)) .Clearly, ≈ also witnesses the re
ognizability of f−1(L). By Lemmas 46 and 14,it follows that (Mm

k )−1(f−1(L)) is also re
ognizable. Furthermore, by Proposi-tion 26 (a) the set {A ∈ STR[Σ] | A |= ϕ } is re
ognizable. Sin
e re
ognizablesets are 
losed under interse
tion (
f. the remark after De�nition 2) the resultfollows. 2

5.3 Handling parameters
Let Πm := {P1, . . . , Pm} be a set of unary relation symbols disjoint from theother signatures Σ,Γ,Υ et
. that we will 
onsider. Let fgtΠm

: STR[Σ∪Πm] →
STR[Σ] be the quanti�er-free transdu
tion that deletes all relations in Πm. Itsinverse is a non
opying MSO-transdu
tion withm parameters that spe
ify thevalues of the relations P1, . . . , Pm.Lemma 57 Every MSO-transdu
tion τ : STR[Σ] → STR[Γ] with m param-eters 
an be fa
torized as ̺ ◦ fgt−1

Πm
where ̺ : STR[Σ ∪ Πm] → STR[Γ] is aparameterless MSO-transdu
tion.

PROOF. When we apply fgt−1
Πm

to a stru
ture A we obtain all possible expan-sions of A by m unary relations P1, . . . , Pm ⊆ A. The transdu
tion ̺ 
an simu-late τ by repla
ing the parameters by these relations. If B = (A, P̄ ) ∈ fgt−1
Πm

(A)is a stru
ture su
h that P̄ does not satisfy the �rst formula of the de�nitions
heme of τ then ̺(B) is unde�ned. 2

Proposition 58 If L ∈ Rec(STR)Σ∪Πm
then fgtΠm

(L) ∈ Rec(STR)Σ.
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PROOF. The following obvious fa
ts will be used.
(1) For all stru
tures A0, A1, and C and every m, we have

A0 ⊕ A1 = fgtΠm
(C)if and only if there exist stru
tures B0 and B1 su
h that

C = B0 ⊕ B1 , A0 = fgtΠm
(B0) , and A1 = fgtΠm

(B1) .

(2) For every quanti�er-free operation f : STR[Γ] → STR[∆] and ea
h m,there exists a quanti�er-free operation g : STR[Γ∪Πm] → STR[∆∪Πm] su
hthat, for all stru
tures A and B, we have
f(A) = fgtΠm

(B)if and only if there exists a stru
ture C with
B = g(C) and A = fgtΠm

(C) .

We apply a te
hnique whi
h was used in [29℄ to prove that 
ertain operationson hypergraphs preserve re
ognizability. We �x m and we will write Π insteadof Πm. Let ≈ be a 
ongruen
e witnessing the re
ognizability of a set L ∈
Rec(STR)Σ∪Π. In order to show that fgtΠ(L) is re
ognizable we de�ne anequivalen
e relation on ea
h set STR[∆] by

A ≡ B : iff
{

[C]
∣∣∣ C ∈ STR[∆ ∪ Π], fgtΠ(C) = A

}

=
{

[C]
∣∣∣ C ∈ STR[∆ ∪ Π], fgtΠ(C) = B

}
,where [C] denotes the equivalen
e 
lass of C w.r.t. ≈.Sin
e ≈ is an equivalen
e relation with �nitely many 
lasses of ea
h sort sois ≡. Furthermore, ≡ saturates fgtΠ(L). If A = fgtΠ(C) with C ∈ L and B ≡ Athen, by de�nition, there is some stru
ture D ≈ C su
h that B = fgtΠ(D).Hen
e D ∈ L and B ∈ fgtΠ(L).It remains to verify that ≡ is a 
ongruen
e. Suppose that A0 ≡ B0 and

A1 ≡ B1. We want to prove that A0 ⊕ A1 ≡ B0 ⊕ B1.By symmetry, it is su�
ient, for ea
h C ∈ fgt−1
Π (A0 ⊕ A1), to 
onstru
t astru
ture D ∈ fgt−1

Π (B0 ⊕ B1) su
h that D ≈ C. By (1), there are stru
tures
C0 ∈ fgt−1

Π (A0) and C1 ∈ fgt−1
Π (A1) su
h that C = C0 ⊕ C1. By de�nitionof ≡, we 
an �nd stru
tures D0 ≈ C0 and D1 ≈ C1 su
h that B0 = fgtΠ(D0)and B1 = fgtΠ(D1). Then fgtΠ(D0 ⊕ D1) = B0 ⊕ B1 and, sin
e ≈ is a QF-
ongruen
e, we have C0 ⊕ C1 ≈ D0 ⊕ D1, as desired.
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Let f : STR[Γ] → STR[∆] be a quanti�er-free operation and suppose that
A ≡ B. We want to prove that f(A) ≡ f(B). Let C ∈ fgt−1

Π (f(A)). We haveto �nd a stru
ture D ∈ fgt−1
Π (f(B)) su
h that D ≈ C. By (2), there exists atransdu
tion g and some stru
ture C′ su
h that C = g(C′) and A = fgtΠ(C′).By de�nition of ≡, we 
an �nd some stru
ture D′ ≈ C′ with B = fgtΠ(D′).Hen
e D := g(D′) ≈ g(C′) = C and fgtΠ(D) = f(B). By symmetry, it followsthat f(A) ≡ f(B). 2

Proof of Theorem 51 By Lemmas 53 and 57, it follows that every k-
opying
MSO-transdu
tion τ : STR[Σ] → STR[Γ] with m parameters 
an be writtenas

τ = ̺ ◦ copyk ◦ fgt−1
Πmwhere ̺ : STR[Σ ∪ Πm ∪ Υk] → STR[Γ] is a parameterless non
opying MSO-transdu
tion and copyk : STR[Σ ∪ Πm] → STR[Σ ∪ Πm ∪ Υk].Let L ∈ Rec(STR)Γ. Then

τ−1(L) = fgtΠm
(copy−1

k (̺−1(L))) .By Proposition 56, ̺−1(L) is re
ognizable. Thus, copy−1
k (̺−1(L)) is re
ogniz-able by Proposition 55. Finally, τ−1(L) ∈ Rec(STR)Σ, by Proposition 58. 2

6 A small signature for the algebra of relational stru
tures
Our basi
 signature for de�ning re
ognizable and equational sets of stru
tures(or hypergraphs) is QF . To show that this is a natural and robust 
hoi
e wepresent several other signatures that all turn out to be equivalent to QF . Wehave already seen in Lemma 14 that the larger signaturesQFder

α are equivalentto QF and in Se
tion 7 we will introdu
e more interesting examples of largersignatures. Before doing so let us try the opposite. In this se
tion we 
onsidera proper subsignature that is equivalent to QF .Let us �rst state some general fa
ts that will serve as guidelines for provingour results. We 
laim that, in order to prove that a subsignature G ⊆ QFder
αis equivalent to QF , it su�
es to prove the following two properties:(p1) If a subset L ⊆ STR[Σ] is the image τ(K) of a regular set K of terms(over any signature) under an MSO-transdu
tion τ , then there exists are
ognizable subset K ′ ⊆ T (G) su
h that L = valSTR(K ′).(p2) If a subset L ⊆ STR[Σ] is G-re
ognizable then it is QF -re
ognizable.
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Proposition 59 Let G ⊆ QFder
α .(a) If G satis�es (p1) then Equat(G) = Equat(QF).(b) If G satis�es (p2) then Rec(G) = Rec(QF).In parti
ular, any signature G ⊆ QFder

α satisfying (p1) and (p2) is equivalentto QF . Furthermore, all signatures H with G ⊆ Hder
β ⊆ QFder

α are equivalentto QF .
PROOF. Sin
e G ⊆ QFder

α and QF is equivalent to QFder
α we have

Rec(QF) = Rec(QFder
α ) ⊆ Rec(G)and Equat(G) ⊆ Equat(QFder

α ) = Equat(QF) .Therefore, if G satis�es (p2) then we have Rec(QF) = Rec(G).To prove (a), suppose that L ∈ Equat(QF). By Proposition 27 (iii), L is theimage of a regular set of terms under an MSO-transdu
tion. Hen
e, (p1) andProposition 4 imply that L ∈ Equat(G).Finally, suppose that G ⊆ Hder
β ⊆ QFder

α . Then we have
Equat(QF) = Equat(G) ⊆ Equat(Hder

β ) ⊆ Equat(QFder
α ) = Equat(QF)and Rec(QF) = Rec(QFder

α ) ⊆ Rec(Hder
β ) ⊆ Rec(G) = Rec(QF) .Sin
e, by Lemma 14, H is equivalent to Hder
β , the result follows. 2

6.1 Stru
tures of small rank with relations of large arity
We de�ne a subsignature QF0 of QF by retaining from the unary operationsparti
ular operations that forget some relation (delete the 
orresponding hy-peredges), rename some relation (relabel the 
orresponding hyperedges), andbuild new relations from pairs of given relations of smaller arity (
reate newhyperedges by 
on
atenation of existing ones).De�nition 60 The unary operations of QF0 are the following ones:(1) The forget operation fgtΛ : STR[Σ] → STR[Σ \ Λ] deletes all R-hyper-edges, for R ∈ Λ ⊆ Σ.(2) For an arity-preserving map h : Σ → Γ between signatures, we havethe relabelling relabh : STR[Σ] → STR[Γ] that repla
es every hyperedgelabel R by h(R).
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(3) Let R,S, T ∈ Σ, k := ar(R), l := ar(S), m := ar(T ), and suppose that
h : [m] → [k + l] is surje
tive. The hyperedge addition addR,S,T,h has ade�ning formula ϑT (x̄) of the form
T x̄ ∨

(
Rxi1 . . . xik ∧ Sxik+1

. . . xik+l
∧

∧
{ xj = xj′ | h(j) = h(j′) }

)

where ij is the smallest element of h−1(j).Remark 61 This operation adds a T -hyperedge of rank m for ea
h pairof an R-hyperedge and an S-hyperedge (whi
h may have loops and 
om-mon verti
es). The resulting T -hyperedge may be a loop.We denote by QF0 the signature 
onsisting of the above operations, the disjointunion, and all 
onstants for singleton stru
tures. By QF0[Σ] we denote thesubsignature of all those operations that refer only to relations in Σ.In the proposition below we will make use of the following normal form of
MSO-transdu
tions.Lemma 62 Given a �nite signature F , a regular set of terms K ⊆ T (F ),and an MSO-transdu
tion τ : STR[∆(F )] → STR[Σ], we 
an 
onstru
t a�nite signature F ′, a regular set K ′ ⊆ T (F ′), and an MSO-transdu
tion τ ′ :
STR[∆(F ′)] → STR[Σ] su
h that τ(K) = τ ′(K ′) and F ′, K ′, and τ ′ have thefollowing additional properties:(1) F ′ 
ontains only 
onstants and binary fun
tion symbols.(2) τ ′ is non
opying and parameterless.(3) For every t′ ∈ K ′, the relational stru
ture τ ′(t′) is de�ned and its domain
onsists only of leaves of t′.
PROOF. In three steps, we transform F, τ,K into F ′, τ ′,K ′ with the aboveproperties. The same 
onstru
tion is used in the proof of Theorem 4.6 of [7℄.Hen
e we only sket
h the di�erent steps.Step 1: Eliminating parameters. Suppose that the transdu
tion τ uses m pa-rameters X1, . . . , Xm. We repla
e F by the signature F ′ := F ×{0, 1}m wherethe symbol (f, b̄) ∈ F ′ has the same arity as f . Every term t′ ∈ T (F ′) en-
odes a pair (t, 〈P1, . . . , Pm〉) where t ∈ T (F ) is the proje
tion of t′ to the�rst 
omponent and the set Pi 
onsists of those nodes of t′ that are labelledby a pair (f, b̄) with bi = 1. Thus, every term in T (F ′) 
ontains an F -termand the values of the parameters X1, . . . , Xm. The set K ′

