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Abstract

A conjecture by D. Seese states that if a set of graphs has a decidable
monadic second-order theory, then it is the image of a set of trees under
a transformation of relational structures defined by monadic second-order
formulas, or equivalently, has bounded clique-width. We prove that this
conjecture is true if and only if it is true for the particular cases of bi-
partite undirected graphs, of directed graphs, of partial orders and of
comparability graphs. We also prove that it is true for line graphs, for
interval graphs and for partial orders of dimension 2. Our treatment of
certain countably infinite graphs uses a representation of countable linear
orders by binary trees that can be constructed by monadic second-order
formulas. By using a counting argument, we show the intrinsic limits of
the methods used here to handle this conjecture.

1 Introduction

A conjecture by D. Seese [31] states that if a set of graphs has a decidable
monadic second-order theory, then it is the image of a set of trees under a
monadic second-order transduction, in other words under a transformation of
relational structures defined by monadic second-order formulas. We will say that
such a set is tree-definable, where, implicitly, the relevant language is monadic
second-order logic. By results of Courcelle, Engelfriet and van Oostrom ([13],
[20]), this is equivalent to saying that it has bounded clique-width. This means
that the graphs can be constructed from isolated vertices taken as basic graphs
by means of certain graph operations : disjoint union, addition of edges based on
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labellings of the vertices where labels belong to fixed finite sets C, replacement
of labels by other labels in C. This applies to countable graphs as well as to
finite ones because one can define them as values of infinite terms written with
these operations (Courcelle [12]). The clique-width of a graph is the minimum
cardinality of a set of labels C making it possible to construct this graph. The
syntax tree of an algebraic expression that uses these operations and denotes
a graph is a tree-structuring of this graph, and the mapping from this tree
to the corresponding graph is a monadic second-order transduction. From the
graph theoretical point of view, the graphs of a tree-definable set can be very
far from trees : the set of cliques (i.e., of complete graphs) is tree-definable,
and even "path-definable" because the corresponding syntax trees are paths.
However, cliques have such a "regular" structure that they can be defined by
algebraic terms. The graphs in a tree-definable set also have a certain form of
"regularity", not always easily visible.
Seese’s Conjecture is still open, however, relativizations of it to particular

graph classes have been established. We say that a class C of graphs or of
relational structures satisfies Seese’s Conjecture, which we denote by SC(C), if
every subset L of C having a decidable monadic second-order theory is tree-
definable. In particular, Seese has proved in [31] that SC(Planar) holds, where
Planar denotes the class of planar graphs. We call a statement of the form
SC(C) the relativization to C of Seese’s Conjecture. Weakenings have also been
established. A set of graphs for which monadic second-order logic with edge set
quantifications is decidable, which is a stronger requirement than just assuming
the decidability of monadic second-order logic, has bounded tree-width (Seese
[31]). This latter result is actually a seminal one since all proved relativizations
of the Conjecture reduce to it, as we now explain informally. (All the necessary
definitions are given in Section 2 ; we abreviate "monadic second-order" into
MS and "monadic second-order with edge set quantifications" by MS2).
We sketch its proof. Assume that a set of graphs L has a decidable MS2

satisfiability problem, which means that one can decide whether an MS2 formula
is satisfied by some graph in L (this is an equivalent form of the hypothesis). So
has the set M of all their minors (because the minors of a graph are definable
in this graph by MS2 formulas). Hence M does not contain square grids of all
sizes (because otherwise, one could represent on large grids terminating Turing
Machine computations, and the Halting Problem would be decidable). Hence
the graphs in L have bounded tree-width by a result of Robertson and Seymour
[30] (also proved in Diestel et al. [19] and in the book by Diestel [18]). Since
every set of graphs of bounded tree-width has bounded clique-width and is
tree-definable, we get the result.
It entails the validity of the Conjecture for planar graphs, for graphs of degree

≤ d for any fixed d, for graphs without any fixed graph as a minor, because for
each such class, MS2 formulas can be effectively translated into equivalent MS
formulas (Courcelle [5]), hence the MS2 satisfiability problem is decidable if
the MS satisfiability problem is. This equivalence of MS2 and MS formulas
has been extended by Courcelle in [11] to the class Uk of uniformly k-sparse
graphs, defined as the class of finite or countable graphs, every finite subgraph

2



of which has a number of edges bounded by k times the number of vertices. To
summarize, every subset of Uk having a decidable monadic second-order theory
has bounded tree-width.
The validity of SC(C) has also been established for classes C which are

not uniformly k-sparse for any k. The method, which will also be used in the
present article, is the following one : a bijection is defined between a class C
and a class D ⊆ Uk for some k, and the mapping that encodes C into D and
its inverse are definable by MS formulas. (To take a very simple example, the
set of cliques with a distinguished vertex is in bijection in this way with the
set of stars, i.e., trees of diameter at most 2, and stars are uniformly 1-sparse).
This bijection makes it possible to deduce SC(C) from SC(Uk). This coding
technique is described in Section 3. It has been used by Courcelle to establish
relativizations of the Conjecture to chordal graphs where every vertex belongs
to a bounded number of maximal cliques ([7]) and to certain "convex" bipartite
graphs ([10]). In these two cases and in those we consider in Sections 4,5 and 7,
we obtain sets of graphs of unbounded tree-width having a decidable monadic
second-order theory. Hence, we go out of the classes Uk. However, this encoding
technique has intrinsic limits that we discuss in Section 8.
A major progress towards the proof of Seese’s Conjecture has been done by

Courcelle and Oum [17]. They establish the weakening of the Conjecture where
the hypothesis "has a decidable MS satisfiability problem" is replaced by the
stronger hypothesis "has a decidable C2MS satisfiability problem" where C2MS
refers to monadic second-order formulas that may use the set predicate Even(X)
expressing that a set X has even cardinality. This predicate is useful for writing
a logical formula expressing the vertex-minor inclusion relation between graphs,
a notion that parallels minor inclusion. This expression uses computations in
the finite field GF(2) that can be simulated with Even. The proof scheme of
this result follows that for sets of graphs having a decidable MS2 satisfiability
problem. It is based on a result on vertex-minors and bipartite undirected graphs
of bounded clique-width analogous to the result by Robertson and Seymour of
[30].

In the present article, we establish the equivalences between relativizations
of Seese’s Conjecture to directed graphs, to bipartite undirected graphs, to par-
tial orders and to comparability graphs. Some of these equivalences are used in
[17]. Furthermore, we establish the validity of SC(C) for the classes C of line
graphs, of directed line graphs, of finite partial orders of dimension 2, of finite
interval graphs and also for a few related classes. For all these proofs we use
codings by MS formulas of the considered graphs by uniformly k-sparse graphs.
These codings are interesting on their own because they show how certain graph
definitions can be handled by MS formulas. For certain countable graphs, we
prove a weak version of the Conjecture where the hypothesis is the decidability
of the satisfiability problem for monadic second-order order-invariant formu-
las, i.e., for monadic second-order formulas using an auxiliary linear order, but
written in such a way that their validity does not depend on the chosen linear
order.

