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Abstract. This article establishes that the split decomposition of graphs introduced by
Cunnigham, is definable in Monadic Second-Order Logic.This result is actually an instance
of a more general result covering canonical graph decompositions like the modular decom-
position and the Tutte decomposition of 2-connected graphs into 3-connected components.
As an application, we prove that the set of graphs having the same cycle matroid as a given
2-connected graph can be defined from this graph by Monadic Second-Order formulas.

1. Introduction

Hierarchical graph decompositions are useful for the construction of efficient algorithms,
and also because they give structural descriptions of the considered graphs. Cunningham
and Edmonds have proposed in [18] a general framework for defining decompositions of
graphs, hypergraphs and matroids. This framework covers many types of decompositions.
Of particular interest is the split decomposition of directed and undirected graphs defined
by Cunningham in [17].

A hierarchical decomposition of a certain type is canonical if, up to technical details
like vertex labellings, there is a unique decomposition of a given graph (or hypergraph, or
matroid) of this type. To take well-known examples concerning graphs, the modular decom-
position is canonical, whereas, except in particular cases, there is no useful canonical notion
of tree-decomposition of minimal tree-width. The general results of [18] define canonical
decompositions.

The present article shows that many of these canonical decompositions can be defined
by monadic second-order (MS) formulas ”inside” the considered graphs or hypergraphs (we
do not consider decompositions of matroids in this article). More precisely, we prove that
under the quite natural and generally satisfied hypothesis that the elementary decomposition
steps are definable by an MS formula, the mapping from a graph or a hypergraph to the
tree representing its canonical decomposition (of the type under consideration) is a monadic
second-order (MS) transduction, i.e., a transformation of relational structures defined by
MS formulas. Furthermore, in many concrete cases, a certain relational structure based
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on this tree represents the considered decomposition, in such a way that the decomposed
graph can be reconstructed from it. We call it a graph representation of the decomposition
in the case where it uses relations of arity at most 2. Otherwise, we call it a hypergraph
representation (because relational structures can be viewed as directed labelled ranked
hypergraphs). These representations can be constructed from the graphs (equipped with
arbitrary linear orderings of their sets of vertices or edges) by MS transductions. Roughly
speaking, we obtain that, from the point of view of MS logic, a graph is equivalent to the
graph or hypergraph representation of its canonical decomposition, which means that an
MS property of the canonical decomposition of a graph G is (equivalent to) an MS property
of G and conversely, that an MS property of G is (equivalent to) an MS property of the
(hyper)graph representation of its canonical decomposition.

This article contributes to the understanding of the power of MS logic for represent-
ing graph properties and graph theoretical notions like canonical graph decompositions
and equivalences on graphs. When a graph property is expressible in MS logic, it can be
checked in polynomial time on graphs of bounded tree-width or clique-width. When a graph
transformation is expressible in MS logic, it preserves the property that a set has bounded
tree-width or clique-width. We refer the reader to [10] and [14] for detailed expositions of
these consequences.

Why are canonical decompositions interesting? Canonical decompositions and their
(hyper)graph representations are interesting for several reasons.

First they contain useful informations on the structure of the graphs. This structural
information has two forms: the tree, and the elementary graphs from which the considered
graph is built. In most cases, hierarchical decompositions can be viewed as constructions of
graphs or hypergraphs by means of particular composition operations (like graph substitution
in the case of modular decomposition) in terms of prime graphs or hypergraphs, i.e., of those
which are undecomposable. We will discuss this ”algebraic” aspect whenever relevant.

Second, hierarchical graph decompositions are useful for the construction of polynomial
algorithms. For example, the first step of the polynomial algorithm recognizing circle graphs
by Bouchet [2] consists in constructing the split decomposition of the given graph. It uses
the fact that a graph is a circle graph if and only if each component of its split decomposition
is a circle graph. The planarity testing algorithm by Hopcroft and Tarjan [25] begins with
the decomposition of a graph into 3-connected components. Hence a good understanding
of hierarchical graph structure is useful for constructing low degree polynomial algorithms.

Third the (hyper)graph representation of the canonical decomposition of a graph re-
quires in many cases less space to be stored than the given graph.

Finally, canonical decompositions are also useful for establishing logical properties. For
example, it is proved in [12] that Seese’s Conjecture holds for interval graphs, and that
it holds in general if and only if it holds for comparability graphs. The proof makes an
essential use of modular decompositions. (Seese’s Conjecture says that if a set of graphs has
a decidable satisfiability problem for MS logic, then it has bounded clique-width. A slight
weakening of this conjecture is established in [16]).

The companion article [6] develops an application of split decomposition to circle graphs
that we review briefly. A circle graph is the intersection graph of a set of chords of a circle.
A graph is a circle graph if and only if all components of its split decomposition are circle
graphs. Those components which are prime are uniquely representable as intersection graphs
of sets of chords. It is proved in [6] that the unique representation of a prime circle graph
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can be defined by MS formulas (one uses a description of sets of chords by finite relational
structures). From the split decomposition of a circle graph G and the chord representations
of its prime components, one can define all chord representations of G. And this can be
done by MS formulas, since the split decomposition and the chord representations of the
prime components of G can be defined by MS formulas. Hence, from a given circle graph,
one can define by MS formulas (using also linear orders of the sets of its vertices), all
chord representations of this graph. (To be precise, this construction rests upon a result by
Courcelle and Oum [16] which uses MS formula with set predicates of the form Even(X)
expressing that a set X has even cardinality.)

In the present article, we prove a result of the same general form: all 2-connected graphs
equivalent to a given graph G, in the sense that they have the same cycle matroid, can be
defined from G and the linear orderings of its vertices by a fixed MS transduction. As for
circle graphs, the proof uses a canonical decomposition of the considered graph, constructed
by MS formulas, from which can be defined all the equivalent graphs. This construction is
based on Whitney’s 2-isomorphism theorem, which characterizes the graphs equivalent to
G as those derived from G by a sequences of transformations called twistings.

Main results and overview of the article. First, we give a general set theoretical
and logical setting in which decompositions of combinatorial structures can be defined.
This framework covers actually two cases. In the first case, studied in Section 2, the
decomposition tree is rooted and directed. The fundamental example is the very well-
known modular decomposition. The decompositions of this type correspond to definitions
of graphs by algebraic expressions based on graph operations. In Section 3, we consider the
second case, where the decomposition tree is unrooted and undirected. In both cases, and
under easily applicable conditions, we prove that the decomposition tree is definable by MS
formulas, which generalizes the MS definability result of the modular decomposition of [9].
In Section 4 we develop the application to the split decomposition of Cunnigham [17] and
we prove its MS definability, which is our second main result. We do not assume the reader
familiar with this notion and this section presents it in detail. We prove in Section 2 the
”logically effective” version of the above mentioned theorem by Whitney. Appendices 1 and
2 review definitions, basic properties and technical lemmas on MS logic, MS transductions
and clique-with. This work has been presented at the International Conference on Graph
Theory, Hyères, France, in September 2005.

2. Partitive families of sets

Trees, graphs and relational structures are finite. Two sets meet if they have a nonempty
intersection. They overlap if they meet and are incomparable for inclusion. We write A ⊥ B
if and only if A and B overlap. The terms minimal, least, and maximal applied to sets refer,
unless otherwise specified, to inclusion.

2.1. Rooted trees and families of sets. We define the family of sets associated with a
partition of a set V , the blocks of which form a rooted tree. This is a generalization of the
modular decomposition of a graph where V is its set of vertices.
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Definition 2.1. Set families and trees. A rooted tree T has its edges directed so that every
node is accessible from the root by a unique directed path. The leaves are the nodes of
outdegree 0. The other nodes are the internal nodes. The set of nodes is denoted by NT

and the set of internal nodes by N int
T . Although a tree is a graph, we will use the term

”nodes” for the vertices of a tree (or a forest). This particular terminology will be useful
for clarity in situations where we discuss simultaneously a graph and a tree representing it.
A rooted tree is proper if no node has outdegree 1, hence if every node is either a leaf, or
has at least two sons. We denote the son relation by sonT .

Let T be a rooted tree and V = (V (u))u∈NT
be a partition of a nonempty set V such

that V (u) is nonempty if u is a leaf (but is possibly empty otherwise). For each node u,
we let T (u) be the rooted subtree consisting of u (its root) and the nodes reachable from u
by a directed path. We let V (u) be the union of the sets V (z) where z is a node of T (u).
Hence, V (u) = V if u is the root. The family F = F(T,V) of sets V (u) has the following
properties:

(P0) V ∈ F , ∅ /∈ F ,
(P1) no two elements of F overlap.

An element of a family F of subsets of a set V will be called an F-module. Every
family F satisfying properties P0 and P1 is associated as above with a rooted tree TF that
is defined as follows. We take F as set of nodes, V as root, the inverse of inclusion as
ancestor relation. The leaves are the minimal F-modules. For a node N , we let V (N) =
N −

⋃
{M ∈ F | M ⊂ N} and we denote this family of sets by VF . We have VF (N) = N .

Hence F(TF ,VF ) = F . We have VF (N) 6= ∅ for every node N of outdegree 1. Every pair
(T,V) such that F(T,V) = F and VF (N) is nonempty for every node N of outdegree 1 is
isomorphic to (TF ,VF ) (this means that there exists an isomorphism h of T onto TF such
that VF (h(u)) = V (u) for every node u of T ).

If M,P ∈ F their least common ancestor in TF is the least F-module N containing
M ∪P . We define a binary relation boxTF

(x,N) holding if and only if x belongs to VF (N).
We also define a binary relation modTF

(x,N) holding if and only if x belongs to VF (N).
This relation is membership since the nodes of TF are the F-modules. However, it will be
useful later when we construct TF as an abstract tree, and not as a set of sets ordered by
inclusion. The relations boxTF

and modTF
are definable from each other with the help of

the son relation of the tree TF .
If the family F satisfies the stronger property:

(P’0) V ∈ F , ∅ /∈ F , {v} ∈ F for each v ∈ V ,

then the leaves of TF are the singletons {v}, TF is a proper tree and VF (u) is empty if u is an
internal node. If a family F satisfies only P0 and P1, then the family F+ = F∪{{v} | v ∈ V }
satisfies P’0 and P1. The corresponding tree TF+ is obtained from TF as follows: for each
v such that {v} /∈ F , we add {v} as a new leaf with father the least F-module containing
v.

Let C be a class of relational structures (see Appendix 1 for definitions). For each S ∈ C,
we let F(S) be a family of subsets of its domain DS . We say that F is MS-definable if there
exists an MS formula ϕ(X) such that for every S in C, F(S) = {A | A ⊆ DS , S |= ϕ(A)}.
With these definitions:

Proposition 2.2. Let C be a set of R-structures and F(S) be an MS-definable family of
subsets of DS which satisfies P0 and P1 for every S ∈ C. There exists a domain extending
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MS-transduction that associates with (S,4), where S = 〈DS , (RS)R∈R〉 ∈ C and DS is
linearly ordered by 4, the structure:

Dec(S) = 〈DS ∪NT , (RS)R∈R, sonT , boxT 〉

where T = TF(S) and boxT = boxTF(S)
.

We will give a proof of this proposition adapted from that of [9], Section 5. In the
structure Dec(S) the domain consists of elements of different natures. If we are given a
structure 〈DU , (RU )R∈R, sonU , boxU 〉 intended to be isomorphic to 〈DS ∪ NT , (RS)R∈R,
sonT , boxT 〉 we can identify the nodes of T as the elements x of DU such that sonU (x, y) or
sonU(y, x) or boxT (y, x) holds for some y. (We assume DS nonempty; T may have a single
node).

Monadic Second-order logic (MS logic in short) and Monadic Second-order transduc-
tions (MS transductions) are defined in Appendix 1. We only recall here that an MS
transduction (also called sometimes an MS interpretation) is a transformation of relational
structures that is specified by MS formulas forming its definition scheme. It transforms
a structure S into a structure T (possibly over a different set of relations) such that the
domain DT of T is a subset of DS × {1, . . . , k}. The numbers 1, . . . , k are just a conve-
nience for the formal definition; we are actually interested by relational structures up to
isomorphism. In many cases, this transformation involves a bijection of DS onto a subset
of DT , and the definition scheme can be constructed in such a way that this bijection is
the mapping: x 7→ (x, 1). Hence, in this case DT contains DS × {1}, an isomorphic copy
of DS and we will say that the MS transduction is domain extending, because it defines
the domain of T as an extension of that of S. This does not imply that the relations of T
extend those of S. An FO transduction is a transduction defined by a first-order definition
scheme.

Definition 2.3. The leaves of a tree. Let T be a proper rooted tree. We write x ≤ y if x is
below y and we denote by y ∨ z the least upper bound of two elements y and z. The root is
thus the unique maximal element of T for this order. We let λ(T ) = 〈Leaves(T ), RT 〉 where
Leaves(T ) denotes the set of leaves of T and RT (x, y, z) holds if and only if x ≤ y ∨ z. The
next lemma shows that if Leaves(T ) is linearly ordered by some auxiliary order 4, then T
is definable from (λ(T ),4) by a domain extending MS-transduction. The resulting tree T
does not depend on the linear order 4.

Lemma 2.4. There exists a domain extending FO transduction that maps (λ(T ),4) to T ,
whenever T is a proper rooted tree and 4 is a linear order on Leaves(T ).

Proof. Let T be a proper rooted tree and 4 be a linear order on its leaves. For every internal
node x of T we let:

• fl(x) be the 4-smallest leaf below x, called the first leaf below x, and we let fs(x)
be the unique son y of x such that fl(x) ≤ y;
• rep(x) be the 4-smallest leaf below x and not below fs(x) (this is well-defined

because in a proper tree, every internal node has at least two sons).

We call rep(x) the leaf representing x. We have fl(x) < x, rep(x) < x, and fl(x) ≺ rep(x).

Claim 1: Let x, y be two internal nodes. If rep(x) = rep(y) then x = y.

Proof of the claim. By contradiction. Let x, y be distinct internal nodes such that u =
rep(x) = rep(y). Since u is below x and y, x and y are comparable. We can assume that
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x < y. By the definitions, u is not below fs(x). Hence fl(x) ≺ u and fl(x) ≤ fs(x) < x.
Since x < y, u and fl(x) are below the same son of y, call it z; we may have x = z. We have
fl(y) ≤ fs(y) < y, where fs(y) 6= z since u = rep(y). Hence, since u = rep(y), u is the
4-smallest leaf among the set of leaves below y and not below fs(y), and this set contains
fl(x). Hence u 4 fl(x), contradicting the above observation that fl(x) ≺ u.

One can define a bijection of the nodes of T onto a subset of λ(T )×{1, 2}. Each leaf u
is mapped to (u, 1), hence the transduction we are constructing will be domain extending.
Each internal node u is mapped to (rep(u), 2).

Claim 2: One can write a first-order formula α(x, y, z) such that:

(λ(T ),4) |= α(x, y, z) if and only if x 6= y and z = rep(x ∨ y) .

Proof of the claim. We recall that R(u, v,w) means: u ≤ v ∨ w for leaves u, v,w. The
relation ≤ denotes the ancestor relation in T and should not be confused with the linear
order 4 on the set of leaves of T . Using R, one can construct an FO formula β(x, y, z)
expressing that x 6= y and z = fl(x∨ y). An FO formula γ(x, y, u, v) can be constructed to
express that:

x 6= y, u 6= v, u ≤ x ∨ y, v ≤ x ∨ y, x ≤ u ∨ v, and y ≤ u ∨ v ,

which means that for leaves u, v 6= u, x, y 6= x, u and v are below x ∨ y but are not below
the same son of this node. We can construct α(x, y, z) so as to express the following:

∃u[β(x, y, u) ∧ ”z is the 4-smallest element such that γ(x, y, u, z) holds”] .

This completes the proof Claim 2.

We let N = (λ(T )×{1})∪ (REPT ×{2}), where REPT is the set of leaves of the form
rep(x ∨ y) for some leaves x, y 6= x. We order N by letting:

(x, 1) ≤ (y, 1) if and only if x = y,

(x, 2) ≤ (y, 1) never holds,

(x, 1) ≤ (y, 2) if and only if there exist leaves u, v such that

y = rep(u ∨ v) and RT (x, u, v) holds,

(x, 2) ≤ (y, 2) if and only if there exist leaves u, v,w, z such that

x = rep(u ∨ v), y = rep(w ∨ z), RT (u,w, z) and RT (v,w, z) hold.

Claim 3 : The tree (T,≤) is isomorphic to (N,≤) under the bijection which maps a leaf u
of T to (u, 1) and an internal node u to (rep(u), 2).

Proof of the claim. The four clauses above correspond to the facts that two different leaves
are incomparable, that an internal node cannot be below a leaf, that a leaf x is below an
internal node u∨ v if and only if RT (x, u, v) holds, and that an internal node u∨ v is below
w ∨ z if and only if u and v are both below w ∨ z.

