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Abstract� The major results of Robertson and Seymour on graph well�quasi�ordering
establish nonconstructively that many natural graph properties that constitute ideals
in the minor or immersion orders are characterized by a �nite set of forbidden sub�
structures termed the obstructions for the property� This raises the question of what
general kinds of information about an ideal are su�cient� or insu�cient� to allow the
obstruction set for the ideal to be e�ectively computed� It has been previously shown
that it is not possible to compute the obstruction set for an ideal from a description
of a Turing machine that recognizes the ideal� This result is signi�cantly strengthened
in the case of the minor ordering� It is shown that the obstruction set for an ideal
in the minor order cannot be computed from a description of the ideal in monadic
second�order logic�
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� Introduction

The celebrated results of Robertson and Seymour �RS��� RS��� RS��� prove
the existence of 	nite obstruction sets for arbitrary minor and immersion order
ideals� of which there are many natural examples� Planar graphs are famously a
minor ideal for which the obstructions areK��� andK� 
Kuratowski�s Theorem��
These fundamental results are not eective� in the sense that knowing only a
decision procedure for an ideal F does not provide enough information to be
able to compute the obstruction set for F �FL��a�� In fact� this noncomputability
result is essentially a straightforward corollary to Rice�s Theorem� and has little
speci	cally to do with graph minors�

We are naturally led to investigate what sorts of further information about an
ideal might allow the obstruction set for the ideal to be systematically computed�
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There are a number of apparently di�cult unresolved problems in this general
area� For example� it is unknown whether the obstruction set for an arbitrary
union of ideals F � F� � F� can be computed from the two corresponding
obstruction sets O� and O�� although this can be accomplished if at least one of
these obstruction sets includes a tree �CDDFL����

The main theorem of this paper signi	cantly extends the negative result of
�FL��a�� We prove the following for the minor ordering�
Theorem �� There is no eective procedure to compute the obstruction set for
a minor ideal F from a monadic second order 
MSO� description of F �

This should be contrasted with general positive results concerning the com�
putation of obstruction sets� Fellows and Langston proved in �FL��b� that if we
have access to the three pieces of information�

i� A decision algorithm for F �

ii� A bound B on the maximum treewidth 
or pathwidth� of the graphs in the
set O of F obstructions�

iii� A decision algorithm for a 	nite index congruence for F �
Then O can be eectively computed�

Perhaps surprisingly� the algorithm of �FL��b� has been implemented and
nontrivial� previously unknown obstruction sets for interesting ideals have been
successfully computed �CD��� CDF����

Since 
i� and 
iii� can be eectively derived from an MSO description of F
�Co��a�� our Theorem � shows that 
ii� is essential in the earlier positive result
of �FL��b�� Other work on the systematic computation of obstruction sets has
appeared in �APS��� CDDFL��� GI��� Kin��� KL��� LA��� Lag��� Pr����

� Preliminaries

All of our discussion concerns 	nite simple graphs� A graph H is a minor of
a graph G if a graph isomorphic to H can be obtained from G by a sequence
of operations chosen from the list� 
i� delete a vertex� 
ii� delete an edge� 
iii�
contract an edge� 
When applying the edge contraction operation� any multiple
edges or loops that are formed are removed�� This de	nes the minor partial order
on graphs� denoted G �m H �

A graph H is immersed in a graph G if a graph isomorphic to H can be
obtained from G by a sequence of operations chosen from the list� 
�� delete a
vertex� 
ii� delete an edge� 
iii� lift an edge� 
The meaning of the lift operation
is that a pair of edges uv and vw are replaced by a single edge uw�� This de	nes
the immersion order� denoted G �i H �

An ideal J in a partial order 
U ��� is a subset of U such that if X � J and
X � Y then Y � J � The obstruction set for J is the set of minimal elements of
U � J �

A �lter is a subset J � U such that if X � J and X � Y then Y � J � The
	lter JS generated by a set S � U is de	ned to be the set of all elements of U
that are greater than or equal to some element of S�

JS � fY � �X � S Y � Xg

The syntax of the monadic second order 
MSO� logic of graphs includes the
usual logical connectives ����	� variables for vertices� edges� sets of vertices and
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sets of edges� the quanti	ers 
� � that can be applied to these variables� and the
	ve binary relations�

�� The membership relation u � U where u is a vertex variable and U is a
vertex set variable�

�� The membership relation d � D where d is an edge variable and D is an edge
set variable�

�� The incidence relation �
d� u� where d is an edge variable� u is a vertex
variable� and the interpretation is that the edge d is incident on the vertex u�

�� The adjacency relation �
u� v� where u and v are vertex variables� and the
interpretation is that u and v are adjacent vertices�

�� Equality for vertices� edges� sets of vertices and sets of edges�

If � is a well�formed formula of MSO� then the set of 	nite graphs that are
models of � is denoted F
��� That a graph G is a model of � is denoted G j� ��
The basic reference on MSO graph properties is �Co��a��

� The Main Result

We will use the following lemma due to Courcelle concerning the description in
MSO logic of generated 	lters in the minor order�
Lemma � �Co���� Given an MSO formula �� we can eectively produce an
MSO formula �� such that F
��� is the 	lter generated in the minor order by
F
��� �

Proof Sketch� A graph G has a graph H as a minor if and only if if is possible
to identify a set of disjoint connected subgraphs Gv of G indexed by the vertex
set of H � such that if u and v are adjacent vertices of H � then the corresponding
subgraphs Gu and Gv of G are �adjacent� in the sense that there are vetices
x � Gu and y � Gv such that xy � E
G�� The formula �� can be constructed by
expressing in M�O the statements�

�� There exists a set of edges that forms a forest in G�

�� The exists a set V� of roots for the trees of the forest of 
��� with one root
for each tree�

�� There exists a set E� of edges between the trees of the forest� in the sense of
�adjacency� described above�

The formula �� consists of this preface� followed by � modi	ed by some
substitutions and restrictions�

�� Quanti	cation is restricted to V� and E�� 
These are in some sense the
�virtual� vertices and edges of the minor H of G that the preface asserts to
exist� We are now concerned with expressing that this H is a model of ���

�� Incidence and adjacency terms in � are replaced by statements concerning
suitable paths in the forest of 
��� 
In other words� incidence and adjacency
statements about the virtual vertices and edges� V� and E�� are interpreted with
the means provided by 
��� 
�� and 
���� �

The following proposition is a corollary of a theorem of Trakhtenbrot �Tr���
on the undecidability of the 	rst order logic of graphs 
see �Co��b� for a discus�
sion�� We remark that Seese has shown that undecidability still holds even for
planar graphs �Se��� Se����
Proposition � ��Tr��	 Se���
� Given an MSO formula �� there is no algorithm
to decide if there is a 	nite graph G such that G j� �� �

We can now prove our main result�
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Theorem �� There is no eective procedure to compute the obstruction set for
a minor ideal F from a monadic second order description of F �
Proof� We argue that if there were such a procedure� then we could solve the
problem of determining whether a formula � of MSO has a 	nite model� con�
tradicting Proposition �� Let �� denote the formula computed from � by the
eective procedure of Lemma �� Let � � 	��� We note the following�
� If no 	nite graph is a model of �� then the set of models of �� is empty� and
every 	nite graph is a model of �� Thus � describes an ideal for which the set
of obstructions is the empty set�
� If � has a 	nite model� then �� describes a nontrivial 	lter and � describes
a nontrivial ideal complementary to �� for which the set of obstructions is
nonempty�

By computing the obstruction set for the ideal described by � we can there�
fore determine� on the basis of whether this obstruction set is empty or nonempty�
whether any 	nite graph is a model of �� �

� Summary Discussion

The central question that forms the context of this work is� what sorts of in�
formation about lower ideals allow obstruction sets to be eectively computed�
The main previous results in this area are the following�

�� The obstruction set for an ideal cannot be eectively computed from the
description of a Turing machine that recognizes the ideal �FL��a��

�� Obstruction sets can be computed from the three pieces of information� 
i�
a Turing machine that recognizes the ideal� 
ii� a bound on the maximum ob�
struction treewidth� and 
iii� a 	nite�index congruence for the ideal �FL��b��
These results hold for both the minor and immersion orders�

In this paper we have strengthened the negative result 
�� for the minor
order� since 
i� and 
iii� can be derived from an MSO description of an ideal in
either the minor or immersion orders�

Does our main theorem also hold for the immersion order� Our proof can
be adapted to the immersion order if an analog of Lemma � for the immersion
order can be proved� The di�culty is in 	nding a �virtual� representation of
the vertices and edges of an immersed graph� without knowing in advance how
many vertices and edges there are� 
Given this information� the job becomes
much easier� since the edge representations can then be quanti	ed by separate
sets�� It is conceivable� of course� that an analog of Lemma � does not hold for
the immersion order� even though for any �� we know 
nonconstructively� that
a �� describing the 	lter generated by F
�� in the immersion order exists�
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