3



This article is organized as follows. Section 2 consists of definitions and basic
results about monadic second-order logic, monadic second-order transductions,
clique-width and Seese’s Conjecture. In Section 3 we prove the equivalences of
certain relativizations of Seese’s Conjecture. In Section 4, we prove the Con-
jecture for line graphs and for directed line graphs. In Section 5 we consider
comparability graphs. We prove that the unique transitive orientation of a
prime comparability graph is definable by an MS formula. This yields a proof
of the Conjecture for finite partial orders of dimension 2. In order to extend it to
countable partial orders of dimension 2, we prove in Section 6 that the classical
representation of a countable linear order by the inorder on the nodes of a binary
tree is definable by first-order formulas in terms of an arbitrary linear ordering
of order type ω. In Section 7 we apply these results to interval graphs. Section 8
shows the intrinsic limits of the method of MS definable codings into uniformly
k-sparse graphs. Section 9 is a conclusion and shows a table summarizing the
main results.

2 Definitions and background results

Definitions and notation concerning monadic second-order formulas and monadic
second-order transformations of relational structures are, up to minor details,
those of the articles by the author on "The monadic second-order logic of
graphs" and of the book chapter [9]. Subsection 2.3 reviews clique-width, and
Subsection 2.4 presents Seese’s Conjecture.

2.1 Structures and Monadic Second-order logic

A relational signature is a finite set R = {A,B,C, ...} of relation symbols, each
of them given with an arity ρ(A) in N+. We denote by ST R(R) the set of finite
or countable R-structures S =< DS ,(AS)A∈R > where AS ⊆ D

ρ(A)
S if A ∈ R.

A binary structure is a structure using relations of arity at most 2. Monadic
Second-order logic (MS logic for short) is first-order logic enriched with variables
denoting subsets of the domains of the considered structures, and new atomic
formulas of the form x ∈ X expressing the membership of x in a set X. We will
denote by MS(R,W ) the set of MS formulas written with the set R of relation
symbols and having their free variables in a set W consisting of individual as
well as set variables.
The MS satisfiability problem for a class C of structures consists in deciding,

for a given closed MS formula whether it is satisfied by some structure in C.
Since MS logic is closed under negation this problem is equivalent to that of
deciding the monadic theory of C, i.e., of deciding whether a given formula
is true in all structures of C. However, proofs are easier to write in terms of
satisfiability than in terms of theories. The objective proposed by Seese in [31]
consists in understanding the structure of the sets of graphs having a decidable
MS satisfiability problem.
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A simple graph G will be defined as an {edg}-structure G =< VG, edgG >
where VG is the set of vertices of G and edgG ⊆ VG × VG is a binary relation
representing the edges. For undirected graphs, the relation edgG is symmetric.
This definition is inappropriate for graphs with multiple edges. For repre-

senting them, but also for representing more properties of simple graphs, we will
use their incidence structures. For a graph G we let Inc(G) =< VG∪EG, incG >
where EG is the set of edges, incG is the ternary incidence relation such that
(e, x, y) ∈ incG if and only if e is an edge linking x to y (or linking x and y, if
the graph is undirected).
A set of simple graphs (resp. of finite simple graphs) is MS-definable if it

is (up to isomorphism) the set of finite or countable models (resp. of finite
models) of an MS formula, written with the binary edg relation. A set L of
graphs (resp. of finite graphs) is MS2-definable if {Inc(G) | G ∈ L} is (up to
isomorphism) the set of finite or countable models (resp. of finite models) of an
MS formula, written with the ternary inc relation. The subscript 2 refers to the
two possible types of quantifications, over vertices and over edges, arising from
this representation.
All graphs and structures will be finite or countable. What we call a class of

graphs is actually a set of isomorphism classes of finite or countable graphs with
a characteristic property. In the sense of set theory, we only deal with finite and
countable sets.

2.2 Transductions of relational structures

We will use MS formulas to define certain transformations of graphs and more
generally of relational structures. LetA and B be classes of relational structures.
As in language theory, a binary relationR ⊆ A×B will be called a transduction
: A → B. It will be considered as a multivalued partial mapping associating
with certain elements of A one or more elements of B.
An MS transduction is a transduction specified by MS formulas. It trans-

forms a structure S, given with an n-tuple of subsets of its domain called the
parameters, into a structure T , the domain of which is a subset of DS × [k]
(where [k] denotes {1, ..., k}). Furthermore, each such transduction, has an as-
sociated backwards translation, a mapping that transforms effectively every MS
formula ϕ relative to T , possibly with free variables, into one, say ϕ#, relative to
S having free variables corresponding to those of ϕ (k times as many actually)
together with those denoting the parameters. This new formula expresses in S
the property of T defined by ϕ. We now give some details. See also Courcelle
[6,9].

We let R and Q be two relational signatures and W be a finite set of set
variables, called parameters. A (Q,R)-definition scheme is a tuple of formulas
of the form :
∆ = (ϕ,ψ1, · · · , ψk, (θw)w∈Q∗k)
where k > 0,Q ∗ k := {(A,�j) | A ∈ Q,�j ∈ [k]ρ(A)},
ϕ ∈MS(R,W ), ψi ∈MS(R,W ∪ {x1}) for i = 1, · · · , k,
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and θw ∈MS(R,W ∪ {x1, · · · , xρ(A)}), for w = (A,�j) ∈ Q ∗ k.

These formulas are intended to define a Q-structure T from an R-structure
S. Let S ∈ ST R(R), let γ be a W -assignment in S. A Q-structure T with
domain DT ⊆ DS × [k] is defined in (S, γ) by ∆ if :
(i) (S, γ) |= ϕ
(ii) DT = {(d, i) | d ∈ DS , i ∈ [k], (S, γ, d) |= ψi}
(iii) for eachA inQ : AT = {((d1, i1), · · · , (dt, it)) ∈ Dt

T | (S, γ, d1, · · · , dt) |=
θ(A,�j)}, where �j = (i1, · · · , it) and t = ρ(A).

By (S, γ, d1, · · · , dt) |= θ(A,�j), we mean (S, γ
0) |= θ(A,�j), where γ0 is the

assignment extending γ, such that γ0(xi) = di for all i = 1, · · · , t ; a similar
convention is used for (S, γ, d) |= ψi. Since T is associated in a unique way with
S, γ and ∆ whenever it is defined, i.e., whenever (S, γ) |= ϕ, we can use the
functional notation def∆(S, γ) for T .