These claims give the desired result because the set REPT is FO definable in the
structure (λ(T ),4) by Claim 2. The ancestor relation defined by the formulas before Claim
3 is also FO definable. From it, one can obtain an FO definition of the son relation. Hence,
we have an FO transduction as claimed.
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Remark. On the role of 4. The role of the linear order 4 is to make possible the con-
struction of a set REPT so that FO formulas can specify in a unique way the element of
REPT intended to represent an internal node, and to express in terms of this encoding, the
son relation of T . The tree T is uniquely defined for every structure λ(T ). Uniquely means
here that if T and T ′ are such that λ(T ) = λ(T ′), there is a unique isomorphism of T onto
T ′ that is the identity on leaves.

Proof of Proposition 2.2. We will use F(S)+ instead of F(S). (We have F(S)+ = F(S) if
F(S) satisfies P’0). It is clear that F(S)+ is MS definable. We construct a structure with
domain a subset of DS × {1, 2, 3}. Its domain is the union of three sets:

- the set DS × {1}, a copy of DS ,
- the set DS × {2} which is the set of leaves of T = T

F(S)+ (the pair (v, 2) represents

the leaf {v} for each v in DS),
- and of a subset of DS × {3}, namely REPT × {3}, (cf. the proof of Lemma 2.4) in

bijection with the set of internal nodes of T .

The relation RT (z, x, y) is ”z ∈ N where N is the least set in F(S) that contains x and
y”. This is expressible by an MS formula. Hence the structure λ(T ) is definable from S
by an MS-transduction. Since the set of leaves of T is linearly ordered by 4 (because DS

is, and is in bijection with DS) we can obtain T from (λ(T ),4) by a domain extending
MS-transduction.

Then we reduce T = T
F(S)+ into TF(S) by eliminating the leaves (v, 2) such that {v} /∈

F(S). The relation boxTF(S)
is also MS definable since modTF(S)

(x, u) holds (cf. Definition

2.1) if and only if in the tree T
F(S)+ , the singleton {x} is a leaf below u. We obtain thus an

MS transduction. A definition scheme for it can be written from the above description.

Remark. One could alternatively define the domain of the constructed structure as a
subset of DS ×{1, 2} by letting (v, 1) represent simultaneously the element v of DS and the
leaf {v} of TF(S), in the case where {v} ∈ F(S). In this case, the internal nodes of TF(S) are
pairs (v, 2). However, in most cases, we will keep separated the domain DS of the structure
and the set of nodes of its decomposition tree, even if there is a ”natural” bijection between
a subset of DS and a set of nodes of the tree.

An MS property is order-invariant if it is expressible by an MS formula using an
auxiliary linear order 4 of the domain of the considered structure, that can be chosen
arbitrarily. See Appendix 1 for a more precise definition.

Corollary 2.5. Under the hypotheses of Proposition 2.2, every MS property of the struc-
tures Dec(S) for S ∈ C is equivalent to an order-invariant MS property of the structures
S.

Proof. Let P be an MS property of the structures Dec(S). By Proposition A.1.2 (in Ap-
pendix 1), applied to the transduction of Proposition 2.2, P(Dec(S)) is equivalent to an
MS property Q of (S,4), where 4 is any linear order of DS . For any two linear orders 4

and 4 ′ on DS , one obtains isomorphic structures Dec(S) by the remark before the proof
of Proposition 2.2. Hence Q is an order-invariant MS property.
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Definition 2.6. Partitive families of sets Let V be a nonempty set. A family F of subsets
of V is weakly partitive if it satisfies the following properties:

(P0) V ∈ F , ∅ /∈ F .
(P2) For every two overlapping F-modules A and B we have A ∪B, A ∩B, A−B ∈ F .

It is partitive if, in addition, it satisfies the following property:

(P3) For every two overlapping F-modules A and B we have A∆B ∈ F , (where A∆B =
(A−B) ∪ (B −A)).

The strong F-modules are the F-modules which do not overlap any other F-module.
The family Strong(F) of strong F-modules satisfies P0 and P1. The corresponding rooted
tree TStrong(F) is called the decomposition tree of F or of the structure S, if F = F(S) is
known from the context. Its leaves are the minimal F-modules (they are strong). They
are the singletons {v} for all elements v of V if F satisfies P’0. Since a singleton does not
overlap any set, if F is weakly partitive or partitive, then F+ is weakly partitive or partitive
respectively.

The conditions of partitivity and weak partitivity on a family F imply some particular
structure associated with the nodes of TStrong(F). They are formulated in an easier way in
terms of the tree TStrong(F+) rather than in terms of TStrong(F). We recall that the nodes
of TStrong(F+) are subsets of V .

Theorem 2.7. Let F be a partitive family.
(1) Every internal node N of the tree TStrong(F+) satisfies one of the following two proper-
ties:

T1: N has k sons, N1, . . . , Nk, k ≥ 2, and for every nonempty subset I of {1, . . . , k}, the
set

⋃
{Ni | i ∈ I} belongs to F .

T2: N has k sons, N1, . . . , Nk, k ≥ 2, and for every subset I of {1, . . . , k}, the set⋃
{Ni | i ∈ I} belongs to F if and only if I is {1, . . . , k} or singleton.

(2) If an F-module is not strong, it is of the form
⋃
{Ni | i ∈ I} for some node N satisfying

T1 and a non singleton set I ⊂ {1, . . . , k}.
Let F be weakly partitive.

(3) Every internal node N of the tree TStrong(F+) satisfies one of properties T1, T2 or

T3: The sons of N can be numbered N1, . . . , Nk, k ≥ 2, in such a way that for every
subset I of {1, . . . , k}, the set

⋃
{Ni | i ∈ I} belongs to F if and only if I is an

interval [m,n] for some m,n with 1 ≤ m ≤ n ≤ k.

(4) If an F-module is not strong, it is of the form
⋃
{Ni | i ∈ I} for some node N satisfying

T1 and a non singleton set I ⊂ {1, . . . , k}, or of the form
⋃
{Ni | i ∈ [m,n]} for a node N

satisfying T3 and m < n.

See [4, 18, 22, 19, 26] for the proof. The nodes of types T1, T2, T3 are called respectively
the complete nodes, the prime nodes and the linear nodes. In this theorem, one could
require k ≥ 3 in conditions T1 and T3 because the nodes with two sons satisfy T2, and
then properties T1, T2 and T3 would be mutually exclusive. However, in the application
of this theorem to the modular decomposition, properties T1, T2, T3 and the notions of
complete, prime or linear nodes correspond to three different graph operations, and those
corresponding to T1 and T3 may have two arguments only.

This theorem will be used for classes C of relational structures, where for each S in C:
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(i) we have a partitive or weakly partitive MS definable family F(S) of subsets of its
domain DS ,

(ii) for each node N of the decomposition tree of S, one can express S[N ], the substruc-
ture of S induced byN , as a composition of the substructures S[N1], S[N2], . . . , S[Nk]
by an operation f (such operations can be seen as generalized concatenations) where
N1, . . . , Nk are the sons of N ,

(iii) the nature of this operation f can be determined by an MS formula with free vari-
ables which take N1, N2, . . . , Nk as values.

In this case, Proposition 2.2 can be improved, and one can define an MS transduction
that takes as input S = 〈DS , (RS)R∈R〉, together with an arbitrary linear order 4 of DS

and produces a structure Rep(S) consisting of the decomposition tree of S augmented with
some relations which encode the operations f , and from which S can be reconstructed by
an MS transduction. Such a structure contains information on the hierarchical construction
of S, and it is, in some cases, a space efficient representation of S. (See the book by Spinrad
[29] on efficient graph representations in a very general sense).

Hence our method consists in doing the following steps:

(i) first, we construct from (S,4) a structure:

Dec(S) = 〈DS ∪NT , (RS)R∈R, sonT , boxT 〉

which includes S and the decomposition tree T together with the relation boxT

which links both; this structure is independent of 4 up to isomorphism;
(ii) second, we construct, if possible, a structure Rep(S) with domain DS ∪ NT and

relations sonT , boxT together with some relations encoding the operations f . The
objective is here to have a space efficient representation of S, from which S can be
reconstructed by an MS transduction.

In some cases, the structure Rep(S) encodes a term over a signature of operations
on graphs or, more generally, on relational structures, the value of which is S. If these
constructions can be done with MS transductions then Corollary 2.5 applies to Rep(S) in
place of Dec(S). At this point it is not appropriate to formalize more this notion in the
general setting. We rather show its application in two important examples, the modular
decomposition based on the family of nonempty modules of a graph, and the decomposition
in blocks of certain directed acyclic graphs called inheritance graphs. Some new results are
also established.

2.2. The modular decomposition. Graphs are simple, directed, loop-free. Simple means
that there is at most one edge from a vertex x to a vertex y. Graphs are finite, as already
indicated. We denote by x −→ y the existence of an edge from x to y. The undirected
graphs are those where each edge x −→ y has an opposite edge y −→ x. We write x − y
if x −→ y and y −→ x. We denote by VGthe set of vertices of a graph G. If X is a set of
vertices of G, we denote by G[X] its induced subgraph consisting of X and all the edges,
the two ends of which are in X. If E is a set of edges, we denote by G[E] its subgraph
consisting the edges of E and their end vertices.

Definition 2.8. Modules and graph substitution. A module of a graph G is a subset M of
VG such that for every vertices x, y in M and every vertex z not in M : x −→ z implies
y −→ z and z −→ x implies z −→ y. In words this means that every vertex not in M ”sees”
all vertices of M in the same way. This frequently rediscovered notion is surveyed in [26]
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(see also [20] for numerous references using various names for the same notion). The book
by Spinrad [29] contains also many definitions, results, algorithms and references.

We denote byM(G) the family of nonempty modules of a graph G. It satisfies Property
P’0 (each singleton is a module) and is weakly partitive. It is partitive if G is undirected.
We denote by S(G) the corresponding family of strong modules: they are the nonempty
modules that do not overlap any module. The tree of strong modules is called the modular
decomposition, and its leaves are the vertices of the considered graph (”are” means that
we identify v and {v}). The relevant operations that combine substructures are vertex-
substitutions, that we now review.

If G and H are graphs with disjoint sets of vertices, and u is a vertex of G, we denote
by G[H/u] the graph such that:

(a) its set of vertices is VG ∪ VH − {u},
(b) its edges are those of H, those of G that are not incident with u, the edges x −→ y

whenever x ∈ VG − {u}, x −→ u in G, y ∈ VH , and the edges y −→ x whenever
x ∈ VG − {u}, u −→ x in G, y ∈ VH .

If G and H are not disjoint, we replace H by an isomorphic copy disjoint with G. When
we write: let K be a graph of the form G[H/u] we assume, unless otherwise specified, that
G and H are disjoint. This graph is called the result of the substitution of H for u in G. It
is undirected if G and H are.

If u1, . . . , un are vertices ofG andH1, . . . ,Hn are graphs, we defineG[H1/u1, . . . ,Hn/un]
as G[H1/u1] . . . [Hn/un]. The order in which substitutions are done is irrelevant, hence we
can consider they are done simultaneously.

A graph is prime if it has at least 3 vertices and is not of the form G[H/u], except in a
trivial way with G or H reduced to a single vertex. The paths a −→ b −→ c and a−b−c−d
are examples of small prime graphs.

We will also use the graph operations ⊕,⊗ and
−→
⊗ : G ⊕H is the disjoint union of G

and H, G
−→
⊗H is G ⊕ H augmented with edges from each vertex of G to each vertex of

H, and G ⊗ H is G
−→
⊗H augmented with edges from each vertex of H to each vertex of

G. In all cases, we replace if necessary H by an isomorphic copy disjoint with G. These
operations can be defined by K[G/u,H/v] for graphs K with two vertices u and v, and,
respectively, no edge, an edge from u to v, edges between u and v in both directions. They
are associative. We will consider them as operations of variable arity in the usual way.
The operations ⊕ and ⊗ are also commutative. They transform undirected graphs into
undirected graphs. More generally, every graph G can be turned as follows into a graph
operation. We enumerate its vertices as v1, . . . , vn, and we define an n-ary graph operation
σG (where σ stands for substitution) by σG(H1, . . . ,Hn) = G[H1/v1, . . . ,Hn/vn].

Let us go back to modular decomposition. The complete nodes are of two possible
types, ⊕ or ⊗, because if N is a ”complete” strong module with n sons N1, . . . , Nn, then
either G[N ] = G[N1]⊕ · · · ⊕G[Nn] or G[N ] = G[N1]⊗ · · · ⊗G[Nn].

If N is ”linear” with n sons N1, . . . , Nn ordered in this way (cf. T3 in Theorem 2.7),

then either G[N ] = G[N1]
−→
⊗ . . .

−→
⊗G[Nn] or G[N ] = G[Nn]

−→
⊗ . . .

−→
⊗G[N1].

If N is ”prime”, with n sons N1, . . . , Nn then G[N ] = σK(G[N1], . . . , G[Nn]) for some
prime graph K. We have n ≥ 3; the operations corresponding to the graphs K with 2
vertices are ⊕,⊗ and

−→
⊗ .
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The terms complete, linear and prime are defined after Theorem 2.7. If the given graph
is a dag, i.e., a directed graph without circuits, then no node is of type ⊗. If it is undirected,
no node is of type

−→
⊗ .

An MS formula ϕ⊕(X,Y ) can express that X is a complete strong module of type ⊕
and Y is one of its sons. An MS formula ϕ⊗(X,Y ) can do the same for ⊗. An MS formula
ϕ−→

⊗
(X,Y,Z) can express that X is a linear strong module, Y and Z are two sons such that

G[X] = . . .
−→
⊗G[Y ]

−→
⊗G[Z]

−→
⊗ . . . . An MS formula ϕPr(X,Y,Z) can express that X is a prime

strong module, Y and Z are two sons such that G[X] = K[. . . , G[Y ]/ui, . . . , G[Z]/uj , . . . .]
where ui −→ uj in the prime graph K.

By using these formulas, one can build the graph representation of the modular decom-
position of a graph G, denoted by Gdec(G). This is a binary relational structure consisting
of the rooted tree TS(G) enriched with the following informations:

(a) its nodes of types ⊕,⊗ and
−→
⊗ are labelled by their respective types,

(b) if N is a ”linear” node and G[N ] = G[N1]
−→
⊗ . . .

−→
⊗G[Nn], we set an edge Ni −→ Ni+1

for each i = 1, . . . , n− 1.
(c) If N is a ”prime” strong module, Ni and Nj are two sons and

G[N ] = K[. . . , G[Ni]/ui, . . . , G[Nj ]/uj , . . . ] ,

we set an edge Ni −→ Nj whenever ui −→ uj in K.

This representation is in certain cases space efficient. Consider the graph G of a strict
linear order on n elements (in other words, a transitive tournament). This graph has n
vertices and n(n− 1)/2 edges. The graph Gdec(G) has n+ 1 vertices and 2n− 1 edges.

The tree TS(G) and the structureGdec(G) can be constructed by MS transductions using
an arbitrary linear order of the vertices of the given graph as auxiliary information. From
the relational structure Gdec(G), that is actually a vertex- and edge-labelled directed graph,
one can reconstruct G by an MS transduction. We refer the reader to [9] for illustrated
examples and further developments, and to [13] for the extension of these constructions to
countable graphs.

There are two distinct extensions of modular decomposition to hypergraphs: the decom-
position into committees of undirected unranked hypergraphs (see [4, 18]) and the modular
decomposition of k-structures which are k-ary relational structures, hence are labelled di-
rected hypergraphs of rank k (see [20]). In both cases the families of sets are MS definable
and Proposition 2.2 is applicable.

2.3. Factors in directed acyclic graphs. We review some results of Courcelle [11],
Capelle [3], Habib et al. [23] concerning directed acyclic graphs. We show that they can be
reformulated in the framework of this section and slightly improved.

Definition 2.9. 2-graphs and 2-dags In this subsection, we consider directed graphs, pos-
sibly with multiple edges (hence, not necessarily simple, as in the previous section). Those
without circuits (and loops) are called dags (for directed acyclic graphs). We denote by EG

the set of edges of a graph G. A 2-graph is a graph with two distinct distinguished vertices
denoted by s1(G) and s2(G) called its sources. We denote by G0 the underlying graph, i.e.,
the same graph without distinguished vertices (the sources are turned into ”ordinary” ver-
tices). We use ”2-graph” as an abreviation of ”graph with 2 sources” also called sometimes
”2-terminal graph”; 2-graphs are not particular C-graphs in the sense of the definition of
clique-width, recalled in Appendix 2.



12 B. COURCELLE

A 2-dag is a 2-graph without circuits such that s1(G) is the unique vertex of indegree 0,
s2(G) is the unique vertex of outdegree 0 and every vertex is on a directed path from s1(G)
to s2(G). We denote by V 0

G the set VG − {s1(G), s2(G)}, called the set of internal vertices
of G. An orientation of a graph making it into a 2-dag is also called a bipolar orientation.

For example, the graph of the ”Wheatstone bridge” consisting of the directed path
a −→ b −→ c −→ d with additional edges a −→ c and b −→ d is a 2-dag if its two sources
are a and d (in this order) and is a 2-graph and a dag but is not a 2-dag if its two sources
are a and b.

A factor of a 2-dag G is a 2-dag H such that H0 is a subgraph of G0 and if an edge of G
has one end in V 0

H , then it is in H. An edge is a factor (its two ends being the sources) and
a 2-dag is one of its own factors. We let FE(G) denote the set of edge sets of the factors of
G.

