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Abstract

We show that an operation on graphs, and more generally, on re-
lational structures that has an inverse definable by a monadic second-
order transduction preserves the family of recognizable sets.

1 Introduction
Several algebras of graphs, and more generally of relational structures, can
be defined in terms of disjoint union as unique binary operation and of
several unary operations defined by quantifier-free formulas. These algebras
are the basis of the extension to graphs and hypergraphs of the theory of
formal languages in a universal algebra setting.

In every algebra, one can define two families of subsets, the family of
equational sets which generalizes the family of context-free languages, and
the family of recognizable sets which generalizes the family of recognizable
languages. Equational sets are defined as least solutions of systems of re-
cursive set equations and not in terms of rewriting rules. Recognizable
sets are defined in terms of finite congruences and not in terms of finite
automata. These purely algebraic definitions which are due to Mezei and
Wright [8] have the advantage of being applicable to every algebra, whereas
rewriting systems and finite automata cannot. One obtains definitions of
"context-free" sets of graphs which avoid the cumbersome analysis of the
confluence of particular graph rewriting systems. The basic definitions and
facts regarding these notions can be found in [2, 5, 6, 7].
Certain closure properties of the families of equational and recognizable

sets are valid at the most general level. In particular, the family of equa-
tional sets of an algebra M is closed under union, intersection with the
recognizable sets and under the operations of this algebra. For an example,
the concatenation of two equational (i.e., context-free) languages is equa-
tional. The family of recognizable sets of an algebra M is closed under
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union, intersection and difference, and under the inverses of unary derived
operations (the operations defined by finite terms over the signature ofM).
The family of recognizable languages (alternatively called rational or reg-
ular) is also closed under concatenation, but this is not a special case of
a general algebraic property, by contrast with the case of equational lan-
guages. In a general algebra, the family of recognizable sets is not always
closed under the operations of the algebra. That these closure properties
are true depends on particular properties of the considered algebra.

Which properties of an algebra ensure that the family of recognizable sets
is closed under the operations of the algebra?

Two types of answers can be given : algebraic and logical answers. Alge-
braic answers have been given in [4], an article motivated by the study of the
so-called Hyperedge Replacement (HR) algebra of graphs and hypergraphs,
that is connected in a natural way to the notion of tree-width ([6]). The
results of the article [4] can be applied to the case of languages in a quite
simple way: the property of words that uv = wx if and only if there exists
a word z such that u = wz and zv = x, or uz = w and v = zx implies
that the concatenation of two recognizable languages is recognizable, by a
proof that uses only finite congruences and no construction of automata.
Another important case is that of an associative and commutative op-

eration, a useful example being the disjoint union of graphs and relational
structures denoted by ⊕. The corresponding (commutative) concatenation
of subsets preserves recognizability because the equality u ⊕ v = w ⊕ x is
equivalent to the existence of y1, y2, y3, y4 such that u = y1⊕y2, v = y3⊕y4,
w = y1 ⊕ y3 and x = y2 ⊕ y4.

The article [4] establishes that the family of HR-recognizable sets of
graphs is closed under the operations of the HR-algebra. One might think
that these results would extend without difficulties to the somewhat simi-
lar Vertex Replacement (VR) algebra of graphs (which we define below).
However this is not the case as we will see in the next section.

In the present article, we do not answer the above question in full gener-
ality, but we give a sufficient condition for algebras of finite relational struc-
tures (hence also of finite graphs) whose operations are disjoint union and
unary operations defined by quantifier-free formulas, that we call quantifier-
free definable operations. We are particularly interested by these algebras
because every monadic second-order definable set of finite relational struc-
tures is recognizable (see Theorem 3 below). Our main result (Theorem 6) is
a direct consequence of a result of [2]. It relates the preservation of recogniz-
ability in the algebra of relational structures under a unary operation to the
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existence an inverse for this operation that is a monadic second-order trans-
duction. The present article continues the exploration done in particular in
[1, 2, 3, 6, 7] of the deep links between algebraic and logical properties, more
precisely here, between recognizability and monadic second-order logic.