The transduction defined by ∆ is the relationD∆ := {(S, T ) | T = def∆(S, γ)
for some W -assignment γ in S} ⊆ ST R(R)×ST R(Q). A transduction f ⊆
ST R(R)×ST R(Q) is an MS (definable) transduction if it is equal to D∆ for
some (Q,R)-definition scheme ∆ (equal up to isomorphisms of structures). In
the case where W = ∅, we say that D∆ is definable without parameters (note
that it is functional). We will refer to the integer k by saying that ∆ and D∆
are k-copying ; if k = 1 we will say that they are noncopying. A noncopying
definition scheme can be written more simply : ∆ = (ϕ,ψ, (θA)A∈Q).

For an example we recall from [14], Lemma 2.1, that if, on the structures
S in ST R(R) we have an MS-definable equivalence relation ≈, then the trans-
duction that maps S to its quotient structure S/ ≈ is an MS transduction. If
S =< DS ,(AS)A∈R >, then S/ ≈=< DS/ ≈, (AS/≈)A∈R > where AS/≈ is the
set of tuples ([a1], ..., [an]) such that (a1, ..., an) belongs to AS and [a] is the
equivalence class of a. This will be used in cases where the equivalence relation
≈ is the reflexive, transitive and symmetric closure of an MS definable relation.
It is MS definable because the transitive closure of an MS definable relation is
MS definable. See Courcelle [9] and related articles for these basic facts.

The definitions concerning MS transductions of structures apply to graphs.
However, since we have two representations of graphs by logical structures, we
must be more precise. We say that an MS transduction D on graphs is (i,j)-
definable, where i and j belong to {1, 2} if and only if the transduction of
structures {(Gi, G

0
j) | (G,G0) ∈ D} is an MS transduction, where for every

graph G, we let G1 =< VG, edgG > and G2 = Inc(G). (If G has multiple
edges, they are not distinguished in G1.) If we do not specify that an MS
transduction is (i, j)-definable, this means that it is (1,1)-definable.

For an example the mapping that associates with a graph G and a set X of
edges, the graph obtained by contracting the edges of X is a (2,2)-definable MS
transduction with parameter X. The resulting graph is H with EH = EG−X,
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VH = VG/ ≈ and incH = incG/ ≈ where ≈ is the equivalence relation such
that x ≈ y if and only if x and y are linked by an undirected path, all edges of
which are in X.

For every class of structures C ⊆ ST R(R) and every integer m, we denote
by Cm−col the corresponding class of m-colored structures. It is a subclass of
ST R(R∪P ) where P = {p1, ..., pm} is a set of new unary relation symbols. The
structures of Cm−col are the expansions of those of C with m unary relations
p1, ..., pm. We will say that an element x of a structure in Cm−col has color i if
pi(x) holds. An element may have one, no or several colors.
Consider a (Q,R)-definition scheme using m parameters. For every R-

structure S, for every assignment γ of subsets of the domain of S to the
parameters, we make (S, γ) into an m-colored structure Sγ defined as the
expansion of S with m colors represented by the values of the unary predicates
p1, ..., pm. Hence, the definition scheme∆ can be converted into a parameter-less
(Q,R ∪ P )-definition scheme ∆0 that defines a transduction of ST R(R ∪ P )
into ST R(Q). Hence, if L is a subset of ST R(R) and K ⊆ D∆(L), we also
have K = D∆0(L0) where L0 is a subset of ST R(R ∪ P ) = ST R(R)m−col.
One defines L0 by taking the structures Sγ associated with the structures S and
the assignments γ such that def∆(S, γ) is defined.

The fundamental property of MS transductions
The following proposition says that if T = def∆(S, γ), then the monadic

second-order properties of T can be expressed as monadic second-order proper-
ties of (S, γ). The usefulness of definable transductions is based on this propo-
sition.

Let ∆ = (ϕ,ψ1, · · · , ψk, (θw)w∈Q∗k) be a (Q,R)-definition scheme, written
with a set of parameters W . Let V be a set of set variables disjoint from W .
For every variable X in V , for every i = 1, · · · , k, we let Xi be a new variable.
We let V 0 := {Xi | X ∈ V , i = 1, · · · , k}. Let S be a structure in ST R(R) with
domain D. For every mapping η : V 0 −→ P(D), we let ηk : V−→ P(D × [k])
be defined by ηk(X) = η(X1)× {1}∪ · · ·∪ η(Xk)× {k}. With this notation we
can state :

Proposition 2.1 : For every formula β in MS(Q,V ) one can construct a
formula β# in MS(R, V 0 ∪W ) such that, for every S in ST R(R), for every
assignment γ :W −→ S for every assignment η : V 0 −→ S we have :

(S, η ∪ γ) |= β# if and only if :
def∆(S, γ) is defined, ηk is a V —assignment in def∆(S, γ),
and (def∆(S, γ), ηk) |= β.

Note that, even if T = def∆(S, γ) is well-defined, the mapping ηk is not
necessarily a V -assignment in T , because ηk(X) may not be a subset of the
domain of T which is a possibly proper subset of DS × [k]. We call β# the
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backwards translation of β relative to the transduction D∆. The reader will
find a more complete construction in [4], Proposition 2.5, p. 166. Here are some
important consequences.

Proposition 2.2 : The inverse image of an MS-definable set of structures
under an MS transduction is MS-definable. The composition of two MS trans-
ductions is an MS transduction.

Proof : Let D∆ be an MS transduction from ST R(R) to ST R(Q) and let
L be a subset of ST R(Q) defined as the set of models of a closed MS formula
β. Its inverse image under D∆ is the set of structures S in ST R(R) such that,
for some γ, we have def∆(S, γ) ∈ L. It is thus characterized by the formula
∃W1, · · · ,Wn.β

#, where W1, · · · ,Wn is the list of parameters. See Courcelle
[4] for a proof of the second statement. ¤.

Proposition 2.3 : If a class of structures has a decidable MS satisfiability
problem, then so has its image under an MS transduction.

Proof : Assume that a subset L ⊆ ST R(R) has a decidable MS satisfiability
problem, and that L0 = D∆(L). An MS formula β holds in some structure in
L0 if and only if the formula ∃W1, · · · ,Wn.β

# (where β# is as in Proposition
2.1) holds in some structure in L. This is decidable since L has a decidable MS
satisfiability problem. ¤

From an MS transduction, one obtains thus a reduction between theories
called an interpretation. This notion is used to relate decidability properties
of different theories (Rabin [29]). In our constructions, the main notion is the
transformation of graphs and of relational structures. The corresponding reduc-
tion of theories is just a by-product. Algorithmic applications of MS definable
transformations of relational structures are also presented by Seese in [32].