The following proposition is proved in [11], Lemma 3.5 and Corollary 3.6. Its first
assertion is also proved in [3] and [23].

Proposition 2.10. For every 2-dag G, the family FE(G) is weakly partitive and MS de-
finable.

Note that FE(G) satisfies Property P’0. The family of strong FE(G)-modules is denoted
by SFE(G). In order to define the tree TSFE(G) of a 2-dag G by an MS transduction we
need to quantify over edge sets. Hence, we represent graphs by their incidence structures.
For a graph G, we let Inc(G) = 〈VG ∪ EG, incG〉 where VG is the set of vertices, EG is
the set of edges and incG is the ternary relation such that incG(e, x, y) holds if and only
if e : x −→ y in G. By the general definitions, the binary relation modSFE(G) defines for
every node x of TSFE(G) the set of edges of the corresponding factor, that we will denote
by G(x); hence G(x) = G[N ] if N is the FE(G)-module represented by the node x. The
following proposition is Theorem 3.12 of [11].

Proposition 2.11. There exists an MS transduction that transforms Inc(G) into Dec(G) =
〈VG ∪ EG ∪NTSFE(G)

, incG, sonTSFE(G)
,modSFE(G)〉 for every 2-dag G.

Although the leaves of TSFE(G) are (or correspond to) the edges of G, we keep NTSFE(G)

and EG disjoint in the structure Dec(G). Proposition 2.2 could be used here because the
family SFE(G) is MS definable (since graphs are represented by their incidence structures),
but it would give a weaker result than Proposition 2.11, because we would need an auxiliary
linear ordering of the edges of G as input of the transduction, which is not the case in
Proposition 2.11.

The MS transduction of Proposition 2.11 uses edge set quantifications. In the case of
simple graphs, one can do the same without edge set quantifications.

Corollary 2.12. There exists a monadic second-order transduction that transforms the
structure 〈VG, edgG〉 into:

〈VG ∪NTSFE(G)
, edgG, sonTSFE(G)

, factSFE(G)〉

for every simple 2-dag G, where factSFE(G)(v, x) is defined to hold if and only if v is a
vertex of G(x).

Proof. The proof of Theorem 3.12 in [11] defines 〈VG ∪ EG ∪ NT , incG, sonT , modT 〉 from
〈VG ∪ EG, incG〉 by an MS transduction that specifies the set of nodes of T = TSFE(G) as
follows: Its internal nodes are pairs (v, i) where i = 2 or 3 and v is a vertex, or pairs (e, 3)
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where e is an edge. The latter case corresponds to factors which are sets of at least two
parallel edges. In the case of simple graphs, there are no such factors, hence these pairs
are not needed. A leaf of T corresponds to a factor of G reduced to a single edge e and is
defined as the pair (e, 4). However, from the above remark, its father is an internal node
defined as a pair (v, i) where i = 2 or 3 for a vertex v. Hence, this leaf can be defined as
the pair (v, 4) in the former case and (v, 5) in the latter. It follows that T can be specified
with a set of nodes defined as a subset of VG × {2, 3, 4, 5}.

We now review the graph operations associated with the various types of nodes of
TSFE(G) where G is a 2-dag. We define them actually for 2-graphs.

Definition 2.13. Operations on 2-graphs The main operation is edge-substitution. Two
other operations will be defined as particular instances of it. For a 2-graph K with directed
edges e1, . . . , ek, we denote by K[G1/e1, . . . , Gk/ek] the result H of the substitution of the
2-graphs G1, . . . , Gk for the edges e1, . . . , ek respectively. For defining H, we assume what
follows:

(i) K,G1, . . . , Gk have pairwise disjoint sets of edges,
(ii) ei : s1(Gi) −→ s2(Gi) for each i,
(iii) K,G1, . . . , Gk have no vertices in common other than the ends of the edges ei and

the sources of Gi, as required by (ii).

We let VH = VK ∪ VG1 ∪ · · · ∪ VGk
, EH = EK ∪ EG1 ∪ · · · ∪ EGk

− {e1, . . . , ek} and
si(H) = si(K) for i = 1, 2. If the graphs are not disjoint as required, one takes disjoint
copies and one fuses the sources of the graphs Gi with the end vertices of the edges ei of
K. In this case, the result of the substitution is well-defined up to isomorphism.

The parallel composition of two 2-graphs G and H is the graph G//H defined as
K[G/e,H/f ] where K consists of two parallel edges, e, f : s1(K) −→ s2(K). This op-
eration is associative and commutative so that the expression G1// . . . //Gk is well-defined,
and the ordering of the arguments is irrelevant. We define similarly the series composition:
G •H = K[G/e,H/f ] where K consists of two edges e : s1(K) −→ u and f : u −→ s2(K)
for some (arbitrary) u. This operation is associative, so that the expression G1 • · · · • Gk

is well-defined, but the order of arguments matters. In order to have a shorter notation we
will use θK(G1, . . . , Gk) for K[G1/e1, . . . , Gk/ek] where e1, . . . , ek is an enumeration of the
set of edges of K (it is not made explicit in the notation θK).

We will also use the constant e denoting the 2-dag consisting of the single edge e : x −→
y, with s1(e) = x, s2(e) = y, and the constant e defined similarly, with s1(e) = y, s2(e) = x.

Terms built with these operations and constants denote 2-graphs. In some proofs, we
will require that the arguments of each operation in a term are graphs with disjoint sets of
edges (hence not graphs up to isomorphism). In this case, if t is a term denoting a graph
with edges e1, . . . , ek, it has k occurrences of constants, which are ei or ei for i = 1, . . . , k.

We now consider the case of 2-dags.

Proposition 2.14. Let G be a 2-dag. An internal node N of its decomposition tree TSFE(G)

is of one of the following mutually exclusive types:

1) N is a complete node with sons N1, . . . , Nk, N = N1 ∪ · · · ∪ Nk, we have G[N ] =
G[N1]// . . . //G[Nk ] and none of N1, . . . , Nk is a complete node.

2) N is a prime node, G[N ] = θK(G[N1], . . . , G[Nk]) where K is a 2-dag that cannot
be written L •M or L//M or K ′[M1/f1, . . . ,Mp/fp] except in a trivial way, with
either K ′ or all M1, . . . ,Mp reduced to single edges.
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3) N is a linear node with sons N1, . . . , Nk, we have N = N1 ∪ · · · ∪ Nk, none of
N1, . . . , Nk is linear and, either G[N ] = G[N1] • · · · •G[Nk] or G[N ] = G[Nk] • · · · •
G[N1].

A leaf of this tree is an edge e : s1(e) −→ s2(e).

Proof. This follows from Proposition 2.10 and Theorem 2.7. The three types of nodes
correspond respectively to properties T1, T2 and T3 of Theorem 2.7. In all three cases,
the graphs G[N1], . . . , G[Nk] have disjoint sets of edges and we need not make isomorphic
copies. In the second case, the vertices of K are vertices of G. Its edges are not edges of
G: they mark positions where the subgraphs G[N1], . . . , G[Nk] must be substituted. The
graph K is simple because otherwise it can expressed as e//M or as K ′[M1/f1, . . . ,Mp/fp]
in a nontrivial way with some Mi consisting of two parallel edges.

In Case 2, K has k ≥ 3 edges because otherwise, it is of the form e • f or e//f , and
θK is • or //. A 2-dag K satisfying the conditions of Case 2 will be called prime. In Case
3, the sons of a node will be numbered so that G[N ] = G[N1] • · · · • G[Nk]. For building
a term t denoting a 2-dag, we need only the operations •, // and θK where K is a prime
2-dag, and the constants e.

We now examine how such a term can be constructed in MS logic. MS formulas analo-
gous to the formulas ϕ⊕, ϕ⊗, ϕ−→

⊗
, ϕPr used in Subsection 2.2 for the modular decomposition,

can recognize which case applies to a given module N , and can specify its sons. According
to the general method sketched at the end of Subsection 2.1, we transform the structure con-
structed by the transduction of Proposition 2.11 into a graph representation of the canonical
decomposition of the considered 2-dag, intended to be as space-efficient as possible. We let
Rep(G) be the structure:

〈VG ∪ EG ∪NTSFE(G)
, incG, sonTSFE(G)

, src1SFE(G), src2SFE(G), leafTSFE(G)
〉,

where:

(1) srciSFE(G) = {(x, si(G(x))) | x ∈ NTSFE(G)
} and

(2) leafTSFE(G)
= {(x, e) | x is a leaf of TSFE(G) and e is the unique edge of G(x)}.

We replace thus the relation modSFE(G) of Dec(G) by three functional relations, and we
avoid a certain amount of redundancy. The relation modSFE(G) can be defined by an MS
formula in the structure Rep(G). The relation leafTSFE(G)

is useful to establish the bijection
between the leaves of the tree and the edges of the considered graph. For simple graphs,
we can use the simpler structure:

Rep′(G) = 〈VG ∪NTSFE(G)
, edgG, sonTSFE(G)

, src1SFE(G), src2SFE(G)〉

because there is no need to relate a leaf of the tree to the corresponding edge which no
longer exists as an element of the domain.

Definition 2.15. Separated representations. As explained above, to every internal node of
the tree TSFE(G) corresponds an edge substitution operation θK , and this tree can be consid-
ered as the syntax tree of a term t that denotes the 2-dag G and is written with operations
θK and constants e denoting the different edges. In a proof in the next subsection, we will
transform such a term t denoting a 2-dag into another one t′, intended to denote a 2-graph
G′, by replacing at certain occurrences in t, some operations θK by operations θK ′ of same
arity. Then the evaluation of t′ giving G′ will be done by an MS transduction. For this
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purpose, we introduce a variant of the structure Rep(G), called a separated representation,
where G is a 2-dag.

We let

Repsep(G) =

〈VH ∪EG ∪NTSFE(G)
, incH , ε− edgH , sonTSFE(G)

, ssrc1SFE(G), ssrc2SFE(G), leafTSFE(G)
〉,

where:

(1) VH is the set of pairs (x, i) for x ∈ NTSFE(G)
and i = 1, 2,

(2) incH is the set of triples (e, (x, 1), (x, 2)) such that e ∈ EG, x is the corresponding
leaf of TSFE(G),

(3) ε− edgH((x, i), (y, j)) is defined as holding if and only if si(G(x)) = sj(G(y)) and,
either x and y are adjacent (one is the father of the other) or x and y are sons of
some node z, and si(G(x)) 6= sk(G(z)) for k = 1, 2.

(4) ssrciSFE(G) = {(x, (x, i)) | x ∈ NTSFE(G)
},

(5) the other sets and relations are as in Rep(G).

These sets and relations define a graphH. Its vertices are pairs (x, 1) and (x, 2) denoting
the two sources of the factors associated with the nodes x of the tree. Each pair represents a
vertex of G. Since a vertex of G belongs to several factors, it has several representations by
vertices of H. For an example, if z is a node with sons x and y such that G(z) = G(x)•G(y),
then s1(G(z)) = s1(G(x)), s2(G(z)) = s2(G(y)), s2(G(x)) = s1(G(y)). The undirected ε-
edges, defined by the symmetric relation ε− edgH materialize such equalities. In this case,
we have the following ε-edges: (z, 1) − (x, 1), (z, 2) − (y, 2) and (x, 2) − (y, 1). In the case
where G(z) = G(x)//G(y), we have the ε-edges: (z, i) − (x, i), (z, i) − (y, i), for i = 1, 2,
which represent the equalities si(G(z)) = si(G(x)), si(G(z)) = si(G(y)), and the equalities
si(G(x)) = si(G(y)) follow by transitivity. The graph H has also edges which correspond
to those of G, however, they are not adjacent in H. They are ”separated” by ε-edges. Since
t is a term denoting a 2-dag, its leaves correspond to factors with an edge directed from the
first source to the second one. This justifies condition (2).

This graph H, denoted by Sep(G), can be ”extracted” from Repsep(G) which contains
also TSFE(G) as it is defined from 〈VH ∪EG, incH , ε− edgH〉. Figure 1 below shows a graph
G, and Figure 2 shows the corresponding graph Sep(G). Edge directions are omitted for
the purpose of readability. Dotted lines represent the pairs in ε-edgH . The following fact,
which shows how one can reconstruct G from Sep(G), is clear from the definition.

Lemma 2.16. The graph G is obtained from Sep(G) by the contraction of all ε-edges. There
exist MS transductions transforming Rep(G) and Repsep(G) into each other, and Sep(G)
into Inc(G).

Remark. The structures Rep(G) and Repsep(G) use fixed finite signatures. They encode
terms written with the operations // and • of variable arity, and the infinitely many opera-
tions associated with the prime graphs K. They are interesting from the point of view of the
study of graph structure, but they are not space efficient as can be the graph representations
of modular decompositions.

We now give an application related to matroids.
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2.4. Whitney’s 2-isomorphism theorem. We consider directed graphs without loops
or isolated vertices and possibly with multiple edges. The cycle matroid of a graph G is the
pair M(G) = 〈EG, indepG〉 where, for X ⊆ EG, indepG(X) holds if and only if G[X] has no
undirected cycle. The matroid M(G) does not depend on the directions of edges, however,
the definitions are given for directed graphs because edge directions will be useful for some
constructions. For matroids in general we refer the reader to the books by White [32] and
Oxley [28]. Actually, we will need no more than this definition.

We say that two graphs G and H are equivalent if EG = EH and M(G) = M(H). We
require the equality of the sets of edges but nothing on the sets of vertices. The vertices
and the incidencies may be different in the two graphs. In particular, any two forests with
the same sets of edges have the same (trivial) cycle matroids, independently of how their
edges are incident with vertices. A theorem by Whitney characterizes the equivalence of
2-connected graphs.

Definition 2.17. Twisting . For a 2-graph G, we let G̃ be the 2-graph with same underlying

graph as G except that its sources are swapped: s1(G̃) = s2(G) and s2(G̃) = s1(G). We
recall that G0 is G with its sources made into ordinary vertices. For disjoint 2-graphs G
and H, we let G//H be their parallel composition, obtained from the union of G and H by
the fusion of s1(G) and s1(H), and ofs2(G) and s2(H). It is important to note here that
EG//H = EG ∪EH .

A graph is 2-connected if it is connected and the deletion of any vertex yields a connected
graph. A graph with just one edge or several parallel edges is 2-connected, and we consider
graphs without loops. A 2-graph G is 2-connected if (e//G)0 is 2-connected. Edge directions
do not matter in these definitions. A 2-dag is a 2-connected 2-graph.

If G = (L//M)0 and H = (L//M̃ )0 where L and M are connected 2-graphs, we say
that H is obtained from G by a twisting. Note that EH = EG. Reversing an edge direction
is a twisting.

The equivalence of two graphs G and H without isolated vertices is characterized by
Whitney’s 2-isomorphism Theorem as the existence of a transformation of G into H by a
finite sequence of twistings and of transformations of two other types called vertex splitting
and vertex identification. See the chapter by J. Oxley in the book edited by N. White [32],
or [30]. However, these latter transformations do not apply to 2-connected graphs. Hence,
this theorem yields the following:

Proposition 2.18. Two 2-connected graphs are equivalent if and only if one can be trans-
formed into the other by a finite sequence of twistings.

Figure 1 shows two graphs which are 2-isomorphic. Our aim is to prove the following
theorem:

Theorem 2.19. There exists an MS transduction that associates with 〈VG ∪ EG, incG,4〉
where G is a 2-connected graph and 4 ranges over all linear orders on VG, the set of graphs
having the same cycle matroid as G.

Lemma 2.20. A 2-connected 2-graph G is either:

(o) e or e or
(i) G1// . . . //Gk for k ≥ 2, and some 2-connected 2-graphs G1, . . . , Gk not of this form,

or
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Figure 1: Two 2-isomorphic graphs G (to the left) and H.

(ii) G1 • · · · •Gk for k ≥ 2 and some 2-connected 2-graphs G1, . . . , Gk not of this form,
or

(iii) θK(G1, . . . , Gk) where K is a prime 2-dag and G1, . . . , Gk are 2-connected 2-graphs.

Prime 2-dags are defined after Proposition 2.14. These expressions are unique except
for the directions of the edges of K and the ordering of G1, . . . , Gk in (i), but we will not
need this fact.

Proof. For a 2-dag G, this result is Proposition 2.14. Otherwise G can be made into a 2-dag
H by reversing some edge directions. The result holds for H, whence also for G by reversing
again the same edges. This corresponds to changing certain constants e into e.

It follows that every 2-connected 2-graph G can be expressed as the value of a term t
belonging to the set T of finite terms defined recursively as follows:

either t = e,
or t = e,
or t = //(t1, . . . , tk),
or t = •(t1, . . . , tk),
or t = θK(t1, . . . , tk),

where t1, . . . , tk are in T .
We recall that we denote by θK the substitution operation associated with K and the

list e1, . . . , ek of its edges: θK(G1, . . . , Gk) = K[G1/e1, . . . , Gk/ek]. (The list e1, . . . , ek is
implicit in the notation θK). The operations // and • have a variable arity. A term in T
obtained by using recursively Lemma 2.20 will be called a canonical term for G. It is unique
up to the ordering of the arguments of the operations // and up to the directions of edges
in K. If the set of edges of G is {f1, . . . , fn}, then the constants occurring in a canonical
term for G are f1 or f1, . . . , fn or fn.