0 of all those termswhi
h en
ode a pair (t, P̄ ) for whi
h τ(t, P̄ ) is de�ned is regular. This is astandard 
onstru
tion, based on the result by Doner, That
her, and Wrightstating that a set of terms is regular if and only if the 
orresponding set ofstru
tures en
oding them is MSO-de�nable (see Chapter 3 of [19℄). It follows
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that the subset K ′ ⊆ K ′
0 of all terms en
oding pairs (t, P̄ ) with t ∈ K is alsoregular.Step 2: Making τ non
opying and satisfy 
ondition (3). By the �rst step, we
an assume that τ is parameterless. Suppose that it is k-
opying for k ≥ 1.We in
rease the arity of ea
h symbol in F by k (in
luding 
onstants) and weadd a new 
onstant, say, ∗. Let F ′ be the resulting signature. We de�ne atransformation T (F ) → T (F ′) : t 7→ t∗ of terms by

c∗ := c(∗, . . . , ∗) ,

f∗(t1, . . . , tn) := f(t∗1, . . . , t
∗
n, ∗, . . . , ∗) ,where we add k times ∗ in ea
h 
ase. Sin
e ∗ is a tree transdu
tion it follows byLemma 1 that the imageK∗ ⊆ T (F ′) ofK is regular. The nodes 
orrespondingto the new 
onstants ∗ are all leaves, and they o�er enough spa
e to de�nethe domain of the output stru
ture, without the need to use several 
opiesof the term. Hen
e, we 
an 
onstru
t a MSO-transdu
tion τ ′ that is (stillparameterless and) non
opying su
h that τ(t) = τ ′(t∗), for ea
h t ∈ K.Note that even if τ is non
opying we have to perform this transformation inorder to satisfy the se
ond part of 
ondition (3).Step 3: Removing non-binary fun
tion symbols. By the �rst two steps, we
an assume that 
onditions (2) and (3) hold. We 
an satisfy 
ondition (1) asfollows. Let F ′ be the signature obtained from F by adding a new 
onstant ⊥and 
hanging the arity of all fun
tions symbols to 2. The operation T (F ) →

T (F ′) : t→ t⊥ with
c⊥ := c ,

f(t)⊥ := f(t⊥,⊥) ,

f(t1, t2)
⊥ := f(t⊥1 , t

⊥
2 ) ,

f(t1, . . . , tk)
⊥ := f(t⊥1 , f(t⊥2 , (. . . f(t⊥k−1, t

⊥
k ) . . . ))) , for k ≥ 3 ,

preserves regularity. In the same way as above it follows that the image of Kunder ⊥ is regular. 2

The following result strengthens the impli
ation (iii) ⇒ (ii) of Proposition 27.Re
all the notion of rank introdu
ed in De�nition 37.Proposition 63 Let K be a regular set of terms and τ an MSO-transdu
tionwith τ(K) ⊆ STR[Σ]. There exists a �nite set of relations Γ with ar(Γ) ≤
ar(Σ)−1 and a regular set M ⊆ T (QF0[Σ∪Γ]) su
h that τ(K) = valSTR(M).
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PROOF. Suppose that K ⊆ T (F ∪ C), ∆ := ∆(F ∪ C), and τ : STR[∆] →
STR[Σ]. We assume thatK, τ , and F∪C satisfy 
onditions (1)�(3) of Lemma 62where C is a set of 
onstants and F a set of binary fun
tion symbols. Fur-thermore, we may assume that every stru
ture in τ(K) 
ontains at least 2 el-ements. Let k be the quanti�er height of τ and set n := ar(Σ). Our aim isto 
onstru
t a �nite relational signature Γ with ar(Γ) = n − 1 and a regularsubset M ⊆ T (QF0[Σ ∪ Γ]) su
h that τ(K) = valSTR(M).1. Overview of the proof. The signature Γ will 
onsist of three disjoint 
opiesof ∆n−1,k

M . We de�ne a fun
tion κ : K → T (QF0[Σ ∪ Γ]der) su
h that
valSTR(κ(t)) = τ(t) , for all t ∈ K .The mapping κ repla
es every binary fun
tion symbol f at a node u of t bya binary derived operation of the form µu(x1 ⊕ x2) where µu is a 
ompositionof unary QF0[Γ]-operations. Similarly, it repla
es a 
onstant c at a leaf u bya 
onstant γu ∈ QF0[Γ]. Let us denote the set of these terms µu and γu by Π.The de�nition of µu and γu will depend only on f , c, and tpk+3(u/S(t)). Thisimplies that Π is �nite and, by Lemma 34, there exist MSO-formulas ϕα(x),for α ∈ Π, su
h that, for every node u of t,
µu or γu is equal to α iff S(t) |= ϕα(u) .Sin
e the required information is expressible in MSO it follows that the trans-formation κ 
an be performed by a tree transdu
er. Using the fa
t that K isregular we 
on
lude that κ(K) is a regular subset of T (QF0[Γ]der). Further-more, we have
τ(K) = valSTR(κ(K)) = valSTR(M)where M is obtained from κ(K) by repla
ing ea
h derived operation by itsde�nition. By Lemma 14, it follows that M is a regular subset of T (QF0[Γ]).This 
ompletes the proof.2. De�nition of κ. It remains to de�ne κ. Let Γ := Γ0 ∪ Γ1 ∪ Γ2 where
Γ0 := ∆n−1,k

M and Γi := {T ip | Tp ∈ Γ0 } , for i ∈ {1, 2} .Let hi : Γ0 → Γi be the 
anoni
al bije
tions Tp 7→ T ip. Note that these map-pings preserve arities. Re
all that t/u denotes the subterm of t rooted at uand that Rm
k denotes the restri
ted monadi
 annotation (
f. De�nition 48).The 
onstru
tion of κ will ensure that, for every t ∈ K,(1) for every node u of t, we have

fgtΓ
(
valSTR(κ(t/u))

)
= τ(t)[L(t) ∩D] ,where D denotes the domain of τ(t),
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(2) and, for every node u of t that is not the root,
fgtΣ

(
valSTR(κ(t)/u)

)
= relabhi(Rn−1

k (t/u)) ,where
i :=





1 if u is the left su

essor of its parent,
2 if u is the right su

essor of its parent.Condition (2) spe
i�es the values of the auxiliary relations in Γ at inner nodes uof t. We use the distin
t 
opies Γ1 and Γ2 of the signature to distinguishbetween left and right su

essors.Note that κ(t) is obtained from t by repla
ing 
onstants by 
onstants andfun
tion symbols by fun
tion symbols of the same arity. Hen
e, κ(t) and thave the same underlying trees and the same set of nodes.3. De�nition of γu. It is straightforward to de�ne the 
onstants γu su
h that
ondition (2) is satis�ed. If u does not belong to the domain of the stru
-ture τ(t) then we set γu := ∅, where ∅ is a new 
onstant denoting the emptystru
ture (whi
h we also denote by ∅ without risk of ambiguity). This 
onstantis not in the signature QF0[Σ ∪ Γ] and we will eliminate it at the very laststage of our proof.Otherwise, let γu be the 
onstant that denotes the stru
ture

τ(t)[u] ∪ relabhi(Rn−1
k (t/u))where i := 1 if u is a left su

essor and i := 2 if u is a right su

essor. Thisstru
ture 
onsists of the single element u, the in
ident Σ-hyperedges of rank 1of τ(t) (they are de�ned by τ(t)[u]) together with the Γ-hyperedge of arity 1that de�nes the (i-
opy of the) monadi
 1-type of u in S(t/u) (this is de�nedby relabhi(Rn−1

k (t/u))). It is the unique stru
ture A ∈ STR[Σ ∪ Γ] su
h that
fgtΓ(A) = τ(t)[u] and fgtΣ(A) = relabhi(Rn−1

k (t/u)) .Note that the stru
ture S(t/u) 
onsists of a single node labelled by some
onstant c. Hen
e, tpk(u/S(t/u)) 
an be 
omputed from c. The Σ-hyperedgesof rank 1 are determined by tpk(u/S(t)).4. De�nition of µu. To de�ne the mappings µu, we re
all that, by Lemma 50,there are fun
tions ⊙f
m,n and ⊙̂

f
m,n su
h that

• for all t1, t2 ∈ T (F ∪C) and all in
reasing tuples ā ∈ L(t1)
m and b̄ ∈ L(t2)

n,we have
(∗) tpk

(
āb̄/S(f(t1, t2))

)
= tpk

(
ā/S(t1)

)
⊙f
m,n tpk

(
b̄/S(t2)

)
,
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• for every t ∈ T (F ∪ C) su
h that t/u = f(t1, t2) and all in
reasing tuples
ā ∈ L(t1)

m and b̄ ∈ L(t2)
n, we have

(∗∗) tpk
(
āb̄/S(t)

)
= ⊙̂

f
m,n

(
tpk(S(t \ u)), tpk(ā/S(t1)), tpk(b̄/S(t2))

)
.In order to satisfy 
ondition (2) we de�ne the operation µu su
h that, for allterms t1 and t2,

relabhi

(
Rn−1
k (f(t1, t2))

)
= µu

(
relabh1(Rn−1

k (t1)) ⊕ relabh2(Rn−1
k (t2))

)
,where i is either 1 or 2 depending on whether u is a left su

essor or a rightsu

essor. (The 
ase where u is the root will be treated separately below.)Let ā ∈ L(t1)

m1 and b̄ ∈ L(t2)
m2 be in
reasing withm1,m2 > 0 andm1+m2 ≤

n − 1. The operation µu has to 
ompute the type of āb̄ in S(f(t1, t2)) fromthe types tpk(ā/S(t1)) and tpk(b̄/S(t2)). This 
an be done with the help ofthe operation ⊙f
m1,m2

. Let ADDΓ be the 
omposition (in any order) of theoperations addT 1
p ,T

2
q ,Tr

where p ∈ Sm1,k
M (∆), q ∈ Sm2,k

M (∆) and r := p⊙f
m1,m2

q.Furthermore, µu also has to update the type of tuples ā ∈ L(tj)
m, j ∈ {1, 2}.Note that

tpk(ā/S(f(t1, t2))) = tpk(ā/S(t1)) ⊙
f
m,0 tpk(S(t2)) , for ā ∈ L(t1)

m,

tpk(ā/S(f(t1, t2))) = tpk(S(t1)) ⊙
f
0,m tpk(ā/S(t2)) , for ā ∈ L(t2)

m.Let g : Γ1 ∪ Γ2 → Γ be the mapping with
g(T 1

p ) := Tq with q := p⊙f
m,0 tpk(S(t2)) ,

g(T 2
p ) := Tq with q := tpk(S(t1)) ⊙

f
0,m p .We 
an de�ne

µu := relabhi ◦ relabg ◦ ADDΓ ◦ ADDΣ,where the term ADDΣ is de�ned below to satisfy 
ondition (1), and i is either
1 or 2 depending on whether u is a left su

essor or a right su

essor.Note that ADDΓ depends on f but not on tpk(u/S(t)). The mapping g de-pends on tpk(S(t1)) and tpk(S(t2)) and, hen
e, on tpk+3(u/S(t)). (Sin
e thetree ordering relation is expressed by an MSO-formula of quanti�er height 3(see Se
tion 4.4) it follows that tpk(S(t/u)) 
an be 
omputed from tpk+3(u/S(t))by relativization to the formula de�ning the nodes below u in t.)5. Satisfying 
ondition (1). The in
omplete de�nitions of γu and µu givenabove result in a stru
ture κ(t) ∈ STR[Γ ∪ Σ] with Γ-hyperedges of arity andrank at most n − 1 where the only Σ-hyperedges are those of τ(t) ∈ STR[Σ]
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that have rank 1. In order to 
omplete the de�nition of µu we have to de�nethe term ADDΣ whi
h adds the missing Σ-hyperedges.Suppose that ā ∈ L(t)r has rank s ≤ n. There exists a unique surje
tive map
σ : [r] → [s] and a unique in
reasing s-tuple b̄ su
h that ai = bσ(i), for all
1 ≤ i ≤ r. We will denote this tuple by āσ := b̄.Let ϑU(x1, . . . , xr) be the formula of the de�nition s
heme of τ that de�nesthe relation U ∈ Σ and set ϑσU(x1, . . . , xs) := ϑU(xσ(1), . . . , xσ(r)). We have

ā ∈ Uτ(t) iff S(t) |= ϑU(ā)

iff S(t) |= ϑσU(āσ)

iff tpk(ā
σ/S(t)) |= ϑσU .

Suppose that t/u = f(t1, t2). The operation ADDΣ will 
reate all Σ-hyper-edges ā with ā ∩ L(t1) 6= ∅ and ā ∩ L(t2) 6= ∅. Note that, for su
h a tuple ā,we have āσ = c̄d̄ where c̄ is an in
reasing tuple in L(t1) and d̄ is an in
reasingtuple in L(t2).For ea
h U ∈ Σ and σ, we have to 
hoose pairs p, q of types su
h that theoperation addT 1
p ,T

2
q ,U,σ adds the right tuples to U . Hen
e, the situation is sim-ilar to that of ADDΓ with the ex
eption that we are interested in the type

tpk(ā
σ/S(t)) and not in tpk(ā

σ/S(t/u)). We 
an 
ompute this type with thehelp of the operation ⊙̂
f
m1,m2

. Thus, we de�ne ADDΣ as the 
omposition (inany order) of all operations addT 1
p ,T

2
q ,U,σ where p ∈ Sm1,k

M (∆), q ∈ Sm2,k
M (∆),

m1,m2 > 0, m1 +m2 ≤ n− 1, σ : [ar(U)] → [m1 +m2] is surje
tive, and
⊙̂
f
m1,m2

(
tpk(S(t \ u)), p, q

)
|= ϑσU .