2 The VR-algebra of simple graphs.
Graphs are finite, simple (without multiple edges), directed, and loop-free.
Let C be a countable set of labels containing the set of nonnegative integers.
A C-graph is a graph G given with a total mapping labG from its vertex set
VG to C. Hence G is defined as a triple hVG, edgG, labGi where edgG is the
binary edge relation. We call labG(v) the label of a vertex v. We denote
by π(G) the finite set labG(VG) ⊆ C, and we call it the type of G. The
operations on C-graphs are the following ones :
(i) We define a constant 1 to denote an isolated vertex labelled by 1.
(ii) For i, j ∈ C with i 6= j, we define a unary function addi,j such that:

addi,j(hVG, edgG, labGi) = hVG, edg0G, labGi

where edg0G is edgG augmented with the set of pairs (u, v) such that
labG(u) = i and labG(v) = j. In order to add undirected edges (considered
as pairs of opposite directed edges), we take :

addi,j(addj,i(hVG, edgG, labGi)).

(iii) We let also reni→j be the unary function such that

reni→j(hVG, edgG, labGi) = hVG, edgG, lab0Gi

where lab0G(v) = j if labG(v) = i, and lab0G(v) = labG(v), otherwise.
This mapping relabels into j every vertex label i.
(iv) Finally, we use the binary operation ⊕ that makes the union of

disjoint copies of its arguments. Hence the graph G⊕H is well-defined up
to isomorphism.

We denote by FV R the countable set of all these operations, including
the constant 1. The VR-algebra has for domain the set G of all isomorphism
classes of C-graphs and the operations of FV R. A well-formed term t
written with the symbols of FV R defines a C-graph G = val(t), actually a
graph up to isomorphism. However, val(t) can be defined as a "concrete"
graph with vertex set Occ1(t) the set of occurrences in t of the constant 1.
A set of C-graphs L is VR-recognizable if there exists an FV R-congruence

≈ on G such that :
(1) G ≈ H implies π(G) = π(H)
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(2) for each finite subset D of C, the congruence ≈ has finitely many
equivalence classes of graphs of type D,
(3) L is the union of a finite set of equivalence classes of ≈.

We will prove below that the disjoint union and the renaming operations
reni→j preserve VR-recognizability. (A more complicated proof can be
based on the algebraic lemmas of [4].) However :

Proposition 1 : The operation adda,b does not preserve recognizability.
The operation that deletes all edges does not either.

Proof : Here is a counter-example. One takes the set L of finite directed
graphs G of type {a, b} consisting of pairwise nonadjacent edges linking
one vertex labelled by a to one vertex labelled by b. Hence, we have as
many a-labelled vertices as b-labelled ones. This set is definable in monadic
second-order logic (and even in first-order logic) hence is VR-recognizable
by a general theorem (see [3, 6], Theorem 3 below). The set K = adda,b(L)
consists of complete bipartite graphs Kn,n. And this set is not recognizable,
because otherwise, so would be the set of terms of the form adda,b([a ⊕
(a ⊕ (...a))..)] ⊕ [b ⊕ (...(b ⊕ b)..)]) having n occurrences of a defined
as ren1→a(1) and n occurrences of b defined as ren1→b(1) with n >
0. By a standard pumping argument this set is not recognizable. The
proof is similar for the operation that deletes all edges. One uses the terms
[a⊕ (a⊕ (...a))..)]⊕ [b⊕ (...(b⊕ b)..)]. ¤

We now describe the logical setting that will help to investigate recog-
nizability. We formulate it not only for graphs but for finite relational
structures.

3 Relational structures and monadic second-order
logic

Let R = {A,B,C, ...} be a finite set of relation symbols each of them given
with a nonnegative integer ρ(A) called its arity. We denote by ST R(R) the
set of finite R-structures S = hDS , (AS)A∈Ri where AS ⊆ D

ρ(A)
S if A ∈ R

is a relation symbol, and DS is the domain of S. If R consists of relation
symbols of arity one or two we say that the structures in ST R(R) are
binary. Binary structures can be seen as vertex- and edge-labelled graphs.
If we have several binary relations say A,B,C, the corresponding graphs
have edges with labels A,B,C.
Monadic Second-order logic (MS logic for short) is the extension of First-

Order logic with variables denoting subsets of the domains of the considered
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structures and atomic formulas of the form x ∈ X expressing the member-
ship of x in a set X. We will denote by MS(R,W ) the set of Monadic
second-order formulas written with the set R of relation symbols and hav-
ing their free variables in a set W consisting of first-order and set variables.
As a typical and useful example, we give an MS formula with free vari-

ables x and y expressing that (x, y) belongs to the reflexive and transitive
closure of a binary relation A :

∀X(x ∈ X ∧ ∀u, v[(u ∈ X ∧A(u, v)) =⇒ v ∈ X] =⇒ y ∈ X).