2.3 Operations on graphs and on relational structures.

We review some operations on relational structures and on graphs. We do not
recall the definition of tree-width, thoroughly studied by Bodlaender [1]. We
also assume that the notion of a graph minor is known. The books by Diestel
[18], Spinrad [33], and Brandstädt et al. [2] are good references for the basic
notions of graph theory and the definitions and basic properties of many graph
classes.

Disjoint union
Let S1 and S2 ∈ ST R(R). We define S1 ⊕ S2 as the structure S3 built as

the union of S1 and of an isomorphic copy S02 of S2 such that DS1 ∩DS02 = ∅.
We let DS3 = DS1 ∪ DS02 and AS3 = AS1 ∪ AS02 for each A ∈ R. (We are
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interested by properties of structures up to isomorphism, hence we can freely
replace structures by isomorphic copies.)

Quantifier-free definable operations
We denote by QF (R, {x1, ..., xn}) the set of quantifier-free formulas over

R with free-variables in {x1, ..., xn}. A quantifier-free definition scheme is a
noncopying (Q,R)-definition scheme without parameters ∆ = (ϕ,ψ, (θA)A∈Q)
such that the formula ϕ is the Boolean constant true, the formulas ψ and
θA for A ∈ Q are quantifier-free formulas. The formula θA is said to define A.
With such ∆ is thus associated a total mapping D4: ST R(R) −→ ST R(Q).
We call D4 a quantifier-free definable operation or transduction.

We apply these definitions to graphs. The disjoint union, denoted by ⊕ is
as for structures. It is the same for the two representations of graphs we have
defined because Inc(G⊕H) = Inc(G)⊕ Inc(H).
The edge-complement for simple, loop-free undirected graphs can be defined

as the quantifier-free definable operation such that θedg(x1, x2) is the formula

¬(x1 = x2)∧¬ edg(x1, x2).We will denote by
_
G the edge-complement of a graph

G. (Another notion of edge-complement can be defined for graphs with loops by
deleting ¬(x1 = x2) in the above formula). The join operation can be defined by

G1⊗G2 = (
_
G1 ⊕

_
G2), as a combination of edge-complements and disjoint-union.

The cographs are the finite graphs generated from 1 (the graph with a single
vertex and no edge) by disjoint union and edge-complement, or, equivalently
by disjoint union and join. (See the book [2] for other characterizations of
cographs.)
In order to generate larger families of graphs, it is convenient to use la-

belled graphs. We let P = {p, q, r, ...} be a finite set of labels handled as
unary relation symbols. We let R = {edg} ∪ P. A P -graph is a structure
G =< VG, edgG, (pG)p∈P > where < VG, edgG > is a simple graph (directed
or not) and the sets (pG)p∈P form a partition of VG (some sets pG may be
empty). A P -graph is thus a structure in ST R(R) satisfying some particular
conditions. As operations on P -graphs we will use the disjoint union ⊕, and
operations indexed by the labels in P . For distinct labels p, q, we let addp,q
be the quantifier-free definable operation defined by letting θedg(x1, x2) be the
formula :

edg(x1, x2) ∨ (p(x1) ∧ q(x2))

This operation adds a new directed edge from any vertex labelled by p to any
vertex labelled by q unless there exists already one (we deal with simple graphs).
For adding undirected edges we use addp,q ◦ addq,p which can also be written as
a single quantifier-free definable operation. We will also use the quantifier-free
definable operation renp→q which changes everywhere into q each label p. For
each p we let p be the constant denoting the graph with one vertex labelled by
p and no edge. For generating graphs with loops, it suffices to take also as basic
graphs the graphs ploop with a loop incident to a single vertex labelled by p.
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For each set P, we let CP denote {p,ploop,⊕, addp,q, renp→q | p, q ∈ P, p 6=
q}.We let Cn denote C{1,...,n}. Every P -graph defined by a term t ∈ T (CP ) (the
set of finite terms written with the symbols of CP ) is finite, simple and loop-free.
Every finite, simple loop-free P -graph is the value of some t ∈ T (CP 0) for some
large enough set P 0 ⊇ P .
The clique-width of G denoted by cwd(G) is defined as the smallest cardi-

nality of P such that G is the value of some t ∈ T (CP ). See [15,16] about
clique-width and [12] for the case of countable graphs. Trees have clique-width
at most 3 and the cographs are the finite, simple, undirected graphs of clique-
width at most 2. The clique-width of a graph is not modified by the addition
or deletion of loops. We now recall some results from [9,13,20] :

Proposition 2.4 : A set of finite graphs has bounded clique-width (resp.
bounded tree-width) if and only if it is a subset of the image of a set of finite
trees under an MS transduction (resp. a (1,2)-definable MS transduction).

Note the differences between the two statements. In the second one, the
output graphs are represented by their incidence structures, which means that
the considered transduction constructs their edges as elements of the domain
of the output structures. In the first one, the output graphs are represented
by their sets of vertices and binary edge relations. The edges are not defined
as elements of the domain, but as pairs of vertices. Tree-width and clique-
width can also be defined for countable graphs. Proposition 2.4 extends to
countable graphs and trees (Courcelle [3,12]). Since the composition of two MS
transductions is an MS transduction, we get for finite as well as for countable
graphs :

Corollary 2.5 : 1) The image of a set of graphs of bounded clique-width
under an MS transduction has bounded clique-width.
2) The image of a set of graphs of bounded clique-width under a (1,2)-

definable MS transduction has bounded tree-width.
3) The image of a set of graphs of bounded tree-width under a (2,2)-definable

(resp. by a (2,1)-definable) MS transduction has bounded tree-width (resp. has
bounded clique-width).

In the statements of Proposition 2.4 and their extensions to countable
graphs, one can replace "is a subset of the image of a set of (finite) trees "
by "is the image of a set of (finite) m-colored trees". This follows from the
observation made in Subsection 2.2 on the transformation of parameters into
colors of the elements of the input structures.

We will say that a set of structures is tree-definable if it is the image of
a set of m-colored trees under an MS transduction. This definition makes no
assumption on the effectiveness of the definition of the set of input trees. A
tree-definable set of finite graphs need not be recursively enumerable.
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Conjecture 1 [31] : If a set of finite or countable graphs has a decidable
MS satisfiability problem, then it is tree-definable, or equivalently, has bounded
clique-width.

Conjecture 2 : If a set of finite or countable relational structures has a
decidable MS satisfiability problem, then it is tree-definable.

We say that a class C of graphs or of relational structures satisfies Seese’s
Conjecture if all its subsets having a decidable MS satisfiability problem are
tree-definable. We will write this shortly as property SC(C) of the class C. In
particular, SC(Planar) holds as proved by Seese in [31]. Here, we make precise
some results informally presented in the introduction.

Proposition 2.6 [7,31] : If a set L of finite or countable graphs has a
decidable MS2 satisfiability problem, i.e., is such that Inc(L) has a decidable
MS satisfiability problem, then it has bounded tree-width.