Note that the de�nition of ADDΣ depends on tpk(S(t \ u)). Sin
e the treeordering 
an be de�ned by an MSO-formula of quanti�er height 3 (see Se
-tion 4.4) it follows that tpk(S(t \ u)) 
an be 
omputed from tpk+3(u/S(t))(by relativizing all formulas to the set of those nodes that are not below u).6. Final steps. We have not yet de�ned µu when u is the root. In this 
ase weset µu := fgtΓ◦ADDΣ where ADDΣ is de�ned as above. After these operationsare performed all Σ-tuples are in the right pla
e. The relations in Γ are notneeded anymore and we remove them with fgtΓ.We have 
onstru
ted a regular set
K ′ := κ(K) ⊆ T

(
QF0[Σ ∪ Γ]der ∪ {∅}

)

with τ(K) = valSTR(K ′). It remains to remove the 
onstant ∅. Note that
f(∅) = ∅, for every quanti�er-free operation f , and A ⊕ ∅ = ∅ ⊕ A = A, for
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every stru
ture A. Using these equations we 
an eliminate all o

urren
es of ∅in the terms of K ′. (Sin
e every stru
ture in τ(K) is nonempty there is noterm in K ′ whi
h denotes the empty stru
ture.) This is an easy task for a treetransdu
er. Hen
e K ′ 
an be repla
ed by a regular set K ′′ ⊆ T (QF0[Σ∪Γ]der).Finally, we transform K ′′ into a setM ⊆ T (QF0[Σ∪Γ]) as explained in part 1above. This 
ompletes the proof. 2

De�nition 64 We denote by QF0[Σ,Γ] the subsignature of QF0[Σ ∪ Γ] that
onsists of
• the operations fgtΛ, for Λ ⊆ Γ,
• only those relabellings relabh where h is the identity on Σ,
• the operations addR,S,T,h with R,S ∈ Γ and T ∈ Γ ∪ Σ, and
• all 
onstants.Let QFΣ

0 be the union of all signatures of the form QF0[Σ,Γ].Remark 65 Note that the proof of the pre
eding proposition uses only theoperations of QF0[Σ,Γ]. The set M we 
onstru
t is a subset of T (QF0[Σ,Γ]).We have thus shown that we 
an 
onstru
t every stru
ture in STR[Σ] with thehelp of a set Γ of auxiliary symbols of arity ar(Γ) < ar(Σ).
6.2 The 
ase of graphs
As an example we apply the above result to graphs. Let Σ = {edg}. Sin
e edg isa binary relation every equational set of graphs 
an be de�ned by a systemof equations over a signature of the form QF0[edg ,Π] where Π 
ontains onlyunary symbols. We 
ompare su
h signatures with the signature VR reviewedin Se
tion 3.5.The operations in QF0[edg ,Π] are the disjoint union, 
onstants, and the quan-ti�er-free operations:
• fgtΦ, for Φ ⊆ Π,
• relabh, for h : Π → Π, and
• addP,Q,edg ,h, with P,Q ∈ Π.The mapping fgtΦ, is the 
omposition of the mappings fgtP , for P ∈ Φ. Amapping relabh is a 
omposition of mappings renP→Q. Depending on h, themapping addP,Q,edg,h is either addP,Q or addQ,P . Hen
e, the signature QF

{edg}
0is, up to some details of writing, the one 
onsidered in Se
tion 3.5.We obtain Corollary 4.9 of [7℄ whi
h states that equational sets of graphs neednot be de�ned with operations that use relation symbols of arity more than 2
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or operations that label edges. Only verti
es must be labelled. More aboutthis in Se
tion 6.4.
6.3 The re
ognizable sets are also the same
Our obje
tive is now to establish the result that both signatures QFΣ

0 and QFlead to the same notion of re
ognizability for subsets of STR[Σ]. Re
all Se
-tion 4 where we de�ned monadi
 types tpk(ā/A) and monadi
 annotations
Mm

k (A). In parti
ular, k denotes the quanti�er height and m is the maxi-mal size of annotated tuples. We will make use of the following lemma whi
hfollows immediately from Lemma 35.Lemma 66 For every nondeleting quanti�er-free transdu
tion f : STR[Σ] →
STR[Γ] and ea
h m > 0, there exists a mapping fm : Σ≤m,0

M → Γ≤m,0
M su
hthat, for all stru
tures A ∈ STR[Σ] and all D ⊆ A, we have

Mm
0 (f(A)[D]) = relabfm(Mm

0 (A[D])) .

PROOF. Note that we have
f(A[D]) = f(A)[D] ,

Mm
0 (A[D]) = Mm

0 (A)[D] ,and relabfm(A[D]) = relabfm(A)[D] .Sin
e f is nondeleting the mapping Mm
0 (A) 7→ Mm

0 (f(A)) only manipulatesthe relations. For p ∈ Sn,0M (Σ) with n ≤ m, we 
an de�ne the relabelling by
fm(Tp) := Tfn

0
(p) ,where fn0 is the fun
tion from Lemma 35. 2Proposition 67 Every QFΣ

0 -re
ognizable set L ⊆ STR[Σ] is QF-re
ognizable.Before giving the proof let us state the following 
onsequen
e of Propositions63 and 67.Theorem 68 The signatures QFΣ
0 and QF yield the same equational setsand the same re
ognizable sets of stru
tures in STR[Σ].

Proof of Proposition 67 Suppose that L ⊆ STR[Σ] is QFΣ
0 -re
ognizableand let m := ar(Σ). There exists a �nite QFΣ

0 -
ongruen
e saturating L. Wedenote the 
orresponding �nite equivalen
e relations on STR[Σ ∪ Γ] by ≃Γwhere Γ is a �nite relational signature with ar(Γ) < m.
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For a relational signature ∆, let β(∆) := ∆≤m−1,0
M . With ea
h quanti�er-freeoperation f : STR[∆] → STR[Σ] we asso
iate the fun
tion f̂ : STR[∆] →

STR[Σ ∪ β(∆)] with
f̂(A) := f(A) ∪Mm−1

0 (A)[D]where D ⊆ A is the domain of f(A). Note that the union above is not adisjoint one. The domain of f̂(A) is that of f(A) and the relations are thoseof f(A) and those of Mn−1
0 (A)[D]. We assume that β(∆) is disjoint from Σso there is no 
onfusion. f̂ is obviously a quanti�er-free operation.For A,B ∈ STR[∆] we de�ne

A ≈ B : iff tpm(A) = tpm(B) ,and A ≡∆ B : iff A ≈ B and, for every quanti�er-free operation
f : STR[∆] → STR[Σ] , we have f̂(A) ≃β(∆) f̂(B) .We 
laim that ≡∆ is a �nite QF -
ongruen
e, for all ∆, and that ≡Σ satu-rates L. Clearly,≡∆ is an equivalen
e relation. It is also �nite sin
e≈ and≃β(∆)are �nite and there are only �nitely many quanti�er-free operations STR[∆] →

STR[Σ] (be
ause ∆ and Σ are �nite).To see that ≡Σ saturates L assume that A ∈ L and A ≡Σ B. Set f := fgtβ(Σ).We have f̂(A) ≃β(Σ) f̂(B), whi
h implies that
A = f(f̂(A)) ≃∅ f(f̂(B)) = B .Sin
e ≃∅ saturates L it follows that B ∈ L.Next we 
he
k that ≈ is a 
ongruen
e. In Corollary 44 we have shown this forthe disjoint union. It is easy to see for quanti�er-free domain restri
tions, andfor nondeleting quanti�er-free operations it 
an be derived from Lemma 35.It remains to verify that ≡∆ is a 
ongruen
e. Let g : STR[∆] → STR[∆′] be aquanti�er-free transdu
tion and suppose that A ≡∆ B. Sin
e ≈ is a 
ongru-en
e we have g(A) ≈ g(B). Let f : STR[∆′] → STR[Σ] be a quanti�er-freeoperation. By de�nition, we have
(f̂ ◦ g)(A) = (f ◦ g)(A) ∪Mn−1

0 (g(A))[D] ,and (f ◦ g)∧(A) = (f ◦ g)(A) ∪Mn−1
0 (A)[D] ,where D is the domain of the stru
ture (f ◦ g)(A). Therefore, it follows fromLemma 66 that there is some fun
tion h : Σ ∪ β(∆) → Σ ∪ β(∆′) su
h that

(f̂ ◦ g)(A) = relabh((f ◦ g)∧(A))
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and h is the identity on Σ. Sin
e relabh ∈ QFΣ
0 and

(f ◦ g)∧(A) ≃β(∆) (f ◦ g)∧(B)we have
f̂(g(A)) = relabh((f ◦ g)∧(A))

≃β(∆′) relabh((f ◦ g)∧(B)) = f̂(g(B)) ,whi
h implies that g(A) ≡∆ g(B).It remains to 
onsider the 
ase of disjoint union. Suppose that A0 ≡∆ B0 and
A1 ≡∆ B1. We have to prove that A0⊕A1 ≡∆ B0⊕B1. We already know that
A0 ⊕A1 ≈ B0 ⊕B1. Let f : STR[∆] → STR[Σ] be a quanti�er-free operationsu
h that f(A0 ⊕ A1) ∈ STR[Σ].Claim 69 Let β′(∆) be a disjoint 
opy of β(∆) and let h be the relabellingmapping R ∈ β(∆) to R′ ∈ β′(∆). There exists a QF0[Σ, β(∆)∪β′(∆)]-derivedoperation g su
h that

f̂(A ⊕ B) = g(f̂(A) ⊕ h(f̂(B))) , for all stru
tures A and B .

Assuming the 
laim to be true we 
ontinue the proof as follows. Sin
e A0 ≡∆

B0 and A1 ≡∆ B1 we have
f̂(A0) ≃β(∆) f̂(B0) and h(f̂(A1)) ≃β′(∆) h(f̂(B1)) .As g is a QF0[Σ, β(∆) ∪ β′(∆)]-derived operation it follows that
f̂(A0) ⊕ h(f̂(A1)) ≃β(∆)∪β′(∆) f̂(B0) ⊕ h(f̂(B1)) ,and f̂(A0 ⊕ A1) = g(f̂(A0) ⊕ h(f̂(A1)))

≃β(∆) g(f̂(B0) ⊕ h(f̂(B1)))

= f̂(B0 ⊕ B1) .This 
ompletes the main proof.
Proof of the 
laim. To de�ne g let us 
onsider the a
tion of f̂ on A⊕B. Sin
e
f̂ is quanti�er-free it adds tuples ā ⊆ A to a relation R if and only if we have
ā ∈ Rf̂(A). The same holds for tuples b̄ ⊆ B. Therefore, we have

f̂(A ⊕ B)[A] = f̂(A) and f̂(A ⊕ B)[B] = f̂(B) ,and the desired operation g only needs to add those tuples c̄ to relations Rthat 
ontain elements of both A and B. Sin
e f̂ is quanti�er-free we 
an tell
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whether su
h a tuple c̄ should be added to R by looking at the quanti�er-freetypes
tp0(c̄|A/A ⊕ B) = tp0(c̄|A/A) and tp0(c̄|B/A ⊕ B) = tp0(c̄|B/B) .(By c̄|A we denote the subtuple of c̄ 
ontained in A.) This information isavailable in Mn−1

0 (A) and Mn−1
0 (B). Hen
e, g 
an be written as g = relabk ◦

CREATE where k is the 
anoni
al proje
tion β(∆) ∪ β′(∆) → β(∆) and
CREATE is a 
omposition of operations of the form addR,S,T,h with R ∈ β(∆),
S ∈ β′(∆), and T ∈ Σ ∪ β(∆) ∪ β′(∆). This 
ompletes the proof of the
laim. 2

6.4 Optimality
These results prove that when dealing with equational or re
ognizable sets ofhypergraphs of rank at most n, auxiliary relation symbols (like the labels fromsets Π for dealing with graphs) 
an be limited to be of arity at most n− 1.The next example shows that, for equational sets, this bound is optimal. Wede�ne a stru
ture of rank 3 that 
annot be de�ned without auxiliary symbolsof arity 2.Example 70 Let R be a ternary relation symbol and Π a set of unary predi-
ates as in Se
tion 3.5. Consider the signature