Definition 2.21. Twistings of 2-graphs. Twisting for graphs is defined above. In order
to characterize the twistings of 2-connected graphs in terms of their decompositions in 2-
graphs, we extend the notion of twisting to 2-graphs. A twisting of a 2-graph G is a 2-graph

H such that either H = G̃, or H0 is a twisting of G0, si(H) = si(G) for i = 1, 2, and

G0 = (L//M)0, H0 = (L//M̃ )0 in such a way that the two sources of G are two vertices of
L, of M , or of both (we may have G = L//M). These conditions imply that for every 2-
graph K, K//H is a twisting of K//G. They also imply that if G is a 2-connected 2-graph,
then so are H and, L and M when the second case of the definition is used.
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For every 2-graph G, we denote by ▽(G) the least set of 2-graphs containing G and
closed under twisting, hence of 2-graphs obtained from G by a finite sequence of twistings.
For every graph H in ▽(G), EH = EG, and either si(H) = si(G) for i = 1, 2, or si(H) =
s3−i(G) for i = 1, 2.

Lemma 2.22. Let G be a 2-connected 2-graph and H be a twisting of G.

(i) If G = G1// . . . //Gk for k ≥ 2, and some 2-connected 2-graphs G1, . . . , Gk not of
this form, then H = G1// . . . //Gi−1//Hi//Gi+1 . . . //Gk where Hi is a twisting of

Gi, or H = L1// . . . //Lk where each Li is either Gi or G̃i,
(ii) if G = G1 • · · · •Gk for k ≥ 2 and some 2-connected 2-graphs G1, . . . , Gk not of this

form, then H = G1 • · · · •Gi−1 •Hi •Gi+1 • · · · •Gk where Hi is a twisting of Gi, or

H = G1 • · · · •Gi−1 • G̃j • G̃j−1 • · · · • G̃i+1 • G̃i •Gj+1 • · · · •Gk for 1 ≤ i < j ≤ k,
(iii) G = K[G1/e1, . . . , Gk/ek] where K is a prime 2-dag and G1, . . . , Gk are 2-connected

2-graphs, then H = K[G1/e1, . . . ,Hi/ei, . . . , Gk/ek] where Hi is a twisting of Gi, or

H = K̃[G1/e1, . . . , Gk/ek] = G̃.

Conversely, in all cases, every graph H of the above forms is either G or a twisting of G.

Note the special cases of

(i) H = G̃ = G̃1// . . . //G̃k, and

(ii) H = G̃ = G̃k • G̃k−1 • · · · • G̃2 • G̃1.

Proof. Let G be defined from G1, . . . , Gk by one of cases (i)-(iii) and H be a twisting of G.If

H = G̃, then the conclusions hold in all three cases. Let us now assume that G0 = (L//M)0

and H0 = (L//M̃ )0 and, without loss of generality, that the two sources of G are vertices
of L.

We will prove that we have one of the following three cases:

(a) M0 is a subgraph of some Gi in any of cases (i)-(iii), then the replacement of M by

M̃ yields a 2-graph Hi, and by replacing Gi by Hi, we obtain H from G, as required.
(b) G satisfies case (i) and the two sources of M are those of G: then M is the parallel

composition of some of the Gi’s, and we obtain H from G by replacing each of these

Gi’s by G̃i, this is the second possibility of case (i).
(c) G satisfies case (ii) and one source of M is a source of some factor Gi. Then the

other one is also a source of some factor Gj (with i 6= j, otherwise case (a) applies).
Then M = Gi′ • · · · • Gj′ for some 1 ≤ i′ < j′ ≤ k, and H is defined by the second
possibility of case (iii).

To complete the proof, we need only verify that there are no other cases.
As in the proof of Lemma 2.20, we make G into a 2-dag G′ by reversing if necessary

some edge directions. We denote by G′
i, L

′ and M ′ the 2-graphs obtained from Gi, L
and M by these reversals. An internal vertex of M ′ is on a directed path from s1(G

′)
to s2(G

′). This path goes through the two sources of M ′. By changing if necessary the
source numbers of M ′ we may assume that this path traverses M ′ from s1(M

′) to s2(M
′).

All paths associated in this way with the internal vertices of M ′ do the same. They must
traverse M ′ from s1(M

′) to s2(M
′) otherwise M ′ whence G′ has a circuit. Hence M ′ is a

2-dag and a factor of G′. Clearly, the Gi’s are also factors of G′. Consider its decomposition
tree TSFE(G′): the Gi’s are the sons of its root. We apply Theorem 2.7(4) to M ′: if it is a
strong module (with respect to SFE(G′)), it corresponds to a node of this tree, and thus
is a factor of (possibly equal to) some Gi. If it is not strong it is a union of sons of a
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strong module N , satisfying T1 or T3. If N is the root, we are in the above cases (b) or
(c) for M ′, G′

1, . . . , G
′
k instead of M,G1, . . . , Gk. Otherwise, M ′ is a factor of some G′

i. By
resestablishing the original edge directions, we see that M satisfies one of (a), (b), (c) as
required.

This completes the proof of the “only if” direction. The other one is easy to verify.

A k-permutation is a permutation of {1, . . . , k}. For every k-permutation π, we denote
by •π the operation of arity k such that:

•π(G1, . . . , Gk) = •(Gπ(1), . . . , Gπ(k)).

For every canonical term t, we denote by ▽(t) the set of terms defined inductively as follows:

▽(e) = ▽(e) = {e,e}

▽(//(t1, . . . , tk)) = {//(s1, . . . , sk) | si ∈ ▽(ti)}

▽(•(t1, . . . , tk)) = {•π(s1, . . . , sk) | si ∈ ▽(ti), π is a k-permutation }

▽(θK(t1, . . . , tk)) = {θK(s1, . . . , sk) | si ∈ ▽(ti)} ∪ {θK̃(s1, . . . , sk) | si ∈ ▽(ti)}.

Lemma 2.23. For every 2-connected 2-graph G with canonical term t, the set of 2-graphs
▽(G) is the set of values of the terms in ▽(t).

Proof. For every 2-connected 2-graph G we have in the four cases of Lemma 2.20

(o) ▽(e) = ▽(e) = {e,e},
(i) ▽(G1// . . . //Gk) = ▽(G1)// . . . //▽(Gk),
(ii) ▽(G1 • · · · •Gk) =

⋃
{▽(Gπ(1)) • · · · •▽(Gπ(k)) | π is a k-permutation },

(iii) ▽(K[G1/e1, ..., Gk/ek]) = K[▽(G1)/e1, ...,▽(Gk)/ek] ∪ K̃[▽(G1)/e1, ...,▽(Gk)/ek],

where in all cases the operations on 2-graphs extend to sets of 2-graphs in the natural way.
The result for cases (o),(i),(iii) follows from Lemmas 2.20 and 2.22. For case (ii), the

inclusion ⊆ follows from Lemma 2.22 (ii), and the inclusion ⊇ follows also from the facts
that every permutation is a composition of transpositions and that

G1 • · · · •Gi−1 •Gi+1 •Gi • · · · •Gk

is a twisting of

G1 • · · · •Gi−1 • G̃i • G̃i+1 •Gi+1 · · · •Gk .

The idea of the proof of Theorem 2.19 is illustrated by Figures 1 to 3. By reversing
some edge directions if necessary, we make the given graph into a 2-dag G with its two
sources the ends of some edge. From the decomposition tree TSFE(G) we construct the
canonical term t of G and the graph Sep(G) from which G is obtained by contraction of
the ε-edges. The ε-edges of Sep(G) represent the graph operations with which t is built. In
order to produce a term t′ in ▽(t) yielding G′ equivalent to G, it suffices to modify some
operations in t according to Lemma 2.23. These modifications are reflected by modifications
of the ε-edges of Sep(G) giving a graph M(Sep(G)) (where M means ”modification”) from
which G′ is obtained by contracting the ε-edges. All these manipulations can be done by
MS transductions.

Example 2.24. These definitions are illustrated in Figures 1–3. Figure 1 shows a graph
G and a graph H that is 2-isomorphic to G. We make G into a 2-dag, the two sources of
which are the ends of edge a. The corresponding canonical term is:

t = //(a, •[//(c, •(b, f)), θK (g,k,m,h, //(n,p)), //(d, e)])
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Figure 2: The separated graph Sep(G).

where K is the graph K−
4 (defined as K4 minus one edge). Figure 2 shows the corresponding

graph Sep(G). The ε-edges are represented by dotted lines. The graph M(Sep(G)) on
Figure 3 is obtained by modifying certain ε-edges, and the modified edges are represented
by broken lines. These modifications correspond to replacing in t the subterm •(b, f) by
•(f ,b), θK by θK̃ and the operation • occurring first in the subterm •[t1, t2, t3] by •π where
π(1) = 3, π(2) = 1, π(3) = 2. For the purpose of readability, the edges of G are undirected.

We now detail the proof more formally.

Proof of Theorem 2.19. We choose in the given graph G two adjacent vertices, we make
them into sources s1(G) and s2(G), and we change some edge directions to make G into a
2-dag. This is possible by Lemma 3.1 in [11] since G is 2-connected. Furthermore this can
be done by an MS transduction taking Inc(G) as input (by the reorientation technique of
[8]). Hence, we obtain a 2-dag from G by a finite sequence of twistings if G is not a 2-dag,
because reversing an edge is a twisting. Without loss of generality we now consider that the
given graph G is a 2-dag. Using Lemma 2.16, we can construct the structure Repsep(G),
and from it the structure Sep(G).

The tree T = TSFE(G) in the structure Repsep(G) is the syntactic tree of the canonical
term t for G.

The terms t′ in ▽(t) are obtained by selecting:

- a set X of prime nodes of T corresponding to an operation θK to be replaced by
θ
K̃

,
- for each linear node x of arity k a k-permutation π such that the operation • at x

is to be replaced by •π,
- a set Y of leaves corresponding to reversals of edge directions.

The sets X,Y are straightforward to specify as parameters X,Y ⊆ NT of the MS transduc-
tion we are constructing.

The permutations associated with the linear nodes are obtained from a linear order 4

on VG as follows. We call s2(G(x)) the leading vertex of the factor G(x) of G, for x in NT .
(See after Proposition 2.10 for the notation G(x)). A vertex may be leading for several
factors. Let x be a linear node with sequence of sons y1, . . . , yk. The linear order 4 on
VG will be used here to permute this sequence. The leading vertices of G(y1), . . . , G(yk)
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Figure 3: The graph M(Sep(G)).

are pairwise distinct. There exists a unique permutation π such that s2(G(yπ(1))) ≺ . . .
≺ s2(G(yπ(k))). We obtain in this way a (possibly identity) permutation of the list of sons
of x. It is clear that the new ordering of the sons of x is MS definable from 4 and the other
relations of the structure Repsep(G). The variable Π will denote families of permutations
of appropriate types associated with linear nodes (a k-permutation for a node with k sons)
and Π(4) will denote the one induced as defined above by a linear order 4 on VG. We
denote by tX,Y,Π the term obtained from t by the modifications described above, based on
X,Y and Π. The set ▽(t) is thus the set of all terms tX,Y,Π.

Claim 1: There exists an MS transduction that associates the graph defined by the term
tX,Y,Π(4) with the structure (Repsep(G),X, Y,4), where X is a set of prime nodes of the
decomposition tree T , Y a set of leaves and 4 is a linear order on VG.

Proof of the claim. By using X,Y and 4, we transform Repsep(G) into a graph H ′ from
which the graph G′ defined by the term tX,Y,Π(4) can be obtained by the MS transduction
that contracts the ε-edges. The construction consists in modifying the ε-edges in Sep(G),
so as to represent the replacements of θK by θK̃ at the nodes in X, those of the operation
• by •π at every linear node where the corresponding permutation π is specified by Π(4),
and the reversal of edges at the leaves of Y .

For this purpose we modify in Repsep(G) the relation ε-edgH into ε-edgH′ as follows:

1) For every x in X and every son y of x, we replace the pairs ((x, i), (y, j)) and
((y, j), (x, i)) in ε-edgH by ((x, 3 − i), (y, j)) and ((y, j), (x, 3 − i)).

2) For every linear node with ordered list of sons y1, y2, . . . , yk we have in ε-edgH the
following pairs, together with their inverses:

((x, 1), (y1, 1)), ((y1, 2), (y2, 1)), . . . , ((yk−1, 2), (yk, 1)), ((yk , 2), (x, 2)) .

We replace them by the following ones, together with their inverses:

((x, 1), (yπ(1), 1)), ((yπ(1) , 2), (yπ(2), 1)), . . . ((yπ(k−1), 2), (yπ(k), 1)), ((yπ(k), 2), (x, 2))

where π is the k-permutation of the family Π(4) associated with x,
3) For every y in Y , we replace a triple (e, (y, 1), (y, 2)) in incH by (e, (y, 2), (y, 1)).

This modification of Repsep(G) can be done by an MS transduction using X,Y and 4. We
obtain in this way the graph M(Sep(G)) from which can be defined by edge contractions
the value G′ of the term tX,Π(4). It follows from Lemma 2.16 that G′ can be obtained from
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M(Sep(G)), whence also from (Repsep(G),X, Y,4) by an MS transduction (we use here
Proposition A.1.2). This proves Claim 1.

Since Repsep(G) can be constructed from Inc(G) by an MS transduction, and by com-
posing this transduction with the one just constructed, we get an MS transduction τ that
defines some graph 2-isomorphic to G from Inc(G),X, Y and any linear order 4 on VG. To
complete the proof, it remains to establish that every family Π of permutations (of appro-
priate types) is Π(4) for some linear order 4 on VG. This will give us that every graph
2-isomorphic to G is obtained by τ from Inc(G) for some sets X and Y and some linear
order 4 on VG.

Claim 2: Every family Π of permutations associated with the linear nodes is Π(4) for
some linear order 4 on VG.

Proof of the claim. Let a family Π be given. By using bottom up induction on T , we
construct, for every node x of T , an appropriate linear order on the vertices of VG(x) −
{s1(G(x))} handled as the increasing sequence Seq(x) of its elements.

Let us note that if x and y are incomparable nodes in the tree T (incomparable means
that no one is an ancestor of the other) then the only vertices that can be common to G(x)
and G(y) are among the source vertices.

We can construct the sequences Seq(x) by bottom up induction as follows:
If x is a leaf (it corresponds to an edge of G) then Seq(x) is the sequence with single

element s2(G(x)).
If x = //(x1, . . . , xk) we have sequences Seq(xi) by induction. Since two distinct factors

G(xi) and G(xj) have only in common the sources sa(G(x)) = sa(G(xi)) = sa(G(xj)) for
a = 1, 2, the only vertex common to two sequences Seq(xi) and Seq(xj) is s2(G(xi)) =
s2(G(xj)) = s2(G(x)), and all sequences Seq(xi) can be merged into a single one, that we
can take as Seq(x).

If x = •(x1, . . . , xk) and π is the permutation of {1, . . . , k} associated with x (by the
family Π), then, since the sequences Seq(xi) obtained by induction are pairwise disjoint,
we can take Seq(x) = Seq(xπ(1)) . . . Seq(xπ(k)). By this construction, the permutation
associated with x by any linear order for which Seq(x) is increasing is actually π.

If x = θK(x1, . . . , xk) we have sequences Seq(xi) by induction. Two sequences Seq(xi)
and Seq(xj) either are disjoint or share the only vertex s2(G(xi)) = s2(G(xj)) = v, in
the case where the two edges xi, xj of K have the same target v. Hence we can merge all
sequences Seq(xi) such that xi has target v into a sequence L(v). Then we concatenate the
sequences L(v) for all vertices of v of K (except for v = s1(K)), which gives Seq(x).

Every sequence Seq(x) is a subsequence of Seq(y) if y is an ancestor of x by this con-
struction. From the choice made for linear nodes x it follows that the sequence Seq(rootT )
of the root of T yields the appropriate permutation of Π at each x. To have a linear order
on VG, we add to Seq(rootT ) the vertex s1(G) as very first element, proving Claim 2.

This concludes the proof of the theorem.

By a simple counting argument, one can see that it is impossible to specify all permuta-
tions of arbitrarily large sets X with k-tuples of subsets of X for fixed k. For this reason, we
specify the permutations associated with the linear nodes by linear orders on the vertices.
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3. Partitive families of bipartitions

The general framework for split decomposition is defined by Cunnigham and Edmonds
in [18]. It applies to other cases, in particular to hypergraphs and matroids. Our presenta-
tion owes a lot to the dissertation of Montgolfier [19].

3.1. Definitions and general properties. We define families of bipartitions of a set V
associated with a partition of this set, the blocks of which are organized into an unrooted
tree. These definitions generalize two important examples: the decomposition defined by
Tutte of a 2-connected graph in 3-connected components and the split decomposition defined
by Cunnigham [17].