Its proof rests on the result of Robertson and Seymour [30] (also proved in
Diestel et al. [19] and in the book [18]). The hypothesis is stronger than that
of Conjecture 1, and the conclusion is also stronger since, for a set of graphs,
bounded tree-width implies bounded clique-width but not vice-versa.
For every integer k, we let Uk denote the class of simple, finite or countable

graphs G that are uniformly k-sparse i.e., such that every finite subgraph H
has a number of edges at most k times the number of vertices. (The following
characterization will be useful : a graph is uniformly k-sparse iff it has an
orientation such that each vetex has indegree at most k.) It is proved in [11]
that every MS2 definable subset of Uk is MS definable, and more precisely, that
every MS formula using edge and/or edge set quantifications (hence that is
intended to be evaluated in a structure Inc(G)) can be translated into an MS
formula (not using edge and edge set quantifications) that is equivalent to the
given one in the graphs of Uk. Of course, the translation depends on k. In
technical terms, for every k, the identity on Uk is a (1,2)-definable transduction.
It follows then from Proposition 2.6 :

Corollary 2.7 : If a set of simple, uniformly k-sparse graphs has a decidable
MS satisfiability problem, then it has bounded tree-width, whence also bounded
clique-width.

As a consequence, we obtain that Seese’s Conjecture holds for planar graphs,
for graphs of degree at most d, because these classes are subclasses of Uk for
large enough k. We will be able to establish weak versions of the Conjecture
relative to a stronger language than MS logic. We review some definitions from
Courcelle [8]. An ordered structure is a pair (S,≤) consisting of a structure S
and an ω-order ≤ of its domain, i.e., a linear order which is isomorphic to the
ordinal ω if the domain is countable. A property of ordered structures is order-
invariant if for any two ω−orders ≤ and ≤0, the property holds for (S,≤) if and
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only if it holds for (S,≤0). A property of R-structures S is MS-OI-expressible
if it is of the form "there exists an ω-order ≤ such that P (S,≤) holds" where
P is an MS expressible order-invariant property of ordered structures. The
MS-OI-satisfiability problem is decidable for a set L of R-structures if for every
formula in MS(R ∪ {≤},∅) expressing an order-invariant property, one can
decide whether it is satisfied in some structure of L. (The notation MS(≤) is
used in [8] for MS-OI restricted to finite structures). One cannot decide whether
a given MS formula is order-invariant ([8]). However, we will use this notion for
formulas which will be order-invariant by construction.

3 Equivalent relativizations of Seese’s Conjec-
ture

A class of graphs or of relational structures C satisfies Seese’s Conjecture if
all its subsets having a decidable MS satisfiability problem are tree-definable,
hence have bounded clique-width if C is a class of graphs. This property is thus
trivial for a class of graphs having bounded clique-width.
For two classes of graphs or of structures, we say that D reduces to C with

respect to Seese’s Conjecture, written D ≤S C, if SC(C) =⇒ SC(D) that is, if
we can prove SC(D) by assuming SC(C). We say that C and D are equivalent
with respect to Seese’s Conjecture, written D ≡S C if C ≤S D and D ≤S C.
If C ⊆ D ⊆ ST R(R) then, the reduction C ≤S D is trivial, and the reduction

D ≤S C yields the equivalence of C and D.
We present some tools that will help to establish reductions.

3.1 Monadic second-order codings and colorings

Let A and B be two classes of structures. An MS coding of A into B is a
pair (γ, δ), where γ is the coding transduction, an MS transduction from A into
B that is total on A (each structure in A has one or more images under γ) and
δ is the decoding transduction also an MS transduction that is functional and is
the inverse of γ. This implies that if H belongs to γ(G) then δ(H) = G, up to
isomorphism. An MS coding (γ, δ) is bijective if γ is one-to-one.

Proposition 3.1 : If there exists an MS coding (γ, δ) of D into C, then D
≤S C. If there exists an MS coding of C into Uk for some k, then SC(C) holds.

Proof : Assume that we have an MS coding (γ, δ) of D into C and SC(C)
holds. Let L be a subset of D having a decidable MS satisfiability problem, then
so has γ(L), by Proposition 2.3, hence γ(L) ⊆ θ(T ) where T is a set of trees
and θ is an MS transduction, and thus L ⊆ δ(θ(T )). Hence L is tree-definable
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because the composition of two MS transductions is an MS transduction by
Proposition 2.2. The second assertion follows since SC(Uk) holds. ¤

MS codings into Uk are used by Courcelle in [7] for proving the Conjecture
for the chordal graphs such that every vertex belongs to a bounded number of
maximal cliques, and in [10] for certain "convex" bipartite graphs.

For every class of structures C, we denote by Ck−col (cf. Subsection 2.2) the
class of their expansions by k unary relations, also called their colorings with k
colors.

Lemma 3.2 : For every k and every class C ⊆ ST R(R), we have C ≡S
Ck−col.

Proof: The quantifier-free definable transduction associating with S in C
its expansion S∗ by k empty unary relations is an MS coding. Its inverse is the
quantifier-free transduction fgP which "forgets" the relations in P . It follows
from Proposition 3.1 that C ≤S Ck−col. (We do not have C ⊆ Ck−col since C
and Ck−col have distinct relational signatures. Hence the reduction C ≤S Ck−col,
although easy is not trivial.)
We now consider the other direction. We assume SC(C) and we let L ⊆

Ck−col having a decidable MS satisfiability problem. We let L0 = fgP (L). An
MS formula β is satisfied in some structure S in L0 if and only if it is satisfied
in some structure in L (in this case the color predicates play no rôle). This is
decidable by the hypothesis. Hence L0 is tree-definable by the hypothesis on
C. But the transduction that associates with a structure in C the set of all its
k-colorings is an MS transduction, say γ, that uses k parameters for specifying
the colors of the elements. Hence L is a subset of γ(L0) which is tree-definable
since L0 is and the class of MS transductions is closed under composition. ¤

3.2 Equivalent relativizations

The following results concern countable graphs as well as finite graphs.

Proposition 3.3 : Undirected Graphs ≤S Directed Graphs.

Proof : We have Undirected Graphs ⊆ Directed Graphs since an undirected
edge is handled in the representing structures as a pair of opposite directed
edges. The reduction is thus immediate. ¤

Proposition 3.4 : Directed Graphs ≤S Bipartite Undirected Graphs and
Directed Graphs ≤S Undirected Graphs.