FΠ := {⊕, renP→Q, fgtΛ, addN,P,Q,P | N,P,Q ∈ Π, Λ ⊆ Π }where ⊕, renP→Q, fgtΛ, and P are the usual VR-operations of Se
tion 3.5 and
addN,P,Q is the quanti�er-free operation de�ned by the formula

ϑR(x, y, z) := Rxyz ∨ (Nx ∧ Py ∧Qz) .Every stru
ture A ∈ STR[R] is of the form A = valSTR(t), for some t ∈ T (FΠ),provided Π is large enough (say, |Π| = |A|). Let An ∈ STR[R] be the stru
turewith domain A = [n] and relation
R := { (a, b, c) ∈ [n]3 | a < b < c } ,and denote the set of all stru
tures An by C. There exists an MSO-transdu
tion τsu
h that C = τ(K), where K is the set of all terms of the form gn(c), n ∈ N,for some unary fun
tion symbol g and a 
onstant c. Sin
e K is regular it fol-lows by Proposition 27 that C is equational. We 
laim that C * val(T (FΠ)),for any �nite set Π.Fix a �nite set Π and set n := 2|Π|. We will prove that A2n+1 /∈ val(T (FΠ)).Suppose that there exists a term t ∈ T (FΠ) with value val(t) = A2n+1. Then
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t = f(t1 ⊕ t2) where f is a 
omposition of unary operations that has to add allne
essary hyperedges between B1 := val(t1) and B2 := val(t2).For a, b ∈ val(t1), we de�ne
a ∼ b : iff for all P ∈ Π, a ∈ PB1

⇔ b ∈ PB1
.If f adds the tuple (a, b, c) to R, for a ∼ b in B1 and c ∈ B2, then it mustalso add the tuple (b, a, c). This is not possible. Therefore, ea
h ∼-
lass of B1
ontains only one element and we have

|B1| = |B1/∼| ≤ 2|Π| = n .By symmetry, it follows that |B2| ≤ n in 
ontradi
tion to |B1 ∪B2| = 2n+ 1.
7 Ri
h signatures with operations based on lo
al information
7.1 The general framework
After investigating small signatures we will now look at the opposite problemof de�ning signatures that are as ri
h as possible while still being equivalentto QF . Let F be a signature equivalent to QF . We are interested in �ndinga set G of new operations on STR[Σ] that satisfy the following 
onditions:(
1) Every (F ∪ G)-equational subset of STR[Σ] is F -equational.(
2) Every F -re
ognizable subset of STR[Σ] is (F ∪ G)-re
ognizable.Lemma 71 If G satis�es (
1) and (
2) then F ∪ G is equivalent to QF .
PROOF. Sin
e F ⊆ F ∪ G, we have

Rec(F ∪ G) ⊆ Rec(F) and Equat(F) ⊆ Equat(F ∪ G) .By (
2), it follows that Rec(F ∪ G) = Rec(F) = Rec(QF), while (
1) impiesthat Equat(F ∪ G) = Equat(F) = Equat(QF). 2

Our approa
h is as follows. Suppose that, for ea
h signature Σ, we have de�nedan inje
tive mapping
∧ : STR[Σ] → STR[Σ̂] : A 7→ Âfrom Σ-stru
tures to Σ̂-stru
tures, for some signature Σ̂. Natural 
onditionsimplying both (
1) and (
2) are the following ones.
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(h) The family of fun
tions ∧ : STR[Σ] → STR[Σ̂] forms a �nite-state hetero-morphism from the (F ∪ G)-algebra STR to the QF -algebra STR.(m) The mapping ∧ has a left-inverse Â 7→ A that is an MSO-transdu
tion.Furthermore, for every Σ, there is an MSO-formula de�ning the imageDΣ :=
(STR[Σ])∧ ⊆ STR[Σ̂] of STR[Σ] under ∧.Remark 72 By De�nition 10, to verify (h) we have to �nd

• a (F ∪ G)-
omputable mapping α : STR → A, and
• for every n-ary operation f ∈ F ∪ G, QF-terms tf [ā], for ā ∈ An, that�emulate� f .Note that the se
ond step 
an be performed independently for every operation f .Below we will sometimes split it into two or more parts ea
h dealing only witha subset of F ∪ G.Lemma 73 Let C ⊆ STR[Σ] be a set of stru
tures and Ĉ its image under ∧.If (h) and (m) hold then the following 
onditions are equivalent:(i) C is QF-equational.(ii) Ĉ is QF-equational.(iii) C is (F ∪ G)-equational.In parti
ular, (h) and (m) imply (
1).
PROOF. (iii) ⇒ (ii) follows from Lemma 14 and (h), and (ii) ⇒ (i) followsfrom Corollary 28 (a) and (m).For (i) ⇒ (iii), suppose that C is QF -equational. Sin
e F is equivalent to QFit is also F -equational. Finally, F ⊆ F ∪ G implies that C is (F ∪ G)-equational. 2Lemma 74 Let C ⊆ STR[Σ] be a set of stru
tures and Ĉ its image under ∧.If (h) and (m) hold then the following 
onditions are equivalent:(i) C is QF-re
ognizable.(ii) Ĉ is QF-re
ognizable.(iii) C is (F ∪ G)-re
ognizable.In parti
ular, (h) and (m) imply (
2).
PROOF. (i) ⇒ (ii) Sin
e Ĉ = DΣ ∩ (∧)−1(C) this dire
tion follows from(m), Proposition 26 (b), and Theorem 51.(ii) ⇒ (iii) follows from Lemma 14 and (h).
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(iii) ⇒ (i) Suppose that C is (F ∪G)-re
ognizable. Sin
e F ⊆ F ∪G it is also
F -re
ognizable. By assumption, F is equivalent to QF whi
h implies that C is
QF -re
ognizable. 2

Example 75 (a) We 
an apply the above ma
hinery to the mapping Â :=
Mm

k (A). Condition (m) follows from Lemma 40, and in Lemma 46 we proved (h)for the 
ase that G = ∅ and F = QF . It follows that a 
lass C is QF-equationalor QF-re
ognizable if and only if its annotated version Mm
k (C) is. Hen
e, ourframework provides an alternative proof of Corollary 41 and Theorem 47.(b) It is not easy to �nd nontrivial signatures G that satisfy 
ondition (h)for the annotation Mm

k . We give an example of a simple operation that, for
k > 0, violates 
ondition (h). Consider the square operation G 7→ G2 where
G2 is the graph with the same verti
es as G and edge relation

edgG2 := { (x, y) | (x, y) ∈ edgG or (x, z), (z, y) ∈ edgG for some z } .The mapping M1(G) 7→ G2 is a quanti�er-free operation. To satisfy (h) wehave to lift it to a map M1(G) 7→ M1(G
2). But this 
annot be done. We have

G2 |= ∃z(edg(x, z) ∧ edg(z, y))i� G |= ∃z
[(

edg(x, z) ∨ ∃u(edg(x, u) ∧ edg(u, z))
)

∧
(
edg(z, y) ∨ ∃u(edg(z, u) ∧ edg(u, y))

)]
.By looking only at tp1(xy/G) we 
annot de
ide whether this formula holdsin G.(
) We give a last 
ounterexample 
onsisting of an operation de�ned by a veryweak form of quanti�
ation that violates 
ondition (
1). Let P,Q,R be unaryrelations and suppose that our signature 
ontains the operations g and h where

h(x) := (relabR 7→Q ◦ relabQ7→P ◦ addQ,R,edg)(x⊕ R)

is a derived QF
{edg}
2 -operation, and g labels every vertex a by Q that hasa neighbor labelled Q while the other relations remain un
hanged. The term

tmn := gnhm(Q) des
ribes a path of length m where the last n+ 1 verti
es arelabelled by Q and the remaining ones are labelled by P .
P −→ · · · −→ P −→ Q −→ · · · −→ QWe 
laim that the fun
tion val mapping a term tmn to its value is not an

MSO-transdu
tion. Note that the set
T := { val(tmn) | m ≤ n } ,
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whi
h 
onsists of all �nite paths where all verti
es are labelled by Q, is MSO-de�nable and, hen
e, re
ognizable. If val were an MSO-transdu
tion then theset
val−1(T ) ∩ { tmn | m,n ∈ N } = { tmn | m ≤ n }

would be re
ognizable as well. But, using pumping arguments, one 
an easilysee that this is not the 
ase.
7.2 Fusion and lo
al types
Our main appli
ation of the approa
h des
ribed in the previous se
tion 
on-
erns the fusion operation that merges all elements of a stru
ture satisfying agiven quanti�er-free formula into a single element. We will show that one 
anaugment the signature QF0 of Se
tion 6.1 by this operation without 
hang-ing the notions of re
ognizability and equationality. Let us �rst introdu
e theappropriate operation A 7→ Â on stru
tures. Similarly to the operation Mm

kof Se
tion 4.2, we use a labelling by a 
ertain kind of types but with a morerestri
ted form of quanti�
ation.De�nition 76 (a) Let n ∈ N. A formula ϕ(x1, . . . , xn) is monadi
ally exis-tential, m.e. for short, if
ϕ(x1, . . . , xn) = ∃y1 · · · ∃ym(Ry1 . . . ym ∧ ψ1 ∧ · · · ∧ ψm)or ϕ = ∃y1ψ1 ,

where ea
h ψi is either the Hintikka-formula (
f. De�nition 33) of a quanti�er-free 1-type with free variable yi, or it is of the form yi = xk, for some k. (Notethat we do not require every variable xi to appear in ϕ.)(b) Let A be a stru
ture and ā ∈ An, for n ∈ N. The lo
al n-type of ā is theset
ltp(ā/A) := {ϕ(x̄) | ϕ is m.e., A |= ϕ(ā) } .

The set of all lo
al n-types realized in some Σ-stru
ture is denoted by SnL(Σ) andwe set S∗
L(Σ) :=

⋃
1≤n≤ar(Σ) S

n
L(Σ). As usual, we abbreviate ltp(〈〉/A) by ltp(A).Note that ltp(A) is in
luded in all lo
al n-types with n ≥ 0.Example 77 Suppose that Σ = {R,P} where R is 4-ary and P is unary. The
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following formula is m.e.
ϕ(x1, x2) = ∃y1∃y2∃y3∃y4

(
Ry1y2y3y4 ∧ (Py1 ∧ ¬Ry1y1y1y1)

∧ y2 = x1 ∧ y3 = x1

∧ (¬Py4 ∧ ¬Ry4y4y4y4)
)
.

Remark 78 Note that the lo
al type ltp(ā/A) of a tuple uniquely determinesits quanti�er-free type tp0(ā/A) sin
e we have
Rxi1 . . . xim ∈ tp0(ā/A)i� ∃y1 . . . ∃ym(Rȳ ∧ y1 = xi1 ∧ · · · ∧ ym = xim) ∈ ltp(ā/A) .

As for monadi
 types we 
an annotate a stru
ture with lo
al types. Thisannotation is an FO-transdu
tion whi
h satis�es 
ondition (m).De�nition 79 Let A be a Σ-stru
ture. The lo
al annotation of A is the stru
-ture
L(A) :=

〈
A, (Tp)p∈S∗

L
(Σ)

〉

with the same domain as A where, for ea
h lo
al n-type p ∈ S∗
L(Σ), 1 ≤ n ≤

ar(Σ), we add an n-ary relation
Tp := { ā ∈ An | ltp(ā/A) = p } .We denote the signature of L(A) by ΣL.The following lemma is the analogue of Lemma 40.Lemma 80 Let Σ be a relational signature.(a) The mapping L : STR[Σ] → STR[ΣL] is an inje
tive FO-transdu
tion ofquanti�er height ar(Σ).(b) The fun
tion L has a left-inverse that is a quanti�er-free FO-transdu
tion.(
) L satis�es 
ondition (m).