Definition 3.1. Bipartitions, overlapping bipartitions. A bipartition of a nonempty set V is
an unordered pair of subsets, P = {A,B} such that V = A∪B, A∩B = ∅, {A,B} 6= {∅, V }.
The sets A,B will be called the blocks of P . We denote by B(V ) the set of bipartitions of
V . Two bipartitions P and Q overlap if A ⊥ B for all A ∈ P and B ∈ Q. Hence P and Q
do not overlap if and only if A ∩ B = ∅ for some A ∈ P and B ∈ Q. A bipartition of the
form {{v}, V − {v}} does not overlap any bipartition.

By an unrooted tree we mean a simple undirected connected graph without cycles (and
without loops). It has no root, and the leaves are the nodes of degree 1. Its other nodes are
the internal nodes. The sets of nodes and of internal nodes of a tree T are denoted by NT

and N int
T respectively. For each edge e : x− y of T , we denote by T (x, y) the set of nodes,

including x, that are reachable from x by a path that does not use edge e.
Let T be an unrooted tree with at least two nodes and V = (V (x))x∈NT

be a partition
of a set V such that V (x) is not empty if x is a node of degree 1 or 2. We call (T,V) a
tree-partition of V . For each edge e : x−y of T , we let Pe = {Px, Py} where Px is the union
of the sets V (z) for z ∈ T (x, y), and similarly for Py with T (y, x). The family B = B(T,V)
of bipartitions Pe is not empty and satisfies the following property:

B1: no two bipartitions of B overlap.

If V (x) is empty for every internal node x and is singleton for each leaf x, then B = B(T,V)
satisfies in addition the property:

B0: {{v}, V − {v}} ∈ B for every v ∈ V .

For a tree-partition (T,V) we define boxT (v, x) to hold if and only if x ∈ NT and v ∈ V (x).
For every nonempty family B of bipartitions, we let B+ = B ∪ {{{v}, V −{v}} | v ∈ V }.Since
{{v}, V − {v}} does not overlap any bipartition, B+ satisfies B1 if and only if B satisfies
B1. A block of a bipartition of B is called a B-block.

Lemma 3.2. For every nonempty family B ⊆ B(V ) satisfying B1, there exists a tree-
partition (T,V) such that B(T,V) = B. It is unique up to isomorphism.

Proof. We first make some observations concerning B(T,V) where (T,V) is a tree-partition,
by using the notation of the definition.

Claim: A B-block is minimal if and only if it is V (x) for some leaf x of T .

Proof of the claim. It is clear that V (x) is a minimal B-block if x is a leaf. For the other
direction, assume that A is a minimal B-block and A = Px where Pe = {Px, Py}, e : x−y. If
x is not a leaf there is an edge x−z, z 6= y, and Pz is a proper subset of Px by the condition
that V (u) is not empty if u is a node of degree 1 or 2. Hence, this cannot happen, x is a
leaf and A = Px = V (x).
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We first prove the unicity property. Assume B(T,V) = B(T ′,V ′) for two tree-partitions.
Let R be a minimal block. We have R = V (r) for some leaf r of T by the claim. We

make T into a rooted (directed) tree with root r and we let s be adjacent to r in T . Let
V1(u) = V (u) for every node u 6= r. By Definition 2.1, T (s) is the subtree of T with root
s; its nodes are those of T except r. Clearly, F(T (s),V1) is the set of B-blocks that do not
include R.

Similarly for B(T ′,V ′) we have R = V ′(r′) for some leaf r′ of T ′, we let s′ be adjacent
to r′ in T ′, and we have F(T ′(s′),V ′1) = F(T (s),V1). For a node u of T (s) of outdegree
1, hence of degree 2 in T , the set V1(u) is not empty, and the same holds for (T ′(s′),V ′1).
Hence, by an observation made in Definition 2.1, (T (s),V1) and (T ′(s′),V ′1) are isomorphic.
So are (T,V) and (T ′,V ′), as was to be proved.

We now prove the existence (T,V) such that B(T,V) = B where B ⊆ B(V ) satisfies B1.
We let R be a minimal block and F be the set of B-blocks that do not include R. Hence
F is a family of subsets of V − R that satisfies P0. It satisfies Condition P1 because if A
and A′ in F overlap, then {A,B} and {A′, B′} overlap since R ⊆ B ∩ B′ and this cannot
happen since B satisfies B1.

Let (TF , VF ) be as in Definition 2.1. Hence F(TF , VF ) = F . We recall that VF (N) =
N −

⋃
{M | M is a son of N in TF}. We add a new node r linked to the root s of TF , we

denote by T the undirected tree obtained in this way, and we let V (r) = R, V (N) = VF (N)
if N is a node of TF . Then (T, V ) is a tree-partition of V . In particular if N has degree 2,
then V (N) is not empty because N has outdegree 1 in TF and VF (N) is not empty. We
claim that B(T,V) = B.

Let Pe be the bipartition of V associated with an edge e of T . If e : r − s, then
Pe = {R,V − R} which belongs to B. Otherwise let e be directed x −→ y in TF . Then
Pe = {Px, Py} . The set Py is the F-module associated with the node y of TF . Hence
{Py, V − Py} ∈ B. But V − Py = Px. Hence Pe ∈ B.

Conversely, let P = {A,B} ∈ B. If P = {R,V − R} it is in B(T,V), corresponding to
the edge r − s. Otherwise it does not overlap {R,V −R} and since R is minimal, we have
R ⊂ A or R ⊂ B. Assume the first. Then B ∈ F , hence is a node y of TF , its father is some
x and we have {B,V −B} ∈ B(T,V). But A = V −B, hence P ∈ B(T,V). This completes
the proof.

We denote by (TB,VB) the tree-partition associated with B by Lemma 3.2. It does not
depend on the choice of r by the unicity property. It will be useful to extend this definition
to the case where B is empty: we let then TB consist of a single node r and VB(r) = V .

Lemma 3.3. Let B ⊆ B(V ) satisfy B1. For a node x ∈ NTB
of degree k with incident edges

e1 : x−y1, . . . , ek : x−yk, the sets Py1
, . . . , Pyk

(where Pei
= {P i

x, Pyi
}) are pairwise disjoint

and we have:
VB(x) = V − (Py1

∪ · · · ∪ Pyk
) =

⋂
{P i

x | i = 1, . . . , k} .

If x is a leaf, then k = 1 and VB(x) = P 1
x .

Proof. This is clear from the construction of Lemma 3.2, and the definition of VF in Defi-
nition 2.1.

Let C be a class of relational structures as in Section 2. For each S in C, we let B(S) be a
family of bipartitions of the domain DS of S satisfying condition B1. We say that B is MS-
definable if there exists an MS formula ϕ(X) such that for every S in C, {A | {A,B} ∈ B(S)
for some B} = {A ⊆ DS | S |= ϕ(A)}. With these definitions:
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Proposition 3.4. Let C be a class of R-structures and B be an MS definable family of
bipartitions of the domains of the structures in C which satisfies conditions B1. There exists
a domain extending MS-transduction that associates with (S,4) where S = 〈DS , (RS)R∈R〉
∈ C and DS is linearly ordered by 4, the structure

Dec(S) = 〈DS ∪NTB(S)
, (RS)R∈R, edgTB(S)

, boxTB(S)
〉

such that 〈NTB(S)
, edgTB(S)

〉 = TB(S).

Proof. Lemma 3.2 reduces the construction of the tree TB(S) to that of a tree associated
with a family F of subsets of DS . Since the structure S is linearly ordered, one can take
for R the unique minimal B(S)-block that contains the 4-smallest element of DS . The
corresponding family F is thus MS definable. Using Proposition 2.2, an MS transduction
can construct the corresponding rooted tree TF , modified so as to yield the tree T (cf. the
proof of Lemma 3.2). One gets the desired unrooted tree TB(S) = 〈NTB(S)

, edgTB(S)
〉. The

definition of the relation boxTB(S)
is easy to write in MS logic.

The constructed structure is, up to isomorphism, independent on 4, by the unicity
result of Lemma 3.2. This proposition has a corollary fully similar to Corollary 2.5 of
Proposition 2.2.

Definition 3.5. Partitive families of bipartitions. Let V be a nonempty set. A family B
of bipartitions of V is weakly partitive if it satisfies the following property:

B2: For every two overlapping elements P and Q of B, we have {A ∩ B,A′ ∪ B′} ∈ B,
whenever {A,A′} = P and {B,B′} = Q.

It is partitive if, in addition, it satisfies the following property:

B3: For every two overlapping elements P and Q of B, we have {A∆B,A∆B′} ∈ B,
whenever {A,A′} = P and {B,B′} = Q.

Note that in B3, we have A∆B′ = A′∆B.
The bipartitions of B will be called the B-splits of V (or of the structure S, if B = B(S)).

Those which do not overlap any other bipartition of B are called the good B-splits. (We
keep our terminology close to that of [18] and [17] which are the fundamental articles for
these notions). If B is weakly partitive, the family Good (B) of good B-splits is nonempty:
let A be a minimal B-block among those containing an element v; if {A,V − A} overlaps
{B,C} where B contains v, then, by B2, {A∩B, (V −A)∪C} ∈ B, and A is not a minimal
block containing v; hence {A,V −A} is a good B−split. Clearly, Good (B) satisfies B1. The
corresponding unrooted tree is TGood (B). If we transform a family B into B+ so as to insure

Property B0, then B+ is weakly partitive or partitive if B is weakly partitive or partitive
respectively.

If {A,B} is a split of a structure S, we consider S as a composition of the smaller induced
substructures S[A] and S[B]. By iterating the splitting, one reaches a decomposition of S
into unsplittable pieces. The objective is to obtain in this way a canonical decomposition.

As in Theorem 2.7, the conditions of partitivity and weak partitivity on a family B
imply some particular structure associated with the nodes of TGood (B), and we also express
this structural property for the tree TGood(B+). We recall that the leaves of this tree are
the singletons {v} for v in V . If N and M are adjacent nodes of TGood (B+), we also recall
that TGood (B+)(N,M) denote the set of nodes of TGood (B+) (including N) that are reachable
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from N by a path not containing M . For B defined by the context, we denote by V (N,M)
the set of elements of V at the leaves belonging to TGood (B+)(N,M).

Theorem 3.6. ([18], [19]) Let B ⊆ B(V ) be partitive.
(1) Every internal node N of the tree TB+ satisfies one and only one of the following two
properties:

S1: N has k neighbours, N1, . . . , Nk, k ≥ 3, and for every nonempty proper subset I of
{1, . . . , k}, the pair

B(N, I) :=
{ ⋃
{V (Ni, N) | i ∈ I},

⋃
{V (Ni, N) | i ∈ {1, . . . , k} − I}

}

belongs to B.
S2: (1) N has k neighbours, N1, . . . , Nk, k ≥ 3, and for every subset I of {1, . . . , k}, the

pair B(N, I) (as defined above) belongs to B if and only if I or {1, . . . , k} − I is
singleton.

(2) If a B-split is not good, it is of the form B(N, I) for some node N satisfying T1 and a
non singleton set I ⊂ {1, . . . , k}.

Let B ⊆ B(V ) be weakly partitive.
(3) Every internal node N of the tree TGood (B+) satisfies one and only one of properties S1,
S2 or the following

S3: N has at least 3 neighbours that can be numbered as N1, . . . , Nk in such a way that
for every subset I of {1, . . . , k}, the pair B(N, I) belongs to B if and only if I is
an interval [m,n] or its complement for some m,n with 1 ≤ m ≤ n ≤ k (and
{1, . . . , k} 6= [m,n]).

(4) If a B-split is not good, it is of the form B(N, I) for some node N satisfying S1 or S3
(with m < n).

The nodes satisfying S1, S2, S3 are said to be, respectively, complete, prime, and
circular. Montgolfier’s dissertation [19] reviews several applications from [18], together
with other ones that we do not discuss here.

3.2. The Tutte decomposition of 2-connected graphs. We review briefly the Tutte
decomposition of 2-connected graphs used in [18] to introduce the theory of graph decom-
position. This notion does not depend on edge directions, hence graphs will be undirected
in this section. They are loop-free, without isolated vertices, they may have multiple edges.
The notation and definitions of Subsection 2.3 for 2-graphs are used here with obvious
adaptations to undirected graphs.

Definition 3.7. 2-separations. A 2-separation of a graph G is a bipartition {A,B} of
its set of edges EG such that A and B have at least two elements and there are exactly
two vertices, u and v, which are incident with edges from both blocks of the bipartition.
(For example {{a, b, c, f}, {d, e, g, h, k,m, n, p}} is a 2-separation of the graph G of Figure
1.) Hence, G = (Guv[A]//Guv [B])0, where s1(Guv [A]) = s1(Guv [B]) = u, s2(Guv[A]) =
s2(Guv [B]) = v, Guv [A]0 = G[A] and similarly for B. For the purpose of iterating the
decomposition process, it is convenient to consider that the two graphs resulting from this
decomposition step are G+[A] and G+[B], obtained from G[A] and G[B] by the addition of
a new undirected edge u− v, labelled in a particular way, and called a marker. The graphs
G+[A] and G+[B] have in common the marker edge, its two ends and nothing else. They
have no distinguished vertices. The decomposition process is applied to them recursively.
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If G is 2-connected, then G[A] and G[B] are connected, and furthermore G+[A] and
G+[B] are 2-connected ([18], Lemma 1). A graph without any 2-separation is 3-connected.
We denote by 2S(G) the set of 2-separations of a graph G.

A decomposition of a graph H is a set of graphs (called the components of the de-
composition) which is either {H} or the set obtained from a decomposition by replacing
one of its components, say G, by G+[A] and G+[B] defined from a 2-separation {A,B} of
G. This process is applied recursively to a 2-connected graph H and each component of a
decomposition is 2-connected. The graphs in a decomposition are not disjoint, they form
a single connected graph. If we delete from this graph the marker edges, we obtain H.
To every decomposition corresponds a tree, the nodes of which are the components of the
decomposition. Two nodes are adjacent if they share a marker edge.

It is proved in [18] that the family 2S(G) for a 2-connected graph G is weakly partitive.
If we decompose a 2-connected graph by using only good bipartitions at each step, we
obtain at the end a canonical (unique up to isomorphism) decomposition (Theorem 1 of
[18]). This canonical decomposition is the one defined by Tutte and proved unique in [31],
chapter 11: every 2-connected graph has a unique decomposition in terms of bonds (i.e.,
graphs consisting of several parallel edges between two vertices), cycles and 3-connected
graphs such that no two bonds and no two cycles share an edge.

Proposition 3.4 is applicable and shows that the tree of the Tutte decomposition can be
constructed by an MS transduction using an auxiliary order on the set of edges. However,
another construction, not using any linear order is given in [11], Theorem 4.7. It uses the
detour through 2-dags, as in the proof of Lemma 2.20. We do not discuss any longer this
construction.

Question: In the case of a simple graph G, one might hope, by using Corollary 2.12 to
be able to construct the structure 〈VG ∪ NT , edgG, edgT , boxT 〉 from 〈VG, edgG〉 by an MS
transduction. However this is not immediate from the above results because the proof of
this corollary is valid for directed graphs, and in order to orient the edges of a graph, edge
set quantifications are necessary (see [8]). However, an alternative construction might be
possible, giving a statement analogous to Corollary 2.12. We leave this as an open question.

4. The split decomposition

In this section we apply the results of Section 3 to the split decomposition of graphs
defined by Cunnigham in [17] and used as a preliminary step in several algorithms: for the
polynomial time recognition of circle graphs in [2], for the recognition of parity graphs in
[5] and for the construction of distance labellings in [21].

4.1. Splitting a graph. As in Subsection 2.2, graphs are simple, directed and loop-free.
The split decomposition will be applied to connected graphs. Hence, most definitions are
restricted to connected graphs, which permits to avoid some technical difficulties. A directed
graph is strongly connected if for any two vertices u, v, there are directed paths from u to v
and v to u. An undirected graph is connected if and only if it is strongly connected.

Definition 4.1. Splitting a graph. A split of a connected graph G is a bipartition {A,B}
of VG such that EG = EG[A] ∪ EG[B] ∪ (A1 × B1) ∪ (B2 × A2) for some Ai ⊆ A, Bi ⊆ B,
and each of A and B has at least 2 elements. If {A,B} is a split, then G can be expressed
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as the union of G[A] and G[B] linked by one or two directed, complete bipartite graphs.
(Since G is connected the set (A1 ×B1) ∪ (B2 ×A2) is not empty).

The inverse of splitting is the join operation, defined as follows. Let H and K be two
disjoint graphs with distinguished vertices h in H and k in K. We define H ⊠(h,k)K as the
graph with set of vertices VH ∪ VK − {h, k} and edges x −→ y such that, either x −→ y
is an edge of H, or an edge of K, or we have x −→ h in H and k −→ y in K, or we have
h −→ y in H and x −→ k in K. The subscript (h, k) in ⊠(h,k) will be omitted whenever
possible.

If {A,B} is a split, then G = H ⊠(h,k) K where H is G[A] augmented with a new
vertex h and edges x −→ h whenever there are in G edges from x to some u in B, and edges
h −→ x whenever there are edges from some u in B to x. The graph K is defined similarly
from G[B], with a new vertex k. These new vertices are called markers in [17]. We say that
h and k are neighbours if they are created from a same split. Note that the graphs H and
K have at least 3 vertices and strictly less vertices than G.