If the relationA is not given in the considered structures but is defined by
an MS formula, then one replaces A(u, v) by this formula with appropriate
substitutions of variables.
A subset of ST R(R) is MS-definable if it is the set of finite models

of a monadic second-order sentence, i.e., of an MS formula without free
variables. Such a set is closed under isomorphism.

4 Monadic second-order transductions

Monadic second-order formulas can be used to define transformations of
graphs and relational structures. As in language theory, a binary relation
R ⊆ A×B where A and B are sets of words, graphs or relational structures
is called a transduction: A → B. An MS transduction is a transduction
specified by MS formulas. It transforms a structure S, given with an n-
tuple of subsets of its domain called the parameters, into a structure T ,
the domain of which is a subset of DS × [k], (where [k] = {1, ..., k}). It is
noncopying if k = 1. The general definition can be found in [1, 2, 6]. We
only define noncopying MS transductions which are needed in this article.

We let R and Q be two finite sets of relation symbols. Let W be a finite
set of set variables, called parameters. A (Q,R)-definition scheme is a tuple
of formulas of the form :
∆ = (ϕ,ψ, (θA)A∈Q)
where ϕ ∈MS(R,W ), ψ ∈MS(R,W ∪ {x1}),
and θA ∈MS(R,W ∪ {x1, · · · , xρ(A)}), for A ∈ Q.

These formulas are intended to define a structure T in ST R(Q) from a
structure S in ST R(R). Let S ∈ ST R(R), let γ be a W -assignment in S.
A Q-structure T with domain DT ⊆ DS is defined in (S, γ) by ∆ if :
(i) (S, γ) |= ϕ
(ii) DT = {d | d ∈ DS , (S, γ, d) |= ψ}
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(iii) for each A in Q : AT = {(d1, · · · , dt) ∈ Dt
T | (S, γ, d1, · · · , dt) |=

θA}, where t = ρ(A).

Since T is associated in a unique way with S, γ and ∆ whenever it
is defined, i.e., whenever (S, γ) |= ϕ, we can use the functional notation
def∆(S, γ) for T . The transduction defined by ∆ is the binary relation :

def∆ := {(S, T ) | T = def∆(S, γ) for some W -assignment γ in S}.

A transduction f ⊆ ST R(R)×ST R(Q) is a noncopying MS transduc-
tion if it is equal to def∆ (up to isomorphism) for some (Q,R)-definition
scheme ∆. We will also write functionally : def∆(S) := {def∆(S, γ) | γ
is a W -assignment in S}. A definition scheme without parameters de-
fines a parameterless MS transduction, which is actually a partial function:
ST R(R) −→ ST R(Q).

A quantifier-free definable operation (a QF operation in short) is a para-
meterless noncopying MS-transduction δ : ST R(R) −→ ST R(Q) defined
by a scheme ∆ = (ϕ,ψ, (θA)A∈Q) such that the formula ϕ is equivalent to
True, and the formulas θA are without quantifiers (whence also without
set variables). This implies that δ is total. Furthermore, we say that such
an operation is nondeleting if the formula ψ is equivalent to True. This
condition implies that the domains of S and of δ(S) are the same.
A labelled graph hVG, edgG, labGi of type contained in D will be rep-

resented by the relational structure bGc = hVG, edgG, paG, ..., pdGi where
D = {a, ..., d} and pxG(u) is true if and only if labG(u) = x. Through this
representation, the unary operations adda,b and rena→b are quantifier-free.
This means that for some QF operation α, we have α(bGc) = badda,b(G)c
for all graphs G of type contained in D, and similarily for rena→b.
The composition of two transductions is defined as their composition as

binary relations. If they are both partial functions, then one obtains the
composition of these functions. The inverse image of a set L ⊆ ST R(Q)
under a transduction δ : ST R(R) −→ ST R(Q) is the set of elements S
of ST R(R) such that δ(S) ∩ L is not empty. It is denoted by δ−1(L).
(Equality of structures is understood up to isomorphism, hence δ−1(L) is
closed under isomorphisms.)