PROOF. (a) We 
an de�ne the relation Tp by the formula
∧
p ∧

∧
{¬ϕ | ϕ is m.e., ϕ /∈ p } .This formula has quanti�er height qh(ψp) = ar(Σ).
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(b) Conversely, we 
an write an n-ary relation R ∈ Σ as
RA = { ā ∈ An | ā ∈ Tp for some p with

∃ȳ(Rȳ ∧ y1 = x1 ∧ · · · ∧ yn = xn) ∈ p } .Sin
e S∗
L(Σ) is �nite this de�nition is equivalent to a �nite disjun
tion ofatomi
 formulas.(
) Having proved (b) it remains to show that L(STR[Σ]) is MSO-de�nable.By 
omposing the transdu
tions of (a) and (b) we 
an 
onstru
t a �rst-orderformula ϕ su
h that A |= ϕ if and only if A = L(B), for some stru
ture B. 2

We have seen in Theorem 68 that the signature F := QF0 is equivalent toQF .Using the methods of Se
tion 7.1 we extend it in two steps to a larger signaturethat is still equivalent toQF . First, we add all domain restri
tions delψ (
f. theend of Se
tion 3.1). Let QF∗ be the resulting signature. We start by provingan analogue to Lemma 35 for lo
al types.Lemma 81 For every unary operation f ∈ QF∗ of type Σ → Γ, there existfun
tions fn : SnL(Σ) → SnL(Γ), n ∈ N, su
h that
ltp(ā/f(A)) = fn(ltp(ā/A)) ,for all stru
tures A and every n-tuple ā in f(A).

PROOF. Let g = f1
0 : S1,0

M (Σ) → S1,0
M (Γ) be the fun
tion from Lemma 35.If ψ is the Hintikka-formula of an atomi
 1-type q we denote by g(ψ) theHintikka-formula of g(q), and, if ψ equals yi = xk, then we set g(ψ) := ψ.Let p ∈ SnL(Σ). For an m.e. formula of the form ϕ = ∃yψ(y) we have

∃yψ(y) ∈ fn(p) iff ∃yψ′(y) ∈ p for some ψ′ ∈ g−1(ψ) .

Consider an m.e. formula of the form
ϕ(x1, . . . , xn) = ∃y1 · · · ∃ym(Ry1 . . . ym ∧ ψ1 ∧ · · · ∧ ψm) .In order to de�ne fn(p) we 
onsider the following 
ases.(1) f = fgtΛ. If R ∈ Λ then ϕ /∈ fn(p). Otherwise, ϕ ∈ fn(p) i� there areformulas ψ′

i ∈ g−1(ψi), i ≤ m, su
h that
∃y1 · · · ∃ym(Ry1 . . . ym ∧ ψ′

1 ∧ · · · ∧ ψ′
m) ∈ p .
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(2) f = relabh. We set ϕ ∈ fn(p) i� there are a relation S ∈ h−1(R) andformulas ψ′
i ∈ g−1(ψi), i ≤ m, su
h that

∃y1 · · · ∃ym(Sy1 . . . ym ∧ ψ′
1 ∧ · · · ∧ ψ′

m) ∈ p .

(3) f = addS,T,U,h. If R 6= U then we de�ne ϕ ∈ fn(p) i� there are formulas
ψ′
i ∈ g−1(ψi), i ≤ m, su
h that

∃y1 · · · ∃ym(Ry1 . . . ym ∧ ψ′
1 ∧ · · · ∧ ψ′

m) ∈ p .For R = U , we have ϕ ∈ fn(p) i� one of the following two 
ases holds.Case 1. There are formulas ψ′
i ∈ g−1(ψi), i ≤ m, su
h that

∃y1 · · · ∃ym(Uy1 . . . ym ∧ ψ′
1 ∧ · · · ∧ ψ′

m) ∈ p .

Case 2. Otherwise, for all i, j with h(i) = h(j), we have either
• ψi = ψj, or
• ψi equals yi = xk and ψj is the Hintikka-formula of the type tp0(ak/f(A)) =

g
(
tp0(ak/A)

) (note that this type is determined by p), or
• vi
e versa.Furthermore, there are formulas ψ′′

1 , . . . , ψ
′′
k+l, where k := ar(S), l := ar(T ),su
h that

∃y1 · · · ∃yk(Sy1 . . . yk ∧ ψ
′′
1 ∧ · · · ∧ ψ′′

k) ∈ pand ∃y1 · · · ∃yl(Ty1 . . . yl ∧ ψ
′′
k+1(y1) ∧ · · · ∧ ψ′′

k+l(yl)) ∈ p ,and, for all i, we either have
• ψi is a Hintikka-formula and ψ′′

h(i) ∈ g−1(ψi), or
• ψi equals yi =xj, for some j, and ψ′′

h(i) is yh(i) = xj.(4) f = delϑ. We have ϕ ∈ fn(p) i� ϕ ∈ p and ψi 6|= ϑ(yi), for all i ≤ m. 2

Example 82 Let us illustrate the 
ase f = addS,T,U,h. Suppose that the ar-ities of S, T , and U are 2, 3, and 7, respe
tively. Let h : [7] → [5] be thefun
tion mapping 1, . . . , 7 to the sequen
e 1, 2, 3, 4, 4, 5, 5. We 
onsider a for-mula ϕ(x1, x2, x3) of the form
∃ȳ(Uȳ ∧ y1 = x1 ∧ ψ2(y2) ∧ y3 = x2 ∧ y4 = x3

∧ ψ5(y5) ∧ ψ6(y6) ∧ ψ7(y7)) .
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For ā ∈ A3, we have f(A) |= ϕ(ā) i� either
A |= ∃ȳ(Uȳ ∧ y1 = x1 ∧ ψ

′
2(y2) ∧ y3 = x2 ∧ y4 = x3

∧ ψ′
5(y5) ∧ ψ

′
6(y6) ∧ ψ

′
7(y7)) ,for some ψ′

i ∈ g−1(ψi), i ∈ {2, 5, 6, 7}, or ψ5 is the Hintikka-formula of
g(tp0(a3/A)), we have ψ′

6 = ψ7, and there are ψ′
i ∈ g−1(ψi), i ∈ {2, 6}, su
hthat

A |= ∃y1∃y2(Sy1y2 ∧ y1 = x1 ∧ ψ
′
2(y2))

∧ ∃y1∃y2∃y3(Ty1y2y3 ∧ y1 = x2 ∧ y2 = x3 ∧ ψ
′
6(y3)) .

The next lemma is analogous to Corollary 44.Lemma 83 Let A and B be stru
tures and ā ∈ Ak, b̄ ∈ Bl with k, l ≥ 0.
ltp(āb̄/A ⊕ B) = ltp(ā/A) ∪ p ,where p is the type obtained from ltp(b̄/B) by repla
ing every variable xi by

xk+i.Corollary 84 Every operation f ∈ QF∗ satis�es 
ondition (h).
PROOF. We 
laim that the fun
tion L is a �nite-state heteromorphism basedon ltp. The proof is analogous to that of Lemma 46. For unary operations the
laim follows immediately from Lemma 81. It remains to 
onsider the disjointunion. Lemma 83 implies that there exist QF -terms t[p, q], for p, q ∈ S0

L(Σ),su
h that
L(A ⊕ B) = t[ltp(A), ltp(B)]

(
L(A),L(B)

)
.

(Note that the lo
al type of a tuple ā determines the type of any permutationof ā. Therefore, we only need Lemma 83 for tuples āb̄ with ā ⊆ A and b̄ ⊆ B,not for arbitrary interleavings of elements of A and B.)From Lemmas 81 and 83 we 
an dedu
e that the lo
al 0-type of a stru
tureis QF∗-
omputable (
f. De�nition 6). Consequently, the L is a �nite-statederived operation based on ltp. 2

In the se
ond step we extend QF∗ by all fusion operations whi
h are de�nedas follows. Re
all the de�nition of quotient stru
tures at the end of Se
tion 3.1.
62



De�nition 85 Let A be a stru
ture and ϕ(x) a quanti�er-free formula. Weset fuseϕ(A) := A/∼ where ∼ is the equivalen
e relation
a ∼ b : iff a = b or A |= ϕ(a) ∧ ϕ(b) .By Fuse we denote the signature 
onsisting of all operations of the form fuseϕ.We have seen that every operation of QF∗ satis�es (h). In order to do thesame for Fuse it therefore remains to prove (h) for fusion operations.Lemma 86 Let ϕ(x) be a quanti�er-free formula and g : A → fuseϕ(A) the
anoni
al mapping. There exist fun
tions fn : SnL(Σ) → SnL(Σ), for n ∈ N,su
h that
ltp

(
g(ā)/fuseϕ(A)

)
= fn(ltp(ā/A)) , for all ā ∈ An.

PROOF. Let p1, . . . , ps ∈ S1,0
M (Σ) be an enumeration of all quanti�er-free 1-types p with p |= ϕ that are realized in A. Let q ∈ S1,0

M (Σ) be the quanti�er-free
1-type with

Rx1 . . . x1 ∈ q iff Rx1 . . . x1 ∈ pi , for some i ≤ s .If b ∈ A is some element of type tp0(b/A) = pi then g(b) has the type
tp0(g(b)/fuseϕ(A)) = q .To simplify notation we de�ne a fun
tion f : S1,0

M (Σ) → S1,0
M (Σ) by

f(r) :=




q if r ∈ {p1, . . . , ps} ,

r otherwise .For Hintikka-formulas ψr we set f(ψr) := ψf(r), and for formulas ψ of the form
yi = xk we set f(ψ) := ψ.For m.e. formulas of the form ϑ = ∃yψ(y) we have

∃yψ(y) ∈ ltp(g(ā)/fuseϕ(A))i� ∃yψ′(y) ∈ ltp(ā/A) for some ψ′ ∈ f−1(ψ) .Let ϑ(x1, . . . , xn) = ∃y1 · · · ∃ym(Ry1 . . . ym ∧ ψ1 ∧ · · · ∧ ψm) be a m.e. formula.We have
ϑ ∈ ltp(g(ā)/fuseϕ(A))if and only if
∃y1 · · · ∃ym(Ry1 . . . ym ∧ ψ′

1 ∧ · · · ∧ ψ′
m) ∈ ltp(ā/A) ,
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for some formulas ψ′
i ∈ f−1(ψi), 1 ≤ i ≤ m. Sin
e the types p1, . . . , pr 
an bedetermined from ltp(ā/A) this gives the desired de�nition of fn. 2Corollary 87 The signature QF∗ ∪ Fuse satis�es 
ondition (h).

PROOF. For the operations of QF∗, we have already shown in Corollary 84that L is a �nite-state heteromorphism based on ltp. It remains to 
onsiderthe operations fuseϕ ∈ Fuse. The pre
eding lemma implies that there exists a
QF -term t su
h that

L(fuseϕ(A)) = t
(
L(A)

)
.Together Lemmas 81, 83, and 86 show that the lo
al 0-type of a stru
ture is

(QF∗ ∪ Fuse)-
omputable. Hen
e, the 
laim follows. 2

By the results of the previous se
tion, we immediately obtain the followingtheorem whi
h is one of our main results.Theorem 88 The signatures QF and QF∗ ∪ Fuse are equivalent.Let us 
ompare this result with those of Cour
elle and Makowsky [9℄ who showthat the signature F 
onsisting of the disjoint union ⊕, of 
ertain restri
tedquanti�er-free operations, and of the operations fusePx satis�es the followingproperties. For every �nite subsignature F0 ⊆ F ,(1) the value mapping valSTR : T (F0)Σ → STR[Σ] is an MSO-transdu
tion,(2) every F0-equational set is QF-equational, and(3) ea
h MSO-de�nable set of (hyper-)graphs 
ontained in valSTR(T (F0)Σ) is
F0-re
ognizable.The restri
tions imposed in [9℄ on quanti�er-free operations and relationalstru
tures are the following ones:

• the sets PA form a partition of A,
• the only quanti�er-free operations allowed to modify the vertex labellingsare operations of the form renP→Q as des
ribed in Se
tion 6, and
• no quanti�er-free operation restri
ts the domain of its argument.In the present se
tion we were able to remove the �rst and third restri
tion byusing 1-types instead of vertex labels. Furthermore, we have shown that bothsignatures lead to the same notion of re
ognizability. Unfortunately, to do sowe had to modify the se
ond restri
tion by only allowing the quanti�er-freeoperations of QF∗. By the results of [9℄ and Theorem 88 we have