A technical variant (used in [17]) consists in letting h = k. In this case the graphs
H and K have in common the marker vertex h and nothing else. We write in this case
G = H ⊠(h,h) K. The advantage is that H ∪K is a single connected graph. However, the
marker must be identified in some way. But when one iterates the decomposition process,
it is easier to handle of the components of the decomposition as disjoint graphs.

Definition 4.2. Decompositions. A decomposition of a connected graph G is defined induc-
tively as follows: {G} is the only decomposition of size 1; if {G1, . . . , Gn} is a decomposition
of size n and Gi = H ⊠(h,k) K, then {G1, . . . , Gi−1,H,K,Gi+1, . . . , Gn} is a decomposition
of G of size n + 1. The graphs Gi are called the components of the decomposition. The
graph G can be reconstructed without ambiguity provided the marker vertices and their
matchings are specified. We say that two components are neighbours if they have neigh-
bour marker vertices. From the inductive definition of decompositions, it is clear that the
components of a decomposition form an unrooted tree for the neighbourhood relation.

It will be convenient to handle a decomposition D = {G1, . . . , Gn} of a graph G as a
single graph Sdg(D) called a split decomposition graph, an SD graph in short. The compo-
nents of D being pairwise disjoint, we let Sdg(D) be their union together with particular
edges, called ε-edges between any two neighbour marker vertices. Every vertex of G is a
vertex of Sdg(D). The graph G can be reconstructed in a unique way from Sdg(D). Two
decompositions D and D′ of a graph G are isomorphic if there exists an isomorphism of
Sdg(D) onto Sdg(D′) which is the identity on VG.

The objective is to construct for every connected graph a canonical decomposition by it-
erated good splittings. Figure 4 shows a graph G and Figure 5 shows the graph representing
its canonical split decomposition. The dotted lines are the ε-edges.

In the perspective of obtaining a canonical decomposition, we first observe that the
graphs H and K associated with a split {A,B} of a graph G such that G = H ⊠ K, H
contains A and K contains B are not always uniquely defined. Consider G: 1 −→ 2 −→
3 −→ 4, A = {1, 2}, B = {3, 4}. One can take H = 1 −→ 2 −→ h, K = k −→ 3 −→ 4,
but one can also add an edge: h −→ 2 to H, or an edge from 3 −→ k to K (but not both
simultaneously), and we still have G = H⊠(h,k)K. However, H and K are uniquely defined
in certain situations, as shows the following lemma.
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Figure 4: A graph G.
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Figure 5: The split decomposition graph Sdg(Split(G)).

Lemma 4.3.

1) Let G be a strongly connected (resp. undirected and connected) graph and {A,B} be
a split. There is a unique pair of graphs (H,K) such that H contains A, K contains
B and G = H ⊠K, where unique is meant up to isomorphism.

2) Furthermore, the graphs H and K are strongly connected (resp. undirected and con-
nected). They are isomorphic to induced subgraphs of G or to graphs obtained from
induced subgraphs of G by fusing one vertex of indegree 0 and one vertex of outdegree
0. If G is undirected, only the former case occurs.

Proof. The verifications are easy. For assertion 2), if G is undirected then H is isomorphic
to G[A ∪ {v}] where v is any vertex of B adjacent to some vertex of A. Otherwise, H is
isomorphic to the graph obtained from G[A ∪ {u, v}] by the fusion of u and v where u is
any vertex of B such that x −→ u for some vertex x of A, and v is any vertex of B such
that v −→ x for some vertex x of A. It may happen that u = v.

Remark. These assertions are not true for nonconnected graphs: the undirected graph I4
(where In has n vertices and no edge) is equal to I3 ⊠H, where H consist of one isolated
vertex and an edge, one end of which is the marker vertex h. If G is strongly connected,
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the graphs H and K need not be induced subgraphs: consider
−→
C 4 =

−→
C 3 ⊠

−→
C 3 where

−→
C n

denotes the directed circuit with n vertices.

The decomposition process must terminate because the components are getting smaller
and smaller, and are thus at the end ”unsplittable”. A graph is prime if it has at least 4
vertices and no split. The graphs with at most 3 vertices have no split for the trivial reason
that they have not enough vertices. They are not called prime. We give easy verifiable
examples of prime and splittable graphs. For further reference, we put them into a lemma.

Lemma 4.4.

1) A prime graph is 2-connected.
2) There is no prime undirected graph with 4 vertices.
3) For each n ≥ 5, the graph Cn is prime, and the graphs Pn,Kn, Sn−1, Ln, all with n

vertices, are not.

As usual, we denote by Kn the n-clique, i.e., the complete undirected graph with n
vertices, by Sn the n-star consisting of one vertex, the center, adjacent to n vertices by
undirected edges, by Pn the undirected path with n − 1 edges and n vertices, by Ln the
transitive (acyclic) tournament on n vertices (the directed graph of a strict linear order),
by Cn the undirected cycle with n vertices. The graphs Kn, Sn−1 for n ≥ 4 are ”highly
decomposable”, or brittle in the terminology of [18, 17]: every bipartition, each block of
which has at least 2 elements is a split. They are the only undirected graphs with this
property. The highly decomposable directed graphs have a more complex structure that we
will review later.

The 2-connected undirected graphs having 4 vertices are K4, C4, andK−
4 (i.e., K4 minus

one edge). None of them is prime. The directed, 2-connected graph with 4 vertices defined
as the union of the paths a −→ b −→ c −→ d and a −→ d −→ c is prime, as one checks by
trying the three possibilities to split it.

Definition 4.5. Canonical decompositions. A decomposition of a connected undirected
graph G is canonical if and only if:

(1) each component is either prime or is isomorphic to Kn or to Sn−1 for n at least 3,
(2) no two clique components are neighbour,
(3) two neighbour vertices in star components are both centers or both not centers.

If G has one or two vertices, we define {G} as its canonical decomposition.

Restrictions (2) and (3) can be justified as follows: if two clique components, isomorphic
to Kn and Km are neighbour they can be merged into a single one isomorphic to Kn+m−2,
by using the elimination of ε-edges described below and Kn+m−2 has several overlapping
splits (n + m − 2 ≥ 4). Similarly, if two star components, isomorphic to Sn and Sm are
neighbours, and the center of one is linked by an ε-edge to a non-center vertex of the other,
they can be merged into a single star isomorphic to Sn+m−1, n +m− 1 ≥ 3, and Sn+m−1

has several overlapping splits. It is thus necessary to assume (2) and (3) in order to obtain
a unique decomposition theorem because stars and cliques have several overlapping, hence
”incompatible” splits. Note that the connected undirected graphs with 3 vertices are K3

and S2, hence are among the possible types of nonprime components.
As in Section 3, a split is good if it does not overlap other splits. Starting from a graph

G and the decomposition {G}, one can refine it by iteratively splitting its components with
respect to good splits only. Since a graph breaks into two strictly smaller graphs, one reaches
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a decomposition that cannot be refined by any split. Since one only applies good splits,
one cannot generate neighbour components that are cliques, or that are stars with a center
neighbour to a non-center vertex. It is thus canonical.

The following theorem concerns connected graphs. By using the obvious decomposition
of a graph into connected components, we get thus a canonical decomposition for every
undirected graph. The isomorphism of decompositions is defined in Definition 4.2.

Theorem 4.6. [17, Theorem 3] A connected undirected graph has a canonical decomposi-
tion. It is unique up to isomorphism. It can be obtained by iterated splitting relative to good
splits.

For directed graphs, there exists a similar notion of canonical decomposition, for which
one needs another notion of ”highly decomposable” graph, called a circle of transitive tour-
naments, a CTT in short. A CTT is a graph with n ≥ 3 vertices v0, . . . , vn−1, such that its
edges are described in terms of a sequence of integers 0 = p1 < p2 < · · · < pk < pk+1 = n as
the pairs vi −→ vj such that pm ≤ i < j ≤ pm+1 for some m, 1 ≤ m ≤ k. (We let vn = v0.)
In the special case k = 1, the loop v0 −→ v0 is excluded. The vertices vp1 , . . . , vpk

are called
the hinges. We write that this graph is a k-CTT to specify the number k of hinges.

A CTT is strongly connected and is not undirected. Each of its splits has a block of
the form {vi, . . . , vj} for some i, j with 0 ≤ i < j ≤ n− 1.

Here are some examples: For k = n, one gets a directed circuit. For k = 2, n = 4,
p1 = 0, p2 = 2, p3 = 4 one gets the graph 0 −→ 1 −→ 2 −→ 3 −→ 0 with additional edges
0 −→ 2 and 2 −→ 0. For k = 1, n = 3, one gets the graph 0 −→ 1 −→ 2 −→ 0 with
additional edges 1 −→ 0 and 0 −→ 2. A 1-CTT with n vertices has all its vertices of degree
n, except the hinge which has degree 2n− 2. (Since graphs are defined as directed, a vertex
in a loop-free directed graph with n vertices has maximum degree 2n− 2).

A decomposition of a strongly connected graph G is canonical if and only if:

(1) each component is either prime, or is isomorphic to Kn or to Sn−1 for n at least 3,
or is a CTT,

(2) and (3) hold as for undirected graphs,
(4) if two neighbour components are CTTs and each of them has at least two hinges,

then the neighbour vertices are not two hinges.

If G has one or two vertices, we define {G} as its canonical decomposition.
To justify the roles of cliques and stars, we recall that an undirected edge is defined

as a pair of opposite directed edges. If two neighbour components in a decomposition are
CTTs with respectively k and m vertices and k′ + 1 and m′ + 1 hinges, and two hinges are
linked by an ε-edge e, then they can be merged (by what we will call in the next subsection
the elimination of e) into a single (k′ + m′)-CTT with k +m − 2 vertices. This is shown
on Figures 6 and 7 : two 3-CTTs are merged into a single 4-CTT. In all other cases where
two CTTs are neighbour, the elimination of the ε-edge linking them does not yield a CTT,
a star or a clique.

Theorem 4.7. [17, Theorem 2] A strongly connected graph has a canonical decomposition.
It is unique up to isomorphism. It can be obtained by iterated splitting relative to good
splits.
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Figure 6: Two 3-CTT’s linked by an ε-edge.
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Figure 7: Two CTT’s merged into a 4-CTT.

The split decomposition of a strongly connected graph G (which includes the case of a
connected undirected graph) denoted by Split(G) is the canonical decomposition of Theo-
rems 4.6 and 4.7. In the next subsections we define its representation by a graph, and its
construction by an MS transduction.

4.2. Graph representations of decompositions. We have defined a single graph Sdg(D)
linking all components of a decomposition D. We obtain in this way a binary relational
structure on a fixed finite signature, actually an edge-labelled graph, from which the decom-
posed graph can be reconstructed by an MS transduction, as we will see. We get something
similar to the graph representation of modular decompositions defined in Section 2.

Definition 4.8. Split decomposition graphs. A split decomposition graph, (an SD graph in
short) is a graph H with two types of edges, defined as a triple 〈VH , edgH , ε-edgH〉 satisfying
the following conditions

(i) the solid edges are represented by a binary relation edgH , and the (undirected)
ε-edges are represented by a symmetric binary relation ε-edgH ;

(ii) every vertex is incident to a solid edge;
(iii) no two ε-edges are adjacent;
(iv) the graph obtained from H by contracting the solid edges is an undirected tree.

Condition (iv) implies that a cycle in H can only consist of solid edges, and that H
is connected. The connected components of the subgraph H[Esol

H ] where Esol
H is the set of

solid edges, are called the components of H. They are not isolated vertices and they are
linked to one another by ε-edges, in the global shape of a tree.

Lemma 4.9. The graph Sdg(D) associated with a decomposition D of a connected graph G
is an SD graph. Its vertices incident to no ε-edge are the vertices of G.

We now explain how a graph can be reconstructed from the SD graph Sdg(D) repre-
senting one of its decompositions.

Definition 4.10. Evaluating SD graphs If e is an ε-edge u−v of an SD graph H, we define
an SD graph H ′ = Elime(H) as follows:
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(a) VH′ = VH − {u, v},
(b) the edges of H ′ are those of H not incident to u or v, and the edges x −→ y if

x −→ u− v −→ y or x −→ v − u −→ y in H. (The edges x −→ u, v −→ y, x −→ v
and u −→ y are necessarily solid edges).

We will say that this operation eliminates the edge e.

Lemma 4.11. If H and K are two disjoint graphs and G is their union with an ε-edge
linking h in H and k in K, then Elime(G) = H ⊠(h,k) K. If e and f are two ε-edges of an
SD graph H, we have Elimf (Elime(H)) = Elime(Elimf (H)).

Hence one can eliminate simultaneously (or in any order) the ε-edges of a given set. We
let Eval(H) be obtained by eliminating all ε-edges of an SD-graph H. We use the notation
Eval because we consider this mapping as the evaluation of a kind of algebraic expression,
the operations of which are defined by the components of H.

Lemma 4.12. For an SD graph H, the graph G = Eval(H) can be defined as follows

(a’) VG is the set of vertices of H incident to no ε-edge,
(b’) the edges of G are the solid edges of H not adjacent to any ε-edge and the edges

x −→ y such that there is in H a path

x −→ u1 − v1 −→ u2 − v2 −→ . . . −→ uk − vk −→ y

where the edges ui − vi are ε-edges and alternate with solid edges.

Example 4.13. The following graph H is an SD graph:

a −→ b −→ u− v −→ c←− u′ − v′ ←− d←− u”− v” −→ e

and Eval(H) is the non connected graph: a −→ b −→ c←− d e. This example shows that
not every SD graph is associated with a decomposition of a connected graph.

Proposition 4.14. If D is a decomposition of a connected graph G, then Eval(Sdg(D))
= G.

Proof. By induction on the size k of D. If k = 1, then we have Sdg(D) = G. For the induc-
tion step, we let D′ = {G1, . . . , Gk} be a decomposition with corresponding graph Sdg(D′)
such that Eval(Sdg(D′)) = G. We prove the assertion for D = {G1, . . . , Gk−1,M,M ′},
obtained by splitting one component, say Gk without loss of generality. The graph Sdg(D)
is obtained from Sdg(D′) by the replacement of the subgraph Gk by the union of M and
M ′ linked by an ε-edge, say e, and Elime(Sdg(D)) = Sdg(D′). We have Eval(Sdg(D)) =
Eval(Elime(Sdg(D))) = Eval(Sdg(D′)). Since Eval(Sdg(D′)) = G by the induction hypoth-
esis, we obtain Eval(Sdg(D)) = G.

The notion of clique-width of a directed or undirected graph G, denoted by cwd(G),
and a few results about it, are recalled in Appendix 2. It is defined for graphs with labelled
edges, hence is applicable to SD graphs.

Proposition 4.15. The mapping Eval from SD graphs to graphs is an MS transduction.
There exists a function f such that Eval(H) has clique-width ≤ f(k) if each component of
an SD graph H has clique-width ≤ k.

Proof. That the mapping Eval is an MS transduction is clear from its definition and the
fact that the transitive closure of an MS definable binary relation is MS definable.
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For the second assertion, we use the fact for every MS transduction τ , there exists
a function f such that cwd(G′) ≤ f(cwd(G)) whenever G′ is obtained from G by τ . (See
Lemma A.2.2). Hence assuming that each connected component of H[Esol

H ] has clique-width
≤ k, it is enough to prove that cwd(H) ≤ k + 2.

We need a few technical facts about the algebraic expressions defining clique-width.
We recall here that if C is a set of k labels, a C-expression defining a graph G witnesses
that G has clique-width at most k (full definitions in Appendix 2). Let C and D be disjoint
sets of labels. Let M be a graph with pairwise distinct vertices v1, . . . , vm. Let N1, . . . , Nm

be pairwise disjoint graphs such that Ni has in common with M the single vertex vi. We
assume that M is defined by a C-expression, and that each Ni is defined by a (C ∪ D)-
expression, its vertices are labelled in D, and vi has a label ri that is different from those
of the other vertices of Ni.

Claim 1: The graph L = M ∪N1 ∪ · · · ∪Nm can be defined by a (C ∪D)-expression.

Proof of the claim. Let E be an expression defining M . It has occurrences of constants
p1, . . . .,pm which define respectively the vertices v1, . . . , vm. Let F1, . . . , Fm be (C ∪ D)-
expressions defining respectively N1, . . . , Nm. The expressions F ′

i = renri→pi
(Fi) define the

graphs Ni with vi now labelled by pi. The desired (C ∪ D)-expression for L is obtained
by substituting in E the expressions F ′

1, .., F
′
m for the occurrences of p1, . . . .,pm defining

v1, . . . , vm, giving an expression E′. Since E does not contain operations involving labels
in D, the substitution of the expressions F ′

1, .., F
′
m in E does not result in edge creations

between the vertices of the graphs Ni other than vi and the vertices not in Ni. Hence, E′

is a (C ∪D)-expression defining L.

We now continue the proof of the proposition. Let H be an SD graph with components
of clique-width ≤ k. We wish to prove that cwd(H) ≤ k+2. The case where H has a single
component is obvious.