Proof : We have trivially : Bipartite Undirected Graphs ≤S Undirected
Graphs. Let D be the class (Bipartite Undirected Graphs)4−col. By Lemma 3.2
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: D ≤S Bipartite Undirected Graphs. Hence, we need only prove that Directed
Graphs ≤S D, i.e., we need only find an MS coding of directed graphs into
certain bipartite undirected graphs, the vertices of which are colored with four
colours.
The encoding is as follows : Let G be a directed graph. For every vertex

v of this graph we define four vertices, (v, 1), (v, 2), (v, 3), (v, 4) with respective
colors Target, Middle1 , Middle2 , Source. We define undirected edges between
(v, 1) and (v, 2), (v, 2) and (v, 3), (v, 3) and (v, 4). For every edge v −→ w in G,
we create an edge linking (v, 4) and (w, 1). We may have v = w, in this case
we get a cycle with four edges. We obtain thus a graph γ(G) in D, and the
mapping γ is a 4-copying MS transduction.
Its image is characterized by the condition that every vertex colored by

Middle1 (resp. Middle2) has degree 2 and has one neighbour colored by Target
(resp. Source), and another by Middle2 (resp. Middle1).
The inverse of τ is obtained by the following operations : first every edge

with ends x and y colored respectively by Source and Target is directed from x
to y, and then all other edges are contracted. Edge contractions can be handled
by taking a quotient graph. This mapping is thus an MS transduction. ¤

Our aim is now to prove the following proposition:

Proposition 3.5 : Partial Orders ≡S Directed Graphs

The Hasse diagram H(P ) of a strict partial order P = (V,<) is the simple
directed acyclic graph (V,−→) such that x −→ y if and only if x < y and
there is no z such that x < z < y. A Hasse diagram is a simple directed acyclic
graph such that if x −→ y, there is no other path from x to y. (We leave out
the conventions regarding drawings of Hasse diagrams ; they are explained in
the book by Trotter [34] where (V,−→) is called the cover graph of P ).
If P is finite, then P is the transitive closure of H(P ). The height of P (cf.

[34]) is the maximal length n of a chain x1 < x2 < ... < xn. If P is infinite but
has finite height it is the transitive closure of H(P ). (This condition is sufficient
but not necessary).
The mapping from P to H(P ) is an MS transduction, and so is the mapping

from a graph to its transitive closure. Finite partial orders and finite Hasse
diagrams are in bijection by a pair of MS transductions. So are for each n, the
finite and countable partial orders of height at most n and the corresponding
Hasse diagrams.

Lemma 3.6 : Directed Graphs ≤S (Bipartite Hasse Diagrams)4−col

Proof : We use the same coding as in Proposition 3.4 with the following
modifications : Edges in the graph γ(G) are directed from (v, 1) to (v, 2), from
(v, 3) to (v, 2), from (v, 3) to (v, 4), and finally from (v, 4) to (w, 1) whenever
there is in G an edge from v to w.
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The directed graph γ(G) associated in this way with a directed graph G
is acyclic because of the edges from (v, 3) to (v, 2) which forbid circuits. There
is no edge from x to y such that there exists a directed path from x to y of
length at least 2. Hence γ(G) is a Hasse diagram with directed paths of length
at most 3. (Their transitive closures are partial orders of height at most 4).
The mapping γ is an MS transduction, and so is its inverse, as in the proof of
Proposition 3.4. ¤

Proof of Proposition 3.5 : Since every partial order is a directed graph,
we have the reduction Partial Orders ≤S Directed Graphs.
Conversely we have PO0 ≤S Partial Orders where PO0 is the class of strict

partial orders of height at most 4 that are the transitive closures of the Hasse
diagrams of the special form constructed in Lemma 3.6. These Hasse diagrams
form a subclass, call it HD, of (Bipartite Hasse Diagrams)4−col. We have thus a
bijective MS coding of HD into PO0. Hence HD ≤S PO0. By Lemma 3.6,
we have Directed Graphs ≤S HD . Hence, by the transitivity of reduction, we
have Directed Graphs ≤S Partial Orders. ¤

Next we consider directed graphs with edge labels. A k-edge-labelled directed
graph is one such that each edge has a label in the set {1, ..., k}. We may have two
parallel edges with different labels. Such a graph is represented by a relational
structure with k binary edge relations, edg1, ..., edgk.

Lemma 3.7 : For each k we have k−Edge-Labelled Directed Graphs ≤S
(Bipartite Hasse Diagrams)k+3−col

Proof : The proof is as in Lemma 3.6, with the following differences.
For every vertex v of the graph G that we encode, we define k + 3 vertices,
(v, 1), ..., (v, k + 3) with respective colors Target, Middle1 , Middle2 , Source1 ,
..., Sourcek . We define directed edges from (v, 1) to (v, 2), from (v, 3) to (v, 2)
and from (v, 3) to (v, i) for each i = 4, ..., k + 3. For every directed edge in G
from v to w, colored by i, we create an edge linking (v, 3 + i) to (w, 1). The
transduction γ is here (k + 3)-copying. Its inverse is defined by the following
operations : first every edge with ends x and y colored respectively by Sourcei
and Target is directed from x to y and gets color i and then all other edges are
contracted. The verifications are easy. ¤

We now consider particular undirected graphs. A split graph is a connected
graph consisting of a clique (a complete loop-free undirected graph) and other
vertices linked to the clique by one or more edges.

Proposition 3.8 : Split Graphs ≡S Bipartite Undirected Graphs

Proof : A split graph is a bipartite graph with partition (A,B) of its vertex
set augmented with edges between any two vertices of A. From this observation,
we get a bijective MS coding of the class of Split Graphs into (Bipartite Undirected
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Graphs)2−col. We get the reduction ≤S using also Lemma 3.2. The other
direction is similar. ¤

Since split graphs have diameter at most 3, bounding the diameter of graphs
does not yield classes satisfying Conjecture (as does on the opposite a bound
on degree as a consequence of Corollary 2.7). Chordal graphs are usually de-
fined as finite graphs. They can be characterized as the graphs having a tree-
decomposition all "boxes" of which are cliques. (See Diestel [18] or Brandstädt
et al.[2]).This characterization can be used as a definition for countable chordal
graphs. In the following theorem, the class of chordal graphs can be replaced
by any class of undirected graphs containing the split graphs. A pomset or
partially ordered multiset is a partial order, each element of which has a label
taken from an alphabet X. We let Pom(X) denote the class of pomsets over a
finite alphabet X.

Theorem 3.9 : 1) The following classes of graphs are pairwise equivalent
with respect to Seese’s Conjecture :
(i) Undirected Graphs,
(ii) Bipartite Undirected Graphs,
(iii) Chordal Graphs,
(iv) Split Graphs,
(v) Directed Graphs,
(vi) Directed Acyclic graphs.
2) They are equivalent to the corresponding classes of vertex and/or edge

labelled graphs.
3) The class Undirected Graphs is equivalent to the class Partial Orders and

to the class Pom(X) for each finite alphabet X.
4) All the above equivalences hold for the corresponding classes of finite

graphs and of finite partial orders.