Equat(QF) = Equat(QF∗ ∪ Fuse) = Equat(QF ∪ Fuse) ,
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and Rec(QF) = Rec(QF∗ ∪ Fuse) ⊇ Rec(QF ∪ Fuse) .We 
urrently do not know whether the last in
lusion 
an be strengthened toan equality.
7.3 Fusion and 
omplete lo
al types for graphs
For graphs � or more generally for stru
tures of arity at most 2 � we 
animprove the above result by showing that the signatures QF and QF ∪Fuseare equivalent. One would expe
t that this holds for arbitrary arities, but so farwe have neither been able to prove su
h a statement, nor 
ould we 
onstru
ta 
ounterexample. For the remainder of this se
tion, we �x a signature Σ ofarity ar(Σ) ≤ 2.The reason why the above proof works only for QF∗ is the fa
t that, if weuse the labelling L then arbitrary quanti�er-free operations do not satisfy
ondition (h). For arity 2, we are able to modify the notion of a lo
al typesu
h that all QF -operations satisfy (h). The basi
 idea is to repla
e in anm.e. formula ∃ȳ(Rȳ ∧ ψ1 ∧ · · · ∧ ψm) the atom Rȳ by the Hintikka-formulaof a quanti�er-free 2-type. Though, to simplify notation we will not use su
hformulas but the quanti�er-free 2-types themselves.De�nition 89 Let A be a stru
ture and a, b ∈ A. The 
omplete lo
al 2-typeof a pair ab in A is its quanti�er-free type

ctp(ab/A) := tp0(ab/A) .The 
omplete lo
al 1-type of a single element a in A is the set of all 
ompletelo
al 2-types of pairs extending a
ctp(a/A) := { ctp(ac/A) | c ∈ A } .Finally, we will also need the 
omplete lo
al 0-type of the empty tuple 〈〉 whi
his the set of all realized 1-types.
ctp(〈〉/A) := { ctp(a/A) | a ∈ A } .As usual, we abbreviate ctp(〈〉/A) by ctp(A). For 0 ≤ n ≤ 2, we denoteby SnC(Σ) the set of all possible 
omplete lo
al n-types and we set S∗

C(Σ) :=
S1

C(Σ) ∪ S2
C(Σ).Remark 90 Sin
e satis�ability is de
idable for the 2-variable fragment of�rst-order logi
 it follows that the sets S0

C(Σ), S1
C(Σ), and S2

C(Σ) are de
idable.As in the 
ase of the other types one 
an de�ne Hintikka formulas for 
ompletelo
al types.
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Lemma 91 For every 
omplete lo
al n-type p ∈ SnC(Σ), 0 ≤ n ≤ 2, thereexists a �rst-order formula ψp(x̄) of quanti�er height 2 − n su
h that
A |= ψp(ā) iff ctp(ā/A) = p ,for all stru
tures A and every tuple ā ∈ An.

PROOF. We de�ne ψp by reverse indu
tion on n. The 
onstru
tion is anal-ogous to that of De�nition 33. For n = 2, we de�ne
ψp(x1, x2) :=

∧
p .For n = 1, we have to express the ba
k-and-forth property (
f. [12,30℄). Theformula

ψp(x1) :=
∧

q∈p

∃x2ψq(x1, x2) ∧ ∀x2

∨

q∈p

ψq(x1, x2)

states that every type q ∈ p is realized and every realized type is 
ontainedin p. Similarly, for n = 0, we have
ψp :=

∧

q∈p

∃x1ψq(x1) ∧ ∀x1

∨

q∈p

ψq(x1) .

2Corollary 92 The 0-type ctp(A) is QF-
omputable.
PROOF. The 
laim follows immediately from Lemmas 45 and 91 sin
e tp2(A) |=
ψctp(A). 2

We use Hintikka formulas to de�ne the logi
al 
onsequen
es of a lo
al type.De�nition 93 For p ∈ SnC(Σ) and ϕ ∈ FO[Σ], we write p |= ϕ i� |= ψp → ϕ.Remark 94 It follows that p |= ϕ if and only if we have A |= ϕ(ā), for everystru
ture A and all tuples ā ⊆ A of type ctp(ā/A) = p.Following the usual lines of our approa
h we annotate stru
tures by types andwe show that these annotations satisfy 
onditions (m) and (h).De�nition 95 Let A be a Σ-stru
ture with ar(Σ) ≤ 2. The 
omplete lo
alannotation of A is the stru
ture
C(A) :=

〈
A, (Tp)p∈S∗

C
(Σ)

〉
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with the same domain as A where, for ea
h lo
al n-type p ∈ S∗
C(Σ), n ∈ {1, 2},we add the relation

Tp := { ā ∈ An | ctp(ā/A) = p } .We denote the signature of C(A) by ΣC.Lemma 96 Let Σ be a relational signature.(a) The mapping C : STR[Σ] → STR[ΣC] is an inje
tive FO-transdu
tion ofquanti�er height 1.(b) C has a left-inverse that is a quanti�er-free transdu
tion.(
) C satis�es 
ondition (m).
PROOF. (a) The formula ψp(x̄) from Lemma 91 
an be used to de�ne therelation Tp. For p ∈ SnC(Σ), this formula has quanti�er height qh(ψp) = 2− n.(b) Conversely, we 
an write an n-ary relation R ∈ Σ as

RA = { ā ∈ An | ā ∈ Tp for some p with p |= Rx1 . . . xn } .Sin
e S∗
C(Σ) is �nite this de�nition is equivalent to a �nite disjun
tion ofatomi
 formulas.(
) Finally, by 
omposing the transdu
tions of (a) and (b) we 
an 
onstru
tan FO-formula that de�nes the set C(STR[Σ]). 2

It remains to 
he
k 
ondition (h). We start by 
onsidering the operationsof QF .Lemma 97 Let τ : STR[Σ] → STR[Γ] be a quanti�er-free operation with
ar(Γ) ≤ 2. There exist fun
tions fn : SnC(Σ) → SnC(Γ), 0 ≤ n ≤ 2, su
h that

ctp(ā/τ(A)) = fn(ctp(ā/A)) ,for all stru
tures A and every tuple ā in τ(A).
PROOF. We de
ompose τ = σ ◦ delϕ into a domain restri
tion and a non-deleting quanti�er-free operation (
f. Lemma 25), and we deal with the two
ases separately. For τ = delϕ and a, b ∈ delϕ(A), we have

ctp(ab/delϕ(A)) = ctp(ab/A) ,

ctp(a/delϕ(A)) =
{
p ∈ ctp(a/A)

∣∣∣ p |= ¬ϕ(x2)
}
,

ctp(〈〉/delϕ(A)) =
{
f1(p)

∣∣∣ p ∈ ctp(〈〉/A), p |= ¬ϕ(x1)
}
,
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where f1 in the last line is the fun
tion given by the se
ond equation.It remains to 
onsider the 
ase that τ = σ. By Lemma 35, there exists afun
tion g su
h that
tp0(ab/σ(A)) = g(tp0(ab/A)) .Hen
e, we 
an set f2 := g. The fun
tions f1 and f0 are de�ned by
ctp(a/σ(A)) = { g(p) | p ∈ ctp(a/A) } ,

ctp(〈〉/σ(A)) = { f1(p) | p ∈ ctp(〈〉/A) } .

2

We are interested in the fusion operation. It turns out that the annotation C
an be used to treat an even stronger operation whi
h we 
all the gluing oftwo stru
tures.De�nition 98 A gluing fun
tion is a mapping
g : S1

C(Σ) × S1
C(Σ) → S2

C(Σ) ,su
h that, for all types p, q ∈ S1
C(Σ) and every quanti�er-free formula ϕ(x)with one free variable, we have

ϕ(x1) ∈ g(p, q) iff p |= ϕ(x1) ,and ϕ(x2) ∈ g(p, q) iff q |= ϕ(x1) .

For su
h a gluing fun
tion g and stru
tures A,B ∈ STR[Σ], we denote by
A ⊗g B the following stru
ture. Its domain is the disjoint union A ·∪ B. Forunary relations P , we have

PA⊗gB := PA ∪ PB ,while binary relations R are de�ned by
RA⊗gB := RA ∪RB

∪
{

(a, b) ∈ A×B
∣∣∣ g

(
ctp(a/A), ctp(b/B)

)
|= Rx1x2

}

∪
{

(b, a) ∈ B × A
∣∣∣ g

(
ctp(a/A), ctp(b/B)

)
|= Rx2x1

}
.

Finally, we extend ⊗g to an operation STR[Σ] × STR[Γ] → STR[Σ ∪ Γ] onstru
tures of di�erent signatures by de�ning A ⊗g B := A′ ⊗g B′ where A′ isthe (Σ∪Γ)-stru
ture obtained from A by adding empty relations RA′ := ∅, forevery R ∈ Γ \ Σ, and B′ is de�ned analogously.
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By Glue we denote the signature 
onsisting of all operations of the form ⊗g.Remark 99 (a) Note that A ⊗g B = A ⊕ B if we have ¬Rx1x2,¬Rx2x1 ∈
g(p, q), for all p, q ∈ S1

C(Σ) and every binary relation symbol R.(b) The 
onditions on a gluing fun
tion g ensure that
ctp(ab/A ⊗g B) = g

(
ctp(a/A), ctp(b/B)

)
,for all stru
tures A and B and all elements a ∈ A and b ∈ B. For instan
e,we have

Rx1x2 ∈ ctp(ab/A ⊗g B) iff (a, b) ∈ RA⊗gB

iff g(ctp(a/A), ctp(b/B)) |= Rx1x2 ,and Px1 ∈ ctp(ab/A ⊗g B) iff a ∈ PA

iff ctp(a/A) |= Px1

iff g(ctp(a/A), ctp(b/B)) |= Px1 .Example 100 Cunningham [31℄ studies graph de
ompositions, 
alled splitde
omposition, that are based on the following operation (see also [23℄). Giventwo undire
ted, simple, loop-free graphs G and H in STR[{edg} ∪ Π] with la-belled verti
es as in Se
tion 3.5 and some relations P ∈ Π, one forms thegraph
G ⋄P H := delPx(G ⊗g H)where delPx deletes all verti
es labelled P and g is the gluing fun
tion su
hthat
g(p1, p2) |= edg(x1, x2) iff pi |= ∃y(edg(x1, y) ∧ Py) for both i ,that is, ⊗g 
reates an edge (a, b) between a vertex a of G and a vertex b of Hif and only if both a and b have a neighbour labelled P . A
tually, in [31℄ thisoperation is used only on graphs where P 
ontains a unique vertex.The next lemma is analogous to Corollary 44 and Lemma 83.Lemma 101 Let g be a gluing fun
tion. There exist fun
tions fn, 0 ≤ n ≤ 2,su
h that
ctp(ā/A ⊗g B) = fn

(
ctp(ā|A / A), ctp(ā|B / B)

)
,

for all stru
tures A and B and every tuple ā ∈ (A ∪ B)n, where ā|X denotesthe subtuple of ā 
onsisting of all elements ai ∈ X.
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PROOF. We start with the 
ase n = 2. If a, b ∈ A then
ctp(ab/A ⊗g B) = ctp(ab/A) .The 
ase that a, b ∈ B is similar. If a ∈ A and b ∈ B then
ctp(ab/A ⊗g B) = g

(
ctp(a/A), ctp(b/B)

)and ctp(ba/A ⊗g B) = σg
(
ctp(a/A), ctp(b/B)

)
,where σ(p) inter
hanges the variables x1 and x2 in every formula of p. (Wehave proved the �rst equation in the remark above. The se
ond one followsfrom the fa
t that ctp(ba/A ⊗g B) = σ(ctp(ab/A ⊗g B)).)For a ∈ A, we have

ctp(a/A ⊗g B) = ctp(a/A) ∪
{
g(ctp(a/A), p)

∣∣∣ p ∈ ctp(B)
}
,and, for b ∈ B,

ctp(b/A ⊗g B) = ctp(b/B) ∪
{
σg(p, ctp(b/B))

∣∣∣ p ∈ ctp(A)
}
.Finally, for n = 0, we have

ctp(A ⊗g B) =
{
f1(p, ctp(B))

∣∣∣ p ∈ ctp(A)
}

∪
{
f1(ctp(A), p)

∣∣∣ p ∈ ctp(B)
}
.

2

Together with Corollary 92 it follows that ctp is (QF ∪ Glue)-
omputable.Corollary 102 If we only 
onsider stru
tures of arity at most 2 then thesignature QF ∪ Glue satis�es 
ondition (h).
PROOF. We 
laim that the fun
tion C is a �nite-state heteromorphism basedon ctp. For quanti�er-free operations and the gluing operation ⊗g this followsfrom the pre
eding lemmas. For the disjoint union⊕, it is su�
ient to note that
⊕ = ⊗g, for a suitable gluing fun
tion g (
f. the Remark after De�nition 98).It remains to show that ctp is (QF ∪Glue)-
omputable. We have already seenthat it is QF -
omputable in Corollary 92. Hen
e, Lemma 101 implies that ctpis (QF ∪ Glue)-
omputable. 2

By the results of Se
tion 7.1, it follows that, for stru
tures of arity at most 2,the signature QF ∪Glue is equivalent to QF , i.e., the 
orresponding subalge-bras of STR are equivalent.
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Corollary 103 For stru
tures of arity at most 2, the signatures QF ∪ Glueand QF are equivalent.The signature we are a
tually interested in is QF∪Glue∪Fuse. The followingtheorem, whi
h is one of our main results, states that it is equivalent to QF .Theorem 104 For stru
tures of arity at most 2, the signatures QF ∪Glue ∪
Fuse and QF are equivalent.
PROOF. By Corollary 103 and Lemma 17, it is su�
ient to show that

QF ∪ Glue ∪ Fuse ⊆ (QF ∪ Glue)der .