We let D = {⊤,⊥}, and C be a set of k labels. For every ε-edge e : v − u, we let Hv,e

be the subgraph of H consisting of v, e and the connected component of u in the graph H
minus the edge e. (We recall that the ε-edges link the components of H in the global shape
of a tree). We label v by ⊤ and all other vertices of Hv,e by ⊥.

Claim 2: Each graph Hv,e labelled in this way is definable by a (C ∪D)-expression.

Proof of the claim. The proof is by induction on the number of ε-edges of Hv,e. We let M
be the component of H containing u, the other end of e. It is a subgraph of Hv,e. By the
hypothesis, M is defined by a C-expression. We let v1, . . . , vn be the other vertices of M
incident with ε-edges, respectively e1, . . . , en, which are the ε-edges linking M at vertices
v1, . . . , vn to other components of H. Using induction, we obtain that each graph Hvi,ei

is
definable by a (C ∪ D)-expression. We let N be the edge e, with v labelled by ⊤ and u
labelled by ⊥. Claim 1 is applicable to the graph L = M ∪Hv1,e1 ∪ · · · ∪Hvn,en ∪N , which
is equal to Hv,e. Hence Hv,e is definable by a (C ∪D)-expression.

This argument applies for n = 0 which is the basis of the induction.

The graphH is itself is expressible asM∪Hv1,e1∪· · ·∪Hvn,en whereM is any component,
using the notation of Claim 2. Its proof yields the desired result since the cardinality of
C ∪D is k + 2. This completes the proof of the proposition.
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We leave as an open question to determine a good bounding function f .

Proposition 4.16. A set of strongly connected graphs has bounded clique-width if and only
if the prime components of their split decompositions have bounded clique-width.

Proof. We first consider undirected graphs (for them strong connectedness is just connect-
edness). The ”only if” direction is clear because the prime components of the split decom-
position of an undirected graph are isomorphic to induced subgraphs of this graph, and
clique-width is monotone with respect to induced subgraph inclusion. (See Lemma A.2.1).

For the other direction, it suffices to apply Theorem 4.6 and Proposition 4.15 knowing
that the cliques Kn and the stars Sn have clique-width 2.

We now consider directed graphs. We will use Theorem 4.7. For the ”only if” direction,
we note that, by Lemma 4.3, a prime component M of the split decomposition of a strongly
connected graph G is either an induced subgraph of G or is obtained from an induced
subgraph N by the fusion of a vertex of indegree 0 and a vertex of indegree 1. In this case,
cwd(N) ≤ k implies cwd(M) ≤ 4k by Lemma A.2.3.

For the ”if” direction, we argue as above, and it remains to prove that CTTs have
bounded clique-width. Actually they have clique-width at most 4. Let G be a k-CTT
with vertices v0, . . . , vn−1 , n ≥ 3, and edges vi −→ vj such that pm ≤ i < j ≤ pm+1 for
some m, 1 ≤ m ≤ k, where 0 = p1 < p2 < · · · < pk < pk+1 = n and vn = v0. For every
i = 0, . . . , n− 1, we let Gi be the subgraph of G defined as follows

(a) its vertices are v0, . . . , vi ,
(b) its edges are those of G of the form vj −→ vk for 0 ≤ j < k ≤ i (hence Gn−1 is G

minus the edges towards v0);
(c) its vertices are labelled as follows: we label v0 by 1; letting m be such that pm ≤

i < pm+1, we label vj by ⊥ if 0 < j < pm and we label vj by 2 if pm ≤ j ≤ i.

The graphs Gi are defined by the following expressions:

- G1 = add1,2(1⊕ 2);
- if 2 ≤ i < p2, then Gi = ren3→2(add2,3(add1,3(Gi−1 ⊕ 3)));
- if pm < i < pm+1 and m ≥ 2, then Gi = ren3→2(add2,3(Gi−1 ⊕ 3));
- if i = p2 > 1, then Gi = ren3→2(ren2→⊥(add2,3(add1,3(Gi−1 ⊕ 3)))),

and finally

- if i = pm and m > 2, then Gi = ren3→2(ren2→⊥(add2,3(Gi−1 ⊕ 3))).

Then G = add2,1(Gn−1). This shows that G can be constructed with the 4 labels 1, 2, 3,⊥
hence has clique-width at most 4. If G has a single hinge, then n − 1 < p2 = n and labels
1,2,3 suffice. Thus 1-CTTs have clique-width at most 3.

Remark. The clique-width of a graph may be strictly larger than the maximum clique-
width of the components of its split decomposition. For an example the clique-width of P4

is 3, P4 = P3 ⊠P3 and the clique-width of P3 is 2. By contrast, the clique-width of a graph
is the maximum clique-width of its prime components for the modular decomposition (by
Lemma A.2.1).

Another complexity measure for undirected graphs called rank-width is defined by Oum
and Seymour (see [16, 27]). It is equivalent to clique-width in the sense that the same
sets of undirected graphs have bounded clique-width and bounded rank-width (because

rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1 where rwd(G) denotes the rank-width of G). The
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rank-width of a graph is the maximal rank-width of its prime components for the split
decomposition.

4.3. Monadic Second-Order definition of the split decomposition. The following
theorem is actually the basis for Theorems 4.6 and 4.7.

Theorem 4.17. [17, Theorem 9]: The family of splits of a strongly connected graph is
weakly partitive. The family of splits of a connected undirected graph is partitive.

Remark. This result may not hold for a graph that is not strongly connected. Take for
example: 1 ←− 2 −→ 3 −→ 4 ←− 5 −→ 6 with additional edge 6 −→ 1. The two splits
{{1, 2, 3}, {4, 5, 6}} and {{2, 3, 4}, {5, 6, 1}} overlap but {{2, 3}, {4, 5, 6, 1}} is not a split.
Hence, the family of splits of this graph is not weakly partitive.

We denote by BS(G) the family of splits of a graph G, and by BSg(G) the family of
good ones. The tree TBSg(G) (defined in Section 3) is the tree of the split decomposition
Split(G). To simplify the notation, we will denote it by TBS(G), remembering that it is
based on good splits. Proposition 3.4 yields the following:

Proposition 4.18. There exists an MS transduction that associates with a strongly con-
nected graph G and a linear ordering 4 of its set of vertices the structure

〈VG ∪NTBS(G)
, edgG, edgTBS(G)

, boxTBS(G)
〉

such that TBS(G) = 〈NTBS(G)
, edgTBS(G)

〉.

From the tree TBS(G), we build an SD graph HBS(G) and we will prove that it represents
Split(G), i.e. that HBS(G) = Sdg(Split(G)).

Definition 4.19. The SD graph HBS(G) constructed from TBS(G). To avoid special cases,
we assume that G has at least 3 vertices. The tree-partition (TBS(G),VBS(G)) is defined by
Lemma 3.2 from the family BSg(G) (the set of good splits, which do not overlap any other).
We let N be the set of nodes of the unrooted tree TBS(G). An edge e : x − y of TBS(G)

corresponds to a bipartition {Px, Py} ∈ BSg(G).
For each such edge, we create two new vertices (e, x) and (e, y): they will be the marker

vertices of Definition 4.1. More precisely, the nodes of TBS(G) correspond to the components
of the split decomposition, and the markers of the component at a node x will be the vertices
(e, x) for all edges e of T incident with x.

For a node x ∈ N with neighbours y1, . . . , yk we let Py1
, . . . , Pyk

be the sets associated

with the edges e1 : x − y1 , . . . , ek : x − yk (we use the notation of Lemma 3.3). They are
pairwise disjoint. By this lemma, VBS(G)(x) = VG−(Py1

∪· · ·∪Pyk
) (this set may be empty).

We define a graph H(x) as follows:

(i) VH(x) = VBS(G)(x) ∪ {(ei, x) | i = 1, . . . , k},
(ii) its edges are of several types:

- the edges u −→ v in G, for u, v ∈ VBS(G)(x),
- the edges u −→ (ei, x) if u ∈ VBS(G)(x) and there is in G an edge u −→ v for some
v in Pyi

,
- the edges u←− (ei, x) if u ∈ VBS(G)(x) and there is in G an edge u←− v for some
v in Pyi

,
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- the edges (ei, x) −→ (ej , x), i 6= j if there is in G an edge u −→ v for some u in Pyi

and some v in Pyj
.

As we will prove, these graphs are the components of the split decomposition. In order
to obtain an SD graph HBS(G), we take their union and we link them by undirected ε-edges
between (e, x) and (e, y) for every edge e : x− y of TBS(G). This completes the definition of
HBS(G). If G has no good split, then BSg(G) is empty, the tree TBS(G) has one node and
no edge, and HBS(G) = G.

Proposition 4.20. If a graph G is strongly connected with at least 3 vertices, we have
HBS(G) = Sdg(Split(G)) and Eval(HBS(G)) = G.

Proof. The proof is by induction on the number of vertices of G.

1) The case of graphs with 3 vertices is checked directly: each graph is a clique, a star
or a CTT, hence is necessarily a component, BS(G) is empty, and HBS(G) = G.

2) If G has no good split, then it follows from [17], Theorems 10 and 11, that G is
either Sn, or Kn, or a CTT, or is prime. In all cases we have HBS(G) = G.

3) If none of these cases hold, then G has a good split {A,B} and G can be written
as H ⊠K in a unique way (Lemma 4.3) with VH ⊇ A, VK ⊇ B. We let h and k be
their marker vertices (cf. Definition 4.1).

Claim 1: The tree TBS(G) is the union of the trees TBS(H) and TBS(K) linked by an edge
between x and y, where x is the node of TBS(H) such that h ∈ VBS(H)(x) and y is the node
of TBS(K) such that k ∈ VBS(K)(y).

Proof of Claim 1. Property F3 of Theorem 8 of [17], states that for a split {A,B}, if A′ ⊂ A,
then {A′, B ∪ A − A′} is a split of G if and only if {A′, {h} ∪ A − A′} is a split of H. It
follows that if {A,B} is a good split, then, with H and K associated with it as above:

BSg(G) = {{A,B}} ∪ {{A′, C ∪B} | {A′, C ∪ {h}} ∈ BSg(H)}

∪ {{B′, C ∪A} | {B′, C ∪ {k}} ∈ BSg(K)} .

This fact gives the bijection between TBS(G) and the union of the trees TBS(H) and TBS(K)

linked by an edge as in the statement. The edge x− y corresponds to {A,B}. �

Claim 2: The graph HBS(G) is isomorphic to the union of the graphs HBS(H) and HBS(K)

linked by an ε-edge between h and k.

Proof of Claim 2. Let e be the ε-edge linking h and k. Let xh and xk be the nodes of
TBS(H) and TBS(K) such that h ∈ VBS(H)(xh), k ∈ VBS(K)(xk).

We denote by HBS(H) +HBS(K) the union of the graphs HBS(H) and HBS(K) together
with e where h is replaced by (e, xh) and k by (e, xk).

Our goal is to prove that HBS(G) = HBS(H) +HBS(K). By Claim 1 and the definitions,
the vertices of the graph HBS(G) are those of HBS(H) +HBS(K). It remains to prove that
the edges are the same in both.

This is clear for the ε-edges as an immediate consequence of Claim 1. We now consider
the various types of solid edges.

a) A solid edge of the form u −→ v, u, v ∈ VBS(G)(x), where none of u and v is a vertex
(f, y), is in HBS(G) if and only if it is in HBS(H) + HBS(K) because VBS(G)(x) =
VBS(H)(x) ∩ VG for x a node of TBS(H) and similarly for K.
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b) Consider a solid edge (ei, x) −→ (ej , x). Without loss of generality, we assume that
x is a node of TBS(H).
Consider such an edge in HBS(G): there is in G an edge u −→ v for some u in Pyi

and some v in Pyj
, where y1, . . . , yn are the neighbours of x in TBS(G) as in Definition

4.19.

Subcase 1 : One of (ei, x) or (ej , x), say (ej , x), is (e, xh).
Then we have u −→ v in G with v ∈ Pyj

= B. Hence, we have an edge (ei, x) −→ h
in H, hence the edge (ei, x) −→ (ej , x) in HBS(H) +HBS(K) since (e, xh) = (ej , x)
replaces h.

Subcase 2 : None of (ei, x), (ej , x) is (e, xh) or (e, xk), u and v are both in H, and
they are not h (because u −→ v is an edge of G).
Then the edge (ei, x) −→ (ej , x) is also in HBS(H), because if we denote by P ′

yi
the

blocks like Pyi
relative to H, then we have either P ′

yi
= Pyi

or P ′
yi

= Pyi
−VK ∪{h},

by the result recalled in the proof of Claim 1.

Subcase 3 : As in the previous subcase except that one of u, v, say u is in H, and
the other is in K.
Then the edge u −→ h is in H, and we also have the edge (ei, x) −→ (ej , x) in
HBS(H) because h ∈ P ′

yj
, since P ′

yj
= Pyj

− VK ∪ {h}, with the notation of the

previous subcase.
Conversely, let us assume that (ei, x) −→ (ej , x) in HBS(H). We have in H an edge
u −→ v for some u in P ′

yi
and some v in P ′

yj
.

Subcase 1 : None of u, v is h, then we have also (ei, x) −→ (ej , x) in HBS(G), using
the observation on the blocks Pyi

, P ′
yi

made above in Subcase 2.

Subcase 2 : If u = h, then we have w −→ v in G for some w in K. Hence (ei, x)
−→ (ej , x) is in HBS(G).
The arguments are of course the same with K in place of H.

c) Consider a solid edge u −→ (ei, x) in HBS(G), u ∈ VBS(G)(x). There is in G an edge
u −→ v for some v in Pyi

, where e1 : x− y1, . . . , en : x− yn are the edges of TBS(G)

incident to x, as in Definition 4.19. There are several subcases:

Subcase 1 : u ∈ VH , (ei, x) = (e, xh).
Then v ∈ VK , but we have u −→ h in HBS(H). Hence the edge u −→ (e, xh) is in
HBS(H) +HBS(K).

Subcase 2 : u ∈ VH , (ei, x) 6= (e, xh).
Then (ei, x) is in HBS(H). Either v ∈ VH , and then the edge u −→ (ei, x) is also in
HBS(H) or v ∈ VK , so the edge u −→ h is in H and the edge u −→ (ei, x) is also in
HBS(H) because h ∈ P ′

yi
.

The argument is similar if u ∈ VK and for the edges u←− (ei, x).
Consider conversely a solid edge u −→ (ei, x) in HBS(H), u ∈ V (x), u 6= h. There
is in H an edge u −→ v, where v in P ′

yi
(a block relative to H, same notation as in

case b).
If v = h, we have u −→ w for some w ∈ VK , hence u −→ (ei, x) in HBS(G). If v 6= h,
we have u −→ v in G, hence also u −→ (ei, x) in HBS(G).
Again the argument is similar for a solid edge u −→ (ei, x) in HBS(K), and for the
edges u←− (ei, x).
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We can now complete the Proof. We have G = H ⊠K. By induction, we can assume
that HBS(H) = Sdg(Split(H)) and HBS(K) = Sdg(Split(K)). Using the notation of Claim
2, the SD graph Sdg(Split(G)) is, by its definition, equal to Sdg(Split(H))+Sdg(Split(K)).
Hence, by Claim 2 and these equalities following from induction, it is isomorphic to HBS(G).
This completes the proof.

Theorem 4.21. There exists an MS transduction that associates with a linearly ordered
strongly connected graph the SD graph representing its canonical split decomposition.

Proof. By Proposition 4.18, we have an MS transduction associating with (G,4) the struc-
ture 〈VG ∪ NT , edgG, edgT , boxT 〉 where T is the tree of the canonical decomposition, i.e,
T = TBS(G).

The next task is to specify the pairs (e, x) for the edges e of T and their nodes x as
pairs (u, i) for u in VG ∪ NT and integers i in a fixed finite set. By using the ordering of
VG one can select the leaf r of T which contains a smallest vertex of G. We make T into a
directed tree with root r. This orientation is MS definable. For an edge e of T , directed,
say : x −→ y, we can define (e, x) as the pair (y, 1) and (e, y) as the pair (y, 2). Since T
is a directed tree, each edge is specified in a unique way by its target. Hence, the vertex y
refers to a single edge e.

Hence the set of vertices of HBS(G) is defined as VG × {1} ∪ (NT − {r}) × {1, 2}. The
conditions defining the edges of the graph HBS(G) are straightforward to express in MS
logic, provided for each edge of T one can determine the corresponding good split. This is
possible using the relation boxT .

Hence we have proved that the split decomposition of a strongly connected graph is
definable by an MS transduction from the graph and a linear order of its vertices. It
follows from Proposition A.1.1 (in Appendix 1) that a property of graphs expressed as
an MS property of their prime components and/or of the underlying trees of their split
decompositions is an order-invariant MS property.

5. Conclusion

In this article, we have applied Monadic Second-Order logic to the graph decomposi-
tions which follow the pattern of modular decomposition and to those defined in the frame-
work of Cunnigham and Edmonds [18]. We have established general definability results in
Monadic Second-Order logic, and we have applied them to the canonical decompositions
of 2-connected graphs. We have obtained as new results a logical expression of Whitney’s
2-isomorphism Theorem and the definability in Monadic Second-Order logic of the split
decomposition of Cunnigham [17]. The article [6] applies this result to circle graphs stud-
ied in the framework of Monadic Second-order logic. This application is presented in the
Introduction.