Proposition 2 ([6]) : 1) The composition of two MS transductions is
an MS transduction.
2) The inverse image of an MS-definable set of structures under an MS

transduction is MS-definable.
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5 The many-sorted algebra of relational structures

We now make the family of sets ST R(R) for all relational signatures R
into a many-sorted algebra STR, where each R is a sort and ST R(R)
is the corresponding domain. Here are the operations. First we define a
disjoint union ⊕ : ST R(R)× ST R(Q) −→ ST R(R ∪ Q) for each pair of
sorts (R,Q) (using the same notation for all of these operations). Then
we also let in the signature all QF operations : ST R(R) −→ ST R(Q)
for all pairs of sorts (R,Q). For each pair (R,Q) there are actually only
finitely many such operations (see [7], Appendix A). We take the constant ∗
denoting the structure in ST R(∅) with a single element. We could actually
take other constants, this would not affect the results stated below because
recognizability does not depend on the set of constants. We let FQF be this
signature. The notation refers to the role of QF operations.

A subset of ST R(R) is QF -recognizable if it is a (finite) union of classes
of an FQF -congruence on STR (equivalent elements must have the same
sort) that has finitely many classes in each domain ST R(R).

The labelled graphs having a type included in a finite set D are repre-
sented by relational structures bGc = hVG, edgG, paG, ..., pdGi in STR({edg}∪
{pa, ..., pd}) whereD = {a, ..., d}. A set of labelled graphs is VR-recognizable
if and only if it is QF-recognizable, and it is VR-equational if and only if it
is QF-equational ([BC] Theorem 68).

Theorem 3 ([3, 6]) : If a subset of ST R(R) is MS-definable, then it
is QF -recognizable.

Theorem 4 ([2], Theorem 51) : The inverse image of aQF -recogniza-
ble set of relational structures under an MS transduction isQF -recognizable.

The following definition is new.

Definition 5 : Let θ be a mapping that associates with every structure
S in ST R(R) a structure T in ST R(Q) with same domain. It is MS-
invertible if there exists a noncopying and nondeleting MS transduction ξ
with set of parameters W such that, for all structures S and T :
(1) if θ(S) = T , then there exists aW -assignment γ such that ξ(T, γ) =

S,
(2) for every W -assignment γ such that ξ(T, γ) is defined, we have

θ(ξ(T, γ)) = T.
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As an example, we can observe that the operation rena−→b is MS-
invertible. Let H = rena−→b(G) be obtained from G by replacing each
vertex label a by b. This means that the sets X and Y of vertices labelled
by a and by b are made into a unique set X ∪ Y , the set of vertices of H
labelled by b. To recover G from H, it is enough to use a set parameter Z
that guesses, among the vertices labelled by b those which were originally
labelled by a. Clearly, for each set Z of vertices labelled by b, one obtains
a graph G such that H = rena−→b(G), and every such G is of this form.
On the contrary, the operation adda,b is not MS-invertible: the inverse

MS-transduction would need to guess a set of edges to be deleted. This is
not possible without using edge set quantifications, which is not what we
are doing here (but can be done in relation with the HR-algebra, see [1, 6]).
However, the restriction of adda,b to the set of graphs that have no edge
from an a-labelled vertex to a b-labelled one is MS-invertible, and its inverse
MS-transduction is parameterless.

Theorem 6 : Every MS-invertible mapping preserves QF -recognizabili-
ty.

Proof : Let θ be an MS-invertible mapping : ST R(R) −→ ST R(Q)
with inverse MS transduction ξ, using a set of parameters W . Let L ⊆
ST R(R) be recognizable. We claim that θ(L) = ξ−1(L), which will yield
the result by Theorem 5.
If T = θ(S), S ∈ L there exists a W -assignment γ such that ξ(T, γ) = S,

hence T belongs to ξ−1(L). Conversely, if T ∈ ξ−1(L), then ξ(T, γ) ∈ L for
some W -assignment γ hence θ(ξ(T, γ)) = T and T ∈ θ(L). ¤

Remarks : (1) The proof of Theorem 5 in [2] uses the fact that the QF
operation that deletes a unary relation preserves recognizability (Proposi-
tion 58). Such an operation is clearly MS-invertible. The proof of Proposi-
tion 58 is done with the algebraic techniques of [4]. (Since recognizability
is an algebraic notion, algebraic constructions must be used somewhere.)
(2) The same proof yields that MS-invertible QF operations preserve

MS-definability, whereas a QF operation like adda,b does not.