We 
an express the operation fuseϕ as a derived (QF ∪ Glue)-operation asfollows. We add a new element c satisfying ϕ(x) to the given stru
ture by asuitable gluing operation that 
reates an R-edge from some element a to c i�there exists an R-edge (a, b) ending in an element b satisfying ϕ(x). Then wedelete all elements satisfying ϕ(x) ex
ept for c. Formally, we have
fuseϕ(x) = (fgtP ◦ delϑ)(x⊗g σ(c))

where
• c is a 
onstant denoting a singleton stru
ture whose only element b satis-�es ϕ,
• σ 
reates a new unary relation P /∈ Σ and it adds all elements to it,
• g 
reates an R-edge between an element a and σ(c) i� there is some element bsatisfying ϕ su
h that (a, b) ∈ R. That is,

g(p, q) := {Rx1x2 | p |= ∃y(Rx1y ∧ ψ(y)) for some ψ ∈ Ψ }

∪ {Rx2x1 | p |= ∃y(Ryx1 ∧ ψ(y)) for some ψ ∈ Ψ }

∪ {ψ(x1) | p |= ψ(x1) , ψ quanti�er free }
∪ {ψ(x2) | q |= ψ(x1) , ψ quanti�er free } ,

where q is the 
omplete lo
al 1-type of the single element of the stru
-ture σ(c) and Ψ is the set of all Hintikka-formulas ψr, r ∈ S1
C(Σ), with

r |= ϕ,
• ϑ := ϕ∧¬Px1, i.e., delϑ deletes all elements satisfying ϕ ex
ept for the newone whi
h is labelled by P , and
• fgtP deletes the auxiliary relation P again. 2

71



8 Sour
es in hypergraphs are not ne
essary
Equipping graphs and hypergraphs with distinguished verti
es is useful forde�ning operations like series 
omposition or parallel 
omposition that gener-alize 
on
atenation. These distinguished verti
es are 
alled sour
es. In termsof relational stru
tures su
h distinguished elements 
an be de�ned as valuesof nullary symbols whi
h are also 
alled 
onstants. They have been de�nedin this way in the general logi
al and algebrai
 framework of [7℄ whi
h isfurther developed in [8℄. Constants 
an be eliminated if one repla
es themby unary relations 
ontaining single elements. However, the quanti�er heightof the de�nition s
heme of a given transdu
tion usually in
reases under thistransformation. Take for example the quanti�er-free de�nition

Rxy : iff Sxa ∧ Tybwhere a and b are 
onstants. If we en
ode a and b by unary relations Pa and Pb,this de�nition be
omes
Rxy : iff ∃u∃v(Sxu ∧ Tyv ∧ Pau ∧ Pbv) ,whi
h is no longer quanti�er-free. Hen
e, after the transformation the signa-tureQF may 
ontain fewer operations. In this se
tion, we show that quanti�er-free operations using 
onstants 
an be emulated by quanti�er-free operationson relational stru
tures without them. We will prove that the signature ofquanti�er-free operations using 
onstants, denoted by QFc, is �equivalent� tothe signature QF on relational stru
tures without 
onstants (for the pre
isemeaning of �equivalent� 
f. Proposition 105 and Theorem 112).

8.1 Relational stru
tures with 
onstants
We re
all de�nitions from [7,8℄. We �x a 
ountable set C∞ of 
onstant sym-bols. For a relational signature Σ and a �nite subset C ⊆ C∞, we denote by
STR[Σ, C] the set of all �nite stru
tures of the form

A =
〈
A, (RA)R∈Σ, (cA)c∈C

〉

where 〈A, (RA)R∈Σ〉 ∈ STR[Σ] and cA ∈ A, for every c ∈ C.By A[C] we denote the substru
ture of A indu
ed by the set of all elementsthat are denoted by some 
onstant c ∈ C.We 
all quanti�er-free transdu
tions between stru
tures with 
onstants QFc-transdu
tions, for short (the supers
ript c indi
ates that we allow 
onstants).
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A de�nition s
heme for su
h a transdu
tion STR[Σ, C] → STR[Γ, D] is of theform
D =

(
ϕ, ψ, (ϑR)R∈Γ, (κcd)c∈C,d∈D

)

where
• ϕ = true (
f. Se
tion 3.3),
• ψ ∈ QF[Σ ∪ C, {x1}],
• ϑR ∈ QF[Σ ∪ C, {x1, . . . , xar(R)}], for R ∈ Γ, and
• κcd ∈ QF[Σ ∪ C, ∅], for ea
h c ∈ C and d ∈ D.As usual, the formula ψ de�nes the domain of the new stru
ture and theformulas ϑR de�ne the new relations R. The new 
onstants are determinedby the formulas κcd. Given a stru
ture A we de�ne the 
onstant d in the newstru
ture to denote that element cA su
h that κcd holds in A.In order that a de�nition s
heme de�nes a total mapping, the formulas κcdmust satisfy the following 
onditions, for every stru
ture in A ∈ STR[Σ, C]and all d ∈ D :
• d denotes an element of the new stru
ture, that is, A |=

∧
c∈C(κcd → ψ(c)) .

• d has some value, that is, A |=
∨
c∈C κcd .

• d is unique, that is, A |=
∧
c,c′∈C(κcd ∧ κc′d → c = c′) .These 
onditions are given by quanti�er-free formulas without free variables.Hen
e, they hold in a stru
ture A ∈ STR[Σ, C] i� they hold in A[C]. It istherefore de
idable whether they are valid in every stru
ture be
ause we onlyneed to 
he
k their validity in the �nitely many stru
tures of the form A[C].A de�nition s
heme D as above de�nes a total mapping D̂ : STR[Σ, C] →

STR[Γ, D] where the domain and the relations of B := D̂(A) are de�ned inthe same way as for stru
tures without 
onstants and, additionally, we have
dB = cA whenever A |= κcd.We obtain thus an algebra STRc of stru
tures with 
onstants where ea
h pair
(Σ, C) is a sort. The operations are the QFc-transdu
tions and the disjointunion ⊕ whi
h we apply only to stru
tures with disjoint sets of 
onstants.(For stru
tures A ∈ STR[Σ, C] and B ∈ STR[Γ, D] with C ∩ D = ∅, thestru
ture A⊕B ∈ STR[Σ∪Γ, C ∪D] is well-de�ned). We denote by QF c the
orresponding signature.We 
ould de�ne MSO-transdu
tions between stru
tures with 
onstants in thesame way as QFc-transdu
tions. But when we allow quanti�ers then the for-mulas κcd are not needed. Therefore, we 
hoose a simpler approa
h by redu
ingsu
h transdu
tions to MSO-transdu
tions without 
onstants.
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Let ΠC := {Pc | c ∈ C } be a set of unary relations in bije
tion with C anddisjoint from Σ. For A ∈ STR[Σ, C], we denote by AΠ ∈ STR[Σ ∪ ΠC ] thestru
ture with the same domain as A and the same Σ-relations. For every
onstant c ∈ C, we add a new unary relation Pc := {cA} to AΠ. Clearly, themapping
STR[Σ, C] → STR[Σ ∪ ΠC ] : A 7→ AΠis an inje
tive QFc-transdu
tion. (We identify STR[Σ ∪ ΠC , ∅] and STR[Σ ∪

ΠC ].)We de�ne an MSO-transdu
tion (of stru
tures with 
onstants) as a transdu
-tion τ : STR[Σ, C] → STR[Γ, D] su
h that the relation { (AΠ,BΠ) | B ∈
τ(A) } is an MSO-transdu
tion. Routine arguments show that the 
omposi-tion of two MSO-transdu
tions is an MSO-transdu
tion, also when they use
onstants.We now re
all from [7℄ the following result, formulated with the terminologyof the present arti
le. It is the analogue of Proposition 27 for stru
tures with
onstants.Proposition 105 Let L ⊆ STR[Σ, C]. The following statements are equiva-lent:(i) L is the image of a regular set of terms under an MSO-transdu
tion.(ii) L is QFc-equational.(iii) The set LΠ := {AΠ | A ∈ L } is QF-equational.
PROOF. The equivalen
e (i) ⇔ (ii) is proved in [7℄. Let us sket
h the equiv-alen
e of (i) and (iii). With routine manipulations of MSO-transdu
tions one
an show that (i) is equivalent to the statement
LΠ is the image of a regular set of �nite terms under an MSO-transdu
tion.Hen
e, the equivalen
e (i) ⇔ (iii) follows from Proposition 27. 2

Our obje
tive is to obtain a similar 
hara
terization of QF c-re
ognizabilityof L ⊆ STR[Σ, C] in terms of the QF -re
ognizability of LΠ. Theorem 112below ar
hives this goal. Following our general framework we will introdu
ea 
onstru
tion on stru
tures that makes it possible to emulate the operationsof QF c in terms of QF-operations.
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8.2 A se
ond way of eliminating 
onstants
The basi
 idea is to repla
e a stru
ture A by the stru
ture Â obtained bydeleting all elements that are denoted by some 
onstant and by adding newrelations that memorize links with the deleted elements. For example, an edgefrom x (where x is not the value of any 
onstant) to cA will be represented bya new unary relation edg [∗c]. An essential fa
t is that A 
an be re
onstru
tedfrom Â and A[C]. (Note that, up to isomorphism, there are only �nitely manystru
tures A[C] for A ∈ STR[Σ, C].)De�nition 106 (a) For every n-ary relation R ∈ Σ and ea
h word w ∈
(C∪{∗})n, we introdu
e a new relation symbol R[w] whose arity is the numberof symbols ∗ o

urring in w. Let Σ(C) be the set of these symbols where weidentify R with R[∗ . . . ∗], hen
e Σ(C) 
ontains Σ.(b) For A = 〈A, (RA)R∈Σ, (cA)c∈C〉 ∈ STR[Σ, C], we de�ne a Σ(C)-stru
ture
Â := 〈Â, (R

Â
)R∈Σ(C)〉 with domain Â := A \ { cA | c ∈ C } and the followingrelations. For w = w1∗w2 . . . wk∗wk+1 with w1, w2, . . . , wk+1 ∈ C∗, we have

R[w]
Â

:=
{

(a1, . . . , ak)
∣∣∣ w̃1a1w̃2 . . . w̃kakw̃k+1 ∈ RA

}
,where w̃i is the sequen
e of elements of A denoted by the 
onstants in wi ∈ C∗.Note that the substru
ture of A indu
ed by Â is a substru
ture of Â. Thefollowing statements follow immediately from the de�nitions.Lemma 107 (1) The stru
ture A 
an be re
onstru
ted from Â and A[C].(2) The mapping ∧ : STR[Σ, C] → STR[Σ(C)] is a QFc-transdu
tion.(3) For ea
h stru
ture C ∈ STR[Σ, C] with C = C[C], there exists a (|C| + 1)-
opying MSO-transdu
tion of quanti�er height 0 that maps every nonemptystru
ture B ∈ STR[Σ(C)] to the unique stru
ture A ∈ STR[Σ, C] su
h that

A[C] = C and Â = B.De�nition 108 Let L ⊆ STR[Σ, C] and suppose that C ∈ STR[Σ, C] is astru
ture with C = C[C]. We denote by L⊲⊳C the set of stru
tures A ∈ L su
hthat A[C] = C and A 6= C (so A 
ontains at least one element not denoted bya 
onstant).Proposition 109 A set L ⊆ STR[Σ, C] is QF c-equational i� (L ⊲⊳ C)∧ is
QF-equational for ea
h C.
PROOF. Let L be QFc-equational. Sin
e, for �xed C, the 
ondition A[C] ∼=
C is MSO-de�nable (even FO-de�nable) it follows by Proposition 105 and
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Corollary 28 (b) that ea
h set L⊲⊳C is QF c-equational. Hen
e, it is the imageof a regular set of terms under an MSO-transdu
tion and so is (L ⊲⊳ C)∧, byProposition 105 and Lemma 107 (2).Conversely, sin
e L is a �nite union of sets L⊲⊳C and singletons {C}, it su�
esto prove that ea
h L⊲⊳C is QFc-equational. This follows from Lemma 107 (3)by a similar argument as above. 2

We will improve Lemma 107 (2) in order to have statements like the above
orollary relating QF - and QF c-re
ognizability. Let us �rst state an immedi-ate 
orollary of Lemma 107 (3) and Proposition 20.Corollary 110 Let C ∈ STR[Σ, C] be a stru
ture su
h that C = C[C]. For ev-ery formula ϕ(x1, . . . , xn) ∈ QF[Σ∪C], one 
an 
onstru
t a formula ϕ̂(x1, . . . , xn) ∈
QF[Σ(C)], su
h that we have

A |= ϕ(ā) iff Â |= ϕ̂(ā) ,for every stru
ture A ∈ STR[Σ, C] with A[C] = C and all ā ∈ Ân.
PROOF. Let τ : STR[Σ(C)] → STR[Σ, C] be the transdu
tion of Lemma 107 (3).We 
an set ϕ̂ := ϕτ . 2

Among the QF c-operations, it will be 
onvenient to single out parti
ular ones.If d ∈ C, we denote by fgtd the operation STR[Σ, C] → STR[Σ, C \ {d}] that�forgets� the 
onstant d. Nothing is 
hanged ex
ept that some element of thedomain is no longer denoted by d.Proposition 111 The fun
tion ∧ : STR[Σ, C] → STR[Σ(C)] is a �nite-statederived heteromorphism based on the mapping A 7→ A[C].
PROOF. We re
all that on STR[Σ, C] we use the disjoint union and the
QFc-transdu
tions as unary operations. We �rst observe that the mapping
A 7→ A[C] is QF c-
omputable. This follows from the following obvious fa
ts.(1) For all stru
tures A ∈ STR[Σ, C] and B ∈ STR[Γ, D] with C ∩ D = ∅,we have

(A ⊕ B)[C ∪D] = A[C] ⊕ B[D] .(2) For every QF c-operation f : STR[Σ, C] → STR[Γ, D], we have
f(A)[D] = f(A[C])[D] .