Proof : By Propositions 3.3, 3.4 and inclusions, we have (i) ≤S(v) ≤S(ii)
≤S(i).
Because of inclusions of classes we have (iv) ≤S(iii) ≤S(i), and by Proposi-

tion 3.8, we have (ii) ≤S(iv).
By inclusions we have Bipartite Hasse Diagrams ≤S (vi) ≤S (v).
By Lemma 3.2, (Bipartite Hasse Diagrams)4−col ≤S Bipartite Hasse Diagrams

and by Lemma 3.7, (v) ≤S (Bipartite Hasse Diagrams)4−col.
This achieves the proof of assertion 1)
2) Consider any k. We have proved in Lemma 3.7 that k-Edge-Labelled

Directed Graphs ≤S Directed Graphs.
By inclusion of classes we have :
k-Edge Labelled Undirected Graphs ≤S k-Edge Labelled Directed Graphs,
and, by the same proof as in the first part of Lemma 3.2 :
Undirected Graphs ≤S k-Edge Labelled Undirected Graphs.

16



Together with implications resulting from inclusions, we obtain that all k-
edge labelled classes are equivalent. For vertex labellings for all these classes,
we can use Lemma 3.2.
3) This follows from Proposition 3.5, and with Lemma 3.2, we get the equiv-

alence with pomsets.

4) Clear because all constructions transform finite structures into finite
structures.¤

A table in Section 9 collects these results.

3.3 Prime graphs

We review some definitions. The reader will find more details in the survey by
Möhring and Radermacher [28], in the book by Spinrad [33] or in Courcelle [8].
Let G be a directed or undirected simple graph. A nontrivial module in G is
a set M of at least two vertices such that VG −M is not empty and for every
x, x0 in M and every y in VG −M, we have

edgG(x, y)⇐⇒ edgG(x
0, y) and edgG(y, x)⇐⇒ edgG(y, x

0).

This means that every vertex outside of M is linked in the same way to all
vertices of M . If the edges are labelled, then the edge labellings must be the
same between y and all vertices of M . A graph is prime if it has at least three
vertices and no nontrivial module. For a class C we denote by Prime(C) the
class of prime graphs in C.

Proposition 3.10 : For every class C of directed or undirected graphs
closed under taking induced subgraphs, we have : C ≡S Prime(C).

Proof : Since C is closed under taking induced subgraphs, we have Prime(C) ⊆
C, hence Prime(C) ≤S C.
Let us now assume that SC(Prime(C)) holds. For every set of graphs L

⊆ C the set PSub(L) of prime induced subgraphs of the graphs in L is obtained
from L by an MS transduction, and is a subset of Prime(C) since C is closed
under taking induced subgraphs. Hence, if L has a decidable MS-satisfiability
problem, so has PSub(L). Since SC(Prime(C)) holds, the graphs in PSub(L)
have clique-width at most k for some k. The finite induced subgraphs of the
graphs in L have thus clique-width at most k (because the clique-width of a finite
graph is the maximum clique-width of its prime induced subgraphs). Hence,
the countable graphs in L have clique-width bounded by a constant depending
on k by the compactness result of Courcelle [12], because their finite induced
subgraphs have clique-width at most k. ¤

17



4 Line graphs

In the previous section, we have established a number of equivalences between
relativizations of Seese’s Conjecture to classes of graphs. We now prove the
validity of this conjecture for directed line graphs and for line graphs. The
techniques for these two apparently related classes are actually different.

4.1 Directed line graphs

We consider in this subsection directed graphs, possibly with loops and multiple
edges, but without isolated vertices. A graph G is handled through its incidence
structure Inc(G) =< VG ∪EG, incG > where incG ⊆ EG × VG × VG, as defined
in Subsection 2.1. The directed line graph of G, denoted by DL(G) is the simple
directed graph with set of vertices EG and edges e −→ f whenever e and f
are edges of G such that the target of e is the source of f . We say that H is
a directed line graph if it is DL(G) for some graph G. We denote by DLG the
class of directed line graphs, and by D be the class of directed graphs having at
most one vertex of indegree 0 and at most one vertex of outdegree 0.

Proposition 4.1 : 1) The mapping DL is a (2,1)-definable MS transduction
of directed graphs onto the class DLG.
2) It is a bijection of D onto DLG and its inverse DL−10 : DLG −→ D is a

(1,2)-definable MS transduction.
3) A simple directed graph is a directed line graph if and only if whenever

we have vertices u, x, y, z with u ←− x −→ y ←− z, we have also z −→ u
(vertices u, x, y, z are not necessarily distinct).

Before doing the proof we note that the two graphs {x←− y −→ u} and
{x −→ y ←− u} have the same directed line graph, consisting of two isolated
vertices but are not isomorphic. Hence the mapping DL is not a bijection of
the class of all directed graphs onto DLG.

Proof : 1) Clear from the definition.
2) For a graphG not in D, letG0 be obtained by fusing all vertices of indegree

0 into a single vertex, and all vertices of outdegree 0 also into a single vertex.
Then G0 ∈ D and DL(G0) = DL(G), hence DL maps D onto DLG. We now
prove it is a bijection.
Let H be DL(G), where G is in D. The edges of G are the vertices of

H. For every vertex e of H we let (e, 1) and (e, 2) denote the source and the
target of e in G. We let W be the set of all such pairs (e, 1) and (e, 2). A
vertex of G has several denotations in W . We let ≈ be the equivalence relation
on W generated by the set of pairs ((e, 2), (f, 1)) for all edges e −→ f of H,
together with the set of pairs ((e, 1), (f, 1)) such that e and f have indegree
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0 in H, and the set of pairs ((e, 2), (f, 2)) such that e and f have outdegree
0. From the hypothesis that G is in D, we see that ≈ −equivalent elements
denote the same vertex and that any two denotations for a same vertex are
≈-equivalent. Hence, G can be reconstructed in a unique way from H and DL
is one-to-one on D, Furthermore, DL−10 is a (1,2)-definable MS transduction,
since quotient structures by MS definable equivalence relations can be defined
by MS transductions, as recalled in Subsection 2.2. This completes the proof of
2).
3) This is a known result by Heuchenne [24]. We prove it for completeness.
Let H = DL(G). If u←− x −→ y ←− z in H, then the target of x (as edge

of G) is equal to the sources of u and y, the target of z is equal to the source of
y and thus also to the source of u. Hence we must have also z −→ u in H.
Let us conversely assume that a simple directed graph H satisfies this con-

dition. We let W = VH ×{1, 2} and we define on W a binary relation ≈ by the
following conditions :
(v, i) ≈ (w, j) iff
either i = j = 1, and for every x, x −→ v if and only if x −→ w,
or i = j = 2, and for every x, v −→ x if and only if w −→ x,
or i = 1, j = 2 and w −→ v,
or i = 2, j = 1 and v −→ w.
We claim that ≈ is an equivalence relation. It is reflexive and symmetric, we