Here are some open questions (a few others are presented also in the main text).
Question 1: The split decomposition works well for undirected graphs and for strongly

connected directed graphs, because these graphs have canonical decompositions. What
about connected directed graphs ? The strongly connected components of a graph G form
a directed acyclic graph D. Directed acyclic graphs have unique modular decompositions.
However, it is not clear how to combine the modular decomposition of D and the split
decompositions of the strongly connected components of G in order to obtain a notion of
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canonical decomposition subsuming these cases. Although directed graphs have no canon-
ical split decomposition, it may be useful to construct non canonical ones for algorithmic
purposes or for investigations on the structure of graphs.

Question 2: Our logical formalization of decompositions, based on families of sets
and on families of bipartitions can be applied to hypergraphs (along the lines of [4]), to
k -structures which are also hypergraphs (see [20]), to matroids (the MS logic of matroids
has been studied by Hlinĕny [24]). These applications should be developped.

Question 3: Another topic for future research is the extension of split decomposition
to countable graphs, generalizing what is done in [13] for modular decomposition.
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Appendix 1: Monadic second-order logic

We review Monadic Second-Order (MS) logic and transformations of structures ex-
pressed in this language, called MS transductions. The reader is refered to the book chapter
[10], or to the preliminary sections of the articles [7, 9, 12] for more detailed expositions.
However all necessary definitions are given in full in the present section.

Relational structures and monadic second-order logic. Let R = {A,B,C, . . . } be
a finite set of relation symbols each of them given with a nonnegative integer ρ(A) called
its arity. We denote by ST R(R) the set of finite R-structures S = 〈DS , (AS)A∈R〉 where

AS ⊆ D
ρ(A)
S if A ∈ R is a relation symbol. If R consist of relation symbols of arity one or

two, then we say that the structures in ST R(R) are binary.
A simple graph G can be defined as an {edg}-structure G = 〈VG, edgG〉 where VG is

the set of vertices of G and edgG ⊆ VG×VG is a binary relation representing the edges. For
undirected graphs, the relation edgG is symmetric. If in addition we need vertex labels, we
will represent them by unary relations. Binary structures can be seen as vertex- and edge-
labelled graphs. If we have several binary relations say A,B,C, the corresponding graphs
have edges of types A,B,C.

We recall that Monadic Second-order logic (MS logic for short) is the extension of
First-Order logic (FO logic for short) by variables denoting subsets of the domains of the
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considered structures, and new atomic formulas of the form x ∈ X expressing the mem-
bership of x in a set X. (Uppercase letters will denote set variables, lowercase letters will
denote first-order variables).

We denote by FO(R,W ) (resp. by MS(R,W )) the set of First-order (resp. Monadic
Second-order) formulas written with the set R of relation symbols and having their free
variables in a set W consisting of first-order as well as of set variables. Hence, we allow
first-order formulas with free set variables and written with atomic formulas of the form
x ∈ X. In first-order formulas, only first-order variables can be quantified.

As a typical and useful example of MS formula, we give a formula with free variables
x and y expressing that (x, y) belongs to the reflexive and transitive closure of a binary
relation A:

∀X(x ∈ X ∧ ∀u, v[(u ∈ X ∧A(u, v)) =⇒ v ∈ X] =⇒ y ∈ X) .

If the relation A is not given in the structure but defined by an MS formula, then one
replaces A(u, v) by this formula with appropriate substitutions of variables.

A monadic second-order (MS) property of the structures S of a class C ⊆ ST R(R) is a
property P such that for S ∈ C:

P(S) holds if and only if S � ϕ ,

for some fixed formula ϕ in MS(R,∅). Let ≤ be a binary relation symbol not in R. A
formula ϕ in MS(R ∪ {≤},∅) is order-invariant on a class C, if for every S ∈ C, for every
two linear orders 4 and 4′ on the domain DS

(S,4) � ϕ if and only if (S,4′) � ϕ ,

where 4 and 4′ interpret ≤. We say that P is an order-invariant MS property of the
structures of a class C ⊆ ST R(R) if and only if

P(S) holds if and only if (S,4) � ϕ for some linear order 4 on DS ,

where ϕ is a fixed order-invariant MS formula. Order-invariant MS properties are investi-
gated in [1, 9]. A difficulty with this definition is that the set of order-invariant MS formulas
is undecidable. However, we will use formulas that are order-invariant by construction.

Monadic Second-order transductions. We will also use FO and MS formulas to define
certain graph transformations. As in Language Theory, a binary relation R ⊆ A×B where
A and B are sets of relational structures will be called a transduction: A → B.

An MS transduction is a transduction specified by MS formulas. It transforms a struc-
ture S, given with an n-tuple of subsets of its domain called the parameters, into a structure
T , the domain of which is a subset of DS×{1, . . . , k}. Furthermore, each such transduction,
has an associated backwards translation, a mapping that transforms effectively every MS
formulaϕ relative to T , possibly with free variables, into one, say ϕ#, relative to S having
free variables corresponding to those of ϕ (k times as many actually) together with those
denoting the parameters. This new formula expresses in S the property of T defined by ϕ.
We now give some details. More can be found in [7, 10].

We let R and Q be two finite sets of relation symbols. Let W be a finite set of set
variables, called parameters. A (Q,R)-definition scheme is a tuple of formulas of the form

∆ = (ϕ,ψ1, · · · , ψk, (θw)w∈Q∗k) where k > 0 and Q∗k := {(q,~j) | q ∈ Q,~j ∈ [k]ρ(q)} ,
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ϕ ∈MS(R,W ), ψi ∈MS(R,W ∪ {x1}) for i = 1, · · · , k, and

θw ∈MS(R,W ∪ {x1, · · · , xρ(q)}) for w = (q,~j) ∈ Q∗k .

These formulas are intended to define a structure T in ST R(Q) from a structure S in
ST R(R). Let S ∈ ST R(R), let γ be a W -assignment in S. A Q-structure T with domain
DT ⊆ DS × [k] is defined in (S, γ) by ∆ if

(i) (S, γ) |= ϕ,
(ii) DT = {(d, i) | d ∈ DS , i ∈ [k], (S, γ, d) |= ψi},
(iii) for each q in Q

qT = {((d1, i1), · · · , (dt, it)) ∈ D
t
T | (S, γ, d1, · · · , dt) |= θ(q,~j)} ,

where ~j = (i1, · · · , it) and t = ρ(q).

The notation S |= ψ means that the logical formula ψ holds true in the structure S.
By (S, γ, d1, · · · , dt) |= θ(q,~j), we mean (S, γ′) |= θ(q,~j), where γ′ is the assignment extending

γ, such that γ′(xi) = di for all i = 1, · · · , t; a similar convention is used for (S, γ, d) |= ψi).
Since T is associated in a unique way with S, γ and ∆ whenever it is defined, i.e.,

whenever (S, γ) |= ϕ, we can use the functional notation def ∆(S, γ) for T . The transduction
defined by ∆ is the binary relation

D∆ := {(S, T ) | T = def ∆(S, γ) for some W -assignment γ in S} .

Hence D∆ ⊆ ST R(R)×ST R(Q). A transduction f ⊆ ST R(R) × ST R(Q) is an MS
transduction if it is equal, up to isomorphism of structures, to D∆ for some (Q,R)-definition
scheme ∆.

An MS-transduction is defined as a binary relation. Hence it can be seen as a ”non-
deterministic” partial function associating with an R-structure one or more Q-structures.
However, it is not really nondeterministic because the different outputs come from different
choices of parameters. In the case where W = ∅, we say that the transduction is parameter-
less ; it defines a partial function. It may also happen that different choices of parameters
yield isomorphic output structures. This is the case in the example of edge contraction
detailed below.

We will refer to the integer k by saying that ∆ and D∆ are k-copying ; if k = 1 we
will say that they are noncopying. A noncopying definition scheme can be written more
simply: ∆ = (ϕ,ψ, (θq)q∈Q). We will say that an MS transduction is domain extending,
if the formula ψ1 of its definition scheme ∆ is the Boolean constantTrue. In this case, if
T = def ∆(S, γ), then DT contains DS × {1}, an isomorphic copy of DS . This transduction
defines the domain of T as an extension of that of S. If in the definition scheme ∆ we only
use FO formulas, then we will say that D∆ is an FO transduction.

Example. Edge contraction. We consider a graph G with two types of edges, the
ordinary edges and the ε-edges. It is represented by a structure 〈VG, edgG, ε− edgG〉 where
the binary relation ε − edgG represents the ε-edges. We want to define from G the graph
H obtained by the contraction of all ε-edges.

It is formally defined as 〈VH , edgH〉 where VH = VG/ ∼, ∼ is the equivalence relation
such that x ∼ y if and only if x and y are linked by an undirected path made of ε-edges,
and edgH([u], [v]) holds if and only if x ∈ [u], y ∈ [v] for some (x, y) in edgG ([u] denotes
the equivalence class of u). The MS formula ξ(x, y) defined as

∀X[(x ∈ X ∧ ∀u, v{u ∈ X ∧ (ε− edg(u, v) ∨ ε− edg(v, u)) =⇒ v ∈ X}) =⇒ y ∈ X]
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expresses x ∼ y. For defining VH we must select a set containing one and only one vertex
of each equivalence class. This can be done with a set variable Y that will be a parameter
of the MS transduction, satisfying the formula ϕ(Y ) defined as∀x∃!y[y ∈ Y ∧ ξ(x, y)].

Edge contraction can be defined by the transduction with noncopying definition scheme
∆ = (ϕ,ψ, θedg) whereψ(Y, x) is x ∈ Y and θedg(Y, x, y) is ∃u, v[x ∈ Y ∧ y ∈ Y ∧ edg(u, v) ∧
ξ(x, u) ∧ ξ(y, v)].

Notice that the structures associated with all values of the parameter Y satisfying ϕ(Y )
are isomorphic. They only differ regarding the concrete subsets Y of VG used as sets of
vertices of H.

Lemma A.1.1. Let τ : ST R(R) −→ ST R(Q) be an MS (or FO) transduction. Let
≤ be a binary relation symbol not in R ∪ Q. One can transform τ into an MS (or FO)
transduction τ ′ : ST R(R ∪ {≤}) −→ ST R(Q ∪ {≤}) such that, for every S in ST R(R)
and every linear order � on its domain, τ ′(S,�) = (τ(S),�′) where �′ is a linear order on
the domain of τ(S).

Proof. Let τ be k-copying. For w = (≤,~j) ∈ {≤}∗k it is easy to define FO formulas θw

belonging to MS(R ∪ {≤},W ∪ {x1, x2}) such that, in τ ′(S,�)

(d1, i) �
′ (d2, j) if and only if either d1 ≺ d2 or (d1 = d2 and i ≤ j) .

It is clear that �′ is a linear order on the domain of τ(S) if � is one on S.

The fundamental property of MS transductions. The following proposition says that
if T = def ∆(S, γ), then the monadic second-order properties of T can be expressed as
monadic second-order properties of (S, γ). The usefulness of definable transductions is
based on this proposition.

Let ∆ = (ϕ,ψ1, · · · , ψk, (θw)w∈Q∗k) be a (Q,R)-definition scheme, written with a set of
parameters W . Let V be a set of set variables disjoint from W . For every variable X in V ,
for every i = 1, · · · , k, we let Xi be a new variable. We let V ′:= {Xi/X ∈ V , i = 1, · · · , k}.
Let S be a structure in ST R(R) with domain D. For every mapping η : V ′ −→ P(D), we
let ηk : V −→ P(D × [k]) be defined by ηk(X) = η(X1) × {1} ∪ · · · ∪ η(Xk) × {k}. With
this notation we can state

Proposition A.1.2. For every formula β in MS(Q,V ) one can construct a formula β#

in MS(R,V ′ ∪W ) such that, for every S in ST R(R), for every assignment γ : W −→ S,
for every assignment η : V ′ −→ S we have

(S, η ∪ γ) |= β# if and only if def ∆(S, γ) is defined,

ηk is a V -assignment in def ∆(S, γ),

and (def ∆(S, γ), ηk) |= β .

If the definition scheme and the formula β are FO the formula β# is also FO. Note that,
even if T = def ∆(S, γ) is well-defined, the mapping ηk is not necessarily a V -assignment in
T , because ηk(X) may not be a subset of the domain of T which is a possibly proper subset
of DS × {1, . . . , k}. We call β# the backwards translation of β relative to the transduction
def ∆.

The composition of two transductions is defined as the composition of the corresponding
binary relations. If they are both partial functions, then one obtains the composition of
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these functions. The composition of two domain extending MS (or FO) transductions is
domain extending.

Proposition A.1.3.

(1) The composition of two MS (or FO) transductions is an MS (or an FO) transduction.
(2) The inverse image of an MS-definable class of structures under an MS transduction is
MS-definable. A similar statement holds with FO instead of MS.

Appendix 2: Clique-width

Clique-width is, like tree-width a graph complexity measure. It is defined and studied
by Courcelle and Olariu in [15], and also in [10, 27]. Graphs are simple, directed or not,
and loop-free.

Let C be a set of k labels. A C-graph is a graph G given with a total mapping from
its vertices to C, denoted by labG. Hence G is defined as a triple (VG, edgG, labG). We call
labG(v) the label of a vertex v. The operations on C-graphs are the following ones

(i) For each i ∈ C, we define a constant i for denoting an isolated vertex labelled by i.
(ii) For i, j ∈ C with i 6= j, we define a unary function add i,j such that

add i,j(VG, edgG, labG) = (VG, edg
′
G, labG) ,

where edg ′
G is edgG augmented with the set of pairs (u, v) such that labG(u) = i

and labG(v) = j.
In order to add undirected edges, we take: add i,j(add j,i(VG, edgG, labG)).

(iii) We let also ren i→j be the unary function such that

reni→j(VG, edgG, labG) = (VG, edgG, lab
′
G) ,

where lab ′G(v) = j if labG(v) = i, and lab ′G(v) = labG(v), otherwise. This mapping
renames into j every vertex label i.

(iv) Finally, we use the binary operation ⊕ that makes the union of disjoint copies of its
arguments. Hence G⊕G 6= G and its size is twice that of G.

A well-formed expression t over these symbols will be called a C-expression, or a k-
expression if we are only concerned with the size k of C. Its value is a C-graph G = val(t).
The set of vertices of val(t) is (or can be defined as) the set of occurrences of the constant
symbols in t. However, we will also consider that an expression t designates any graph
isomorphic to val(t). The context specifies whether we consider concrete graphs or graphs
up to isomorphism.

A graph is considered as a graph all vertices of which are labelled in the same way.
The clique-width of a graph G, denoted by cwd(G) is the minimal k such that G = val(t)
for some k-expression t. A graph with at least one edge has clique-width at least 2. The
graphs Kn, Sn−1 have clique-width 2, for n ≥ 3.

If we need to define graphs with vertex labels from a set L, then we use constant
symbols ia for i in C and a in L. The labels from L are not changed, and do not affect the
other operations. The clique-width of a graph does not depend on the possible labelling
of its vertices. By contrast, it depends strongly on edge directions. Cliques and transitive
tournaments have clique-width 2 but tournaments have unbounded clique-width ([8]). To
build a graph with labelled edges we use the operation adda,i,j to add edges labelled by a
from the vertices labelled by i to those labelled by j.
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Lemma A.2.1. [15] (1) The clique-width of a graph is equal to the maximum clique-width
of its induced subgraphs.
(2) The clique-width of G[H/u] is equal to the maximum of cwd(G) and cwd(H).
(3) The clique-width of a graph is equal to Max{m, 2}, where m is the maximum clique-
width of the prime graphs of its modular decomposition.

Lemma A.2.2. [10] For every MS transduction τ from graphs to graphs there exists a
fonction f such that T ∈ τ(S) implies cwd(T ) ≤ f(cwd(S)).

Lemma A.2.3. Let G be a graph let u be a vertex of indegree 0, and v be a vertex of
outdegree 0. Let G′ be obtained from G by fusing u and v. Then cwd(G′) ≤ 4 cwd(G).

Proof. Let k = cwd(G) and E be a {1, . . . , k}-expression for G, considered as a {1}-graph.
For every x in VG − {u, v}, we let its type be 1 if u −→ x and x −→ v, be 2 if u −→ x and
x −→ v does not hold, be 3 if x −→ v and u −→ x does not hold, and 0 otherwise.

We let H be the graph G[VG −{u, v}] where every vertex has label (1, i) (instead of 1)
and i is its type. We let C = {1, . . . , k} × {0, 1, 2, 3}. From E, by deleting the constants
which define u and v, and by modifying the graph operations so that every label a of a
vertex is replaced by (a, i) where i is its type, one can construct a C-expression E′ defining
H. Let p be a label, e.g., (2,0), which does not label any vertex of H. The graph G′ with
all its vertices labelled by p is the value of

ren(1,0)→p ◦ ren(1,1)→p ◦ ren(1,2)→p ◦ ren(1,3)→p ◦ addp,(1,1) ◦ addp,(1,2) ◦ add (1,1),p ◦ add (1,3),p

at E′ ⊕ p. Hence G′ has clique-width at most 4k.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
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