76



(This is true be
ause Df(A) ⊆ CA.)Going ba
k to the main proof, we 
onsider the various operations. First it is
lear that
(A ⊕ B)∧ = Â ⊕ B̂ .

The 
ase of a QF c-operation f : STR[Σ, C] → STR[Γ, D] is more involved.Suppose that f is de�ned by the de�nition s
heme
D = (ϕ, ψ, (ϑR)R∈Γ, (κcd)c∈C,d∈D) .

We 
onsider a stru
ture A. Our obje
tive is to express f(A)∧ as t(Â) for some
QF -term t that may depend on A[C]. Let CA be the set of all elements of Adenoted by some 
onstant c ∈ C. We denote by N ⊆ CA the set of all elementsthat are not deleted by f (i.e., that satisfy ψ) but that are not denoted byany 
onstant d ∈ D in f(A). (Note that we 
an 
ompute N from A[C].) Theset CA is thus partitioned into Df(A), N , and the set of all elements deletedby the transdu
tion f . The domain of f(A)∧ 
onsists of N and all elements of
Â = A \ CA that are not deleted by f . We distinguish several 
ases.(a) First, suppose that N = ∅. The domain of f(A)∧ is the set of elementsof Â that satisfy ψ in A. By Corollary 110, these are the elements that satisfy
ψ̂ in Â.Now we 
onsider a relation in Γ(D), say R[∗c∗dd∗] to take a representativeexample. We have

(x, y, z) ∈ R[∗c∗dd∗]f(A)∧i� (x, cf(A), y, df(A), df(A), z) ∈ Rf(A)i� A |= ϑR(x, c′, y, d′, d′, z) ∧ ψ(x) ∧ ψ(y) ∧ ψ(z) ∧ κc′c ∧ κd′d ,for some c′, d′ ∈ Ci� Â |= ϑ̂c′,d′ for some c′, d′ ∈ Ci� Â |= ϑ̂ :=
∨

c′,d′
ϑ̂c′,d′ ,

where ϑ̂c′,d′ is the formula asso
iated with
ϑR(x, c′, y, d′, d′, z) ∧ ψ(x) ∧ ψ(y) ∧ ψ(z) ∧ κc′c ∧ κd′da

ording to Corollary 110.The formula ψ̂ whi
h de�nes the domain of f(A)∧ and the formulas ϑ̂ asabove yield a de�nition s
heme for the transformation Â 7→ f(A)∧. Hen
e, t isa quanti�er-free operation.
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(b) Next, we 
onsider the 
ase that N 6= ∅ and f = fgtd. Then N = {d} andthere is no c ∈ C \ {d} su
h that cA = dA. The domain of f(A)∧ is that of Âaugmented with dA. Hen
e we have f(A)∧ = t′(Â ⊕ D) where t′ and D arede�ned as follows.
D is a stru
ture with the single element dA. The relations of D either are emptyor 
onsist solely of the tuple (dA, . . . , dA) depending on whether the 
orre-sponding relation ofA[C] 
ontains this tuple. For example, if (dA, bA, cA, dA, dA) ∈
RA, for b, c ∈ C, then we put the tuple (dA, dA, dA) ∈ R[∗bc∗∗]D. We also usea spe
ial new unary relation symbol to �mark� dA, that is, to distinguish itfrom the elements of Â .Let us 
all a relation R[w] a d-relation if d o

urs in w. The mapping t′ is aquanti�er-free operation that performs the following transformations:(1) It preserves those relations of Â and D that are not d-relations.(2) It removes all d-relations (they are all in Â).(3) For every tuple in a d-relation, like (x, y, z) ∈ R[∗∗abdd∗d], it 
reates a
orresponding tuple (x, y, dA, dA, z, dA) in the relation R[∗∗ab∗∗∗∗]. Themarking of dA is useful here.(4) Finally, it removes the �marking� unary relation.Hen
e, in this 
ase we 
an take for t the QF-term t′(x⊕ D).(
) For the general 
ase, we show that every QF c-operation 
an be expressedas the 
omposition of a bounded number of transformations of the above twoforms.Fix an enumeration a1, . . . , ak of N . (If it is empty 
ase (a) applies.) Let
E = {e1, . . . , ek} ⊆ C∞ be a set of 
onstants disjoint from C and D.Let g be the QFc-transdu
tion that maps a stru
ture C with C[C] = A[C]to the stru
ture g(C) ∈ STR[Σ, D ∪ E] obtained from f(C) by assigning thevalue ai to the new 
onstant ei, for i ≤ k.The de�nition s
heme of g 
an be 
onstru
ted by adding to D the formulas
κcei

:= true where, for ea
h i, c is some element of C su
h that cA = ai. This
hoi
e 
an be made depending only on A[C]. The resulting QFc-transdu
tion gis of the type 
onsidered in 
ase (a). Furthermore, for every stru
ture B with
B[C] = A[C], we have

f(B) = (fgte1◦ · · · ◦ fgtek
)(g(B)) .Hen
e the general 
ase follows by 
ombining the 
onstru
tions of (a) and (b). 2

The main result of this se
tion is the following theorem.
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Theorem 112 Let L ⊆ STR[Σ, C]. The following statements are equivalent:(i) L is QFc-re
ognizable.(ii) LΠ is QF-re
ognizable.(iii) (L ⊲⊳ C)∧ is QF-re
ognizable, for every C with C[C] = C.
PROOF. (ii) ⇔ (iii) Note that, by Lemma 107, for every C, the sets (L⊲⊳C)∧and (L ⊲⊳ C)Π are in bije
tion by an MSO-transdu
tion the inverse of whi
his also an MSO-transdu
tion. It follows from Theorem 51 that one is QF-re
ognizable if and only if the other is. Furthermore, the set {A | A = A[C] }is MSO-de�nable and hen
e re
ognizable. This proves (iii) ⇒ (ii) sin
e

LΠ = {A | A = A[C] or, Â ∈ (L ⊲⊳ C)∧, for some C }and a �nite union of re
ognizable sets is re
ognizable.For the other dire
tion, note that, if LΠ is QF -re
ognizable then so is (L⊲⊳C)Πbe
ause the 
onditions A[C] ∼= C and A ≇ C are MSO-de�nable.(iii) ⇒ (i) Suppose that (L⊲⊳C)∧ is QF -re
ognizable, for every C. Then L⊲⊳Cis the inverse image of (L⊲⊳C)∧ under the �nite-state derived homomorphism ∧(Proposition 111). Hen
e it is QF c-re
ognizable, by Lemma 14. It follows that
L is QF c-re
ognizable sin
e L is a �nite union of re
ognizable sets.(i) ⇒ (iii) We now assume that L is QF c-re
ognizable. Let ≈ be a �nite
ongruen
e saturating L. By repla
ing it if ne
essary by a �ner one, one 
anassume that A ≈ A′ implies that A[C] = A′[C] and the same relations from Σare nonempty in A and in A′. Hen
e this 
ongruen
e saturates ea
h set L⊲⊳C.Consider now the inverse mapping (∧)−1 : STR[Σ(C)] → STR[Σ, C]. For every
C ∈ STR[Σ, C] su
h that C = C[C], one 
an 
onstru
t a QF c-term t, usingboth the relations of Σ(C) (this set 
ontains Σ) and the 
onstants of C su
hthat, for every stru
ture A ∈ STR[Σ, C] ⊲⊳ C, we have A = t(Â ⊕ C).The e�e
t of applying t to Â⊕ C must be to repla
e a tuple like (x, y, u, v, w)in a relation R[∗∗ab∗∗c∗] by the tuple (x, y, aC, bC, u, v, cC, w) ∈ R. This 
anbe done by a QFc-transdu
tion τ : STR[Σ(C)] → STR[Σ, C]. Hen
e, we 
anset t := τ(x).The restri
tion of the 
ongruen
e ≈ to the sets STR[Σ] is a QF -
ongruen
esin
e QF is a subsignature of QF c. It remains to 
he
k that it saturates
(L ⊲⊳ C)∧. Consider a stru
ture A ∈ (L ⊲⊳ C)∧, and suppose that A′ ≈ A.Let B ∈ L ⊲⊳ C be su
h that A = B̂. Sin
e A′[C] = A[C] = A, A[C] ≇ C,and the same relations from Σ(C) o

ur in A and A′, there exists a stru
ture
B′ ∈ STR[Σ, C] ⊲⊳C su
h that A′ = B̂′. Applying the term t de�ned above we
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obtain B = t(A⊕C) and B′ = t(A′⊕C). Hen
e B ≈ B′. But the 
ongruen
e ≈saturates L ⊲⊳ C. Hen
e B′ belongs to L ⊲⊳ C and A′ belongs to (L ⊲⊳ C)∧. Itfollows that ea
h set (L ⊲⊳ C)∧ is re
ognizable. 2

Some variants of the operations of QF c are 
onsidered in [8℄ where it is shownthat one 
an use the following generalization of disjoint union. If A and Bhave a 
ommon set of 
onstants C then their parallel 
omposition A // B isde�ned from their disjoint union by fusing those elements in A and in B thatare denoted by the same 
onstant. The results of this se
tion extend to the
orresponding variant of QF c.
9 Con
lusion
The main results we have established above (Theorem 51, Theorem 68, The-orems 88 and 104, and Theorem 112) tighten even more the relationshipsbetween re
ognizability for algebras of relational stru
tures, monadi
 se
ond-order transdu
tions, and operations on relational stru
tures de�ned in termsof logi
al formulas � quanti�er-free or with a limited form of quanti�
ation. Wehave extended older results on the fusion operation and we gave new uniformproofs in a wider algebrai
 setting.Some questions remain open though. In parti
ular, a uniform treatment of thefusion operation for relational stru
tures would be desirable.Open Question 1 Are the signatures QF and QF ∪ Fuse equivalent?Let us mention some other possible future resear
h dire
tions.(1) Whi
h quanti�er-free operations on relational stru
tures preserve re
og-nizability?(2) Is it true that, if a set of graphs of 
lique width at most k is VRΠ-re
og-nizable, for some set Π of size at most k (or f(k), for some �xed fun
tion f),then it is re
ognizable?(3) Using the signature QFΣ

0 and its distin
tion between auxiliary relationsand those of Σ, one 
an de�ne a 
omplexity measure on relational stru
turesthat generalizes the notion of 
lique width: Given a stru
ture A ∈ STR[Σ], let
w(A) be the minimal number n su
h that there exists a signature Γ and a term
t ∈ T (QF0[Σ,Γ]) with A = valSTR(t) and ∑

R∈Γ ar(R) ≤ n. By Proposition 63,it follows that a set L ⊆ STR[Σ] is the image of a set of terms under an MSO-transdu
tion if and only if w(L) is bounded.
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For the 
ase of the so-
alled HR-operations and HR-re
ognizability, questionsrelated to (1) and (2) have been 
onsidered in [29,32℄. A measure similar to (3)but based on a di�erent signature is investigated in [10℄.
A
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