Question 7 : Which QF operations are MS-invertible ?

It does not seem easy to give necessary and sufficient conditions. We
have already given examples and counter-examples (with help of Proposition
1). The operation that relabels a binary symbol, say A into B, does not
preserve recognizability. The proof is as in Proposition 1. Here is a related
question.
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Question 8 : Does there exist a QF operation that is not MS-invertible
but preserves QF -recognizability.

We now consider in a similar way the disjoint union ⊕ : ST R(R)×
ST R(Q) −→ ST R(R ∪ Q). Let mark be a unary relation not in R ∪
Q. Let us define the marked disjoint union ⊕mark : ST R(R)× ST R(Q)
−→ ST R(R ∪ Q ∪ {mark}), such that S ⊕mark T = S ⊕ T augmented
with mark(u) for every u in the domain of T . It clear that there are two
parameterless QF operations ξ1 and ξ2 such that for every structure Z :
(1) ξ1(Z) and ξ2(Z) are defined if and only if Z = S ⊕mark T for some

S in ST R(R) and some T in ST R(Q),
(2) and if this is the case S and T as in (1) are unique and

Z = ξ1(Z)⊕mark ξ2(Z) .

Theorem 9 : Disjoint union preserves QF -recognizability.

Proof : Let L ⊆ ST R(R) and K ⊆ ST R(Q) be recognizable. Let
M = L⊕mark K. We claim that M = ξ−11 (L) ∩ ξ−12 (K).
If Z = S ⊕mark T ∈M , S ∈ L, T ∈ K, then ξ1(Z) = S and ξ2(Z) = T ,

hence Z ∈ ξ−11 (S) and Z ∈ ξ−12 (T ), Z ∈ ξ−11 (L) ∩ ξ−12 (K). Conversely,
if Z ∈ ξ−11 (L) ∩ ξ−12 (K) then ξ1(Z) = S ∈ L and ξ2(Z) = T ∈ K and
Z = S⊕mark T ∈ L⊕markK =M . This proves the claim, and by Theorem
5, ξ−11 (L) and ξ−12 (K) are recognizable and so is their intersection M .
The image of M under the QF operation that deletes mark is recogniz-

able by Proposition 58 of [2], and this image is L⊕K. ¤

A similar proof shows that disjoint union preserves MS-definability.

The family of recognizable sets of relational structures is thus preserved
under disjoint union and MS-invertible QF operations. These operations
form a subsignature F inv−QF of FQF . From general facts discussed in depth
in [2], it follows that the F inv−QF -equational sets form a subfamily of the
QF -equational ones, and that the QF -recognizable sets form a subfamily of
the F inv−QF -recognizable ones. If those two inclusions are equalities, then
we say that the signatures F inv−QF and FQF are equivalent.

Question 10 : Is the signature F inv−QF equivalent to FQF ?

Let us first go back to the case of the VR-algebra. The signature
FV R is equivalent to the restriction to graphs of the signature FQF ([3]
and Theorem 4.5 of [7]). Furthermore, one can eliminate from FV R the
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operations adda,b and replace them by derived operations of the form
G ⊗λ H = λ(G ⊕ H) where λ is a composition of adda,b operations and
of relabellings that only create edges between G and H (and not inside G
or H). One obtains an algebra of graphs with the same recognizable sets
([7], Proposition 4.9) and the same equational sets. For each operation ⊗λ
a pair of inverse MS-transductions like ξ1 and ξ2 for ⊕ can be defined so
that the operations ⊗λ preserve recognizability. In this way we can handle
the problem of the non-MS-invertibility of adda,b.
Could we do the same for FQF ? There is another difficulty with the

QF operations that delete relations of arity more than one, and those which
rename them, because, as observed above, they are not MS-invertible. A
subsignature of FQF equivalent to it is defined in [2] but it uses these non-
MS-invertible operations. We leave open Question 10.
As final comment, we observe that the result of [4] stating that the

family of HR-recognizable sets of graphs and hypergraphs is closed under the
operations of the HR-algebra can be proved by the tools used for Theorems
6 and 9.
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