check transitivity. Let (v, i) ≈ (w, j) ≈ (z, k). We want to prove (v, i) ≈ (z, k).
The cases where i = j = k are clear from the definitions.
We consider the case (v, 1) ≈ (w, 1) ≈ (z, 2). We have z −→ w, hence

z −→ v since (v, 1) ≈ (w, 1), hence (v, 1) ≈ (z, 2).
We now consider the case (v, 1) ≈ (w, 2) ≈ (z, 1). We have w −→ v and

w −→ z. Let x be any vertex in H such that x −→ v. We have x −→ z by the
hypothesis on H. Similarly, x −→ z implies x −→ v. Hence (v, 1) ≈ (z, 1). All
other cases are similar.
We let G be the graph with set of vertices W/ ≈, set of edges VH and

incidence relation x : [(x, 1)] −→ [(x, 2)], where [w] is the equivalence class
of w with respect to ≈ . It is easy to check that G is in D, and that DL(G) is
isomorphic to H. ¤

In technical terms, this proposition says that (DL−10 ,DL) is an MS coding
of DLG into Inc(D), the class of incidence structures of the graphs in D.

Corollary 4.2 : If a set of directed graphs L has bounded tree-width then
DL(L) has bounded clique-width. The converse holds if L ⊆ D.

Proof : Follows from Proposition 4.1 and Corollary 2.5. ¤

The converse is not true without the hypothesis L ⊆ D. For a counter-
example consider the graph Gn with vertices 1, ..., n, (i, j) for 1 ≤ i < j ≤ n,
edges i −→ i + 1, (i, j) −→ i, (i, j) −→ j. This graph has Kn as a minor,
hence tree-width at least n − 1. In the corresponding graph G0n (cf. the proof
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of Proposition 4.1), the vertices (i, j) are fused into a single vertex and G0n has
tree-width 2. We have DL(G0n) = DL(Gn). The graphs Gn have unbounded
tree-width but their directed line graphs have bounded clique-width.

It follows from Corollary 4.2 that the graphs in DLG have unbounded clique-
width. Hence the following theorem is not trivially true.

Theorem 4.3 : The class DLG of directed line graphs satisfies Seese’s
Conjecture.

Proof : Let L be a subset of DLG for which the MS satisfiability problem
is decidable. Then the MS2 satisfiability problem is decidable for DL−10 (L)
(because DL−10 is (1,2)-definable). Hence, by Proposition 2.6, DL−10 (L) has
bounded tree-width, and L has bounded clique-width (by Corollary 2.5.3) since
it is the image under the (2,1)-definable MS transductionDL of a set of bounded
tree-width. ¤

A directed graph is N-free if it has no induced subgraph isomorphic to 1←−
2 −→ 3←− 4.

Corollary 4.4 : Seese’s Conjecture holds for N-free Hasse diagrams and
for the corresponding partial orders.

Proof : It suffices to prove that an N-free Hasse diagram belongs to DLG,
hence satisfies Condition 3 of Proposition 4.1.
Let G be an N-free Hasse diagram not in DLG, if any exists. There are

vertices u, x, y, z with u ←− x −→ y ←− z with no edge z −→ u. Assume
first they are all distinct. Can we have an edge from u to z ? No because then
we have a path of length 3 from x to y, contradicting the definition of Hasse
diagrams.
Can we have an edge between x and z , or between u and y ? No, again by

the definition of a Hasse diagram. None of the edges of u←− x −→ y ←− z
has an opposite edge, otherwise we get a circuit. Hence u←− x −→ y ←− z
is an induced subgraph, hence G is not N-free.
Assume now u, x, y, z are not pairwise distinct. We cannot have u = z oth-

erwise we get a circuit. If x = z or u = y then we have z −→ u, contradicting
the initial assumption. Hence, G is a directed line graph, and the result follows
from Theorem 4.3. ¤

For two partial orders P and Q, we let A be a set of maximal elements
of P and B be a set of minimal elements of Q. We define the partial order
R = P ~A,BQ as the union of P and Q (assumed to be disjoint ; if they are not
one takes disjoint isomorphic copies) with order relation ≤R defined as follows
: x ≤R y if and only if x ≤P y or x ≤Q y or x ∈ P , y ∈ Q, x ≤P a for some
a ∈ A and b ≤Q y for some b ∈ B. If A is empty, we obtain the disjoint union
(also called parallel composition). If A is the set all maximal elements of P and
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B is the set of all minimal elements of Q we obtain the series-composition. The
quasi-series-parallel partial orders are the finite partial orders generated by the
operations ~A,B from the singletons.

Corollary 4.5 : Seese’s Conjecture holds for the class of quasi-series-parallel
partial orders.

Proof : This is a consequence of Corollary 4.4 because the quasi-series-
parallel partial orders are the finite partial orders having an N-free Hasse dia-
grams, a result by Habib and Jegou [23] (also in Möhring [27]) ¤

4.2 Line graphs

We consider here undirected graphs, possibly with loops and multiple edges
but without isolated vertices. A graph G is represented by Inc(G). We have
(e, x, y) ∈ incG if and only if (e, y, x) ∈ incG. The line graph of G, denoted
by L(G) is the simple, loop-free, undirected graph with set of vertices EG and
edges e − f whenever e and f are incident edges of G, e 6= f . We say that H
is a line graph if it is L(G) for some graph G. We let LG be the class of line
graphs. Our objective is to establish SC(LG). The following is clear from the
definition.

Proposition 4.6 : The mapping L is a (2,1)-definable MS transduction.

Several graphs may have the same line graph. For example K3 is the line
graph of both K3 and K1,3. A theorem by Whitney [36] states that they are the
only two non-isomorphic, connected, simple, loop-free graphs having isomorphic
line graphs. However, this does not mean that the other connected, simple, loop-
free graphs can be reconstructed from their line graphs. For a counter-example,
consider G with edges 1 : a− b, 2 : a− c, 3 : b− c, 4 : d− b, 5 : d− c, and H
with edges 1 : a−b, 4 : a−c, 3 : b−c, 2 : d−b, 5 : d−c. We have L(G) = L(H)
with vertices {1, 2, 3, 4, 5}. The graphs G and H are different but isomorphic by
an isomorphism that does not preserve the "names" of edges.

Since LG is closed under taking induced subgraphs, it is enough by Proposi-
tion 3.10 to establish SC(Prime(LG)). Let S be the class of connected, simple,
loop-free graphs.

Proposition 4.7 : Every prime line graph H is L(G) for some G ∈ S. The
mapping associating with every connected, simple, loop-free graph H the set
L−1(H)∩ S is a (1,2)-definable MS transduction λ.

Proof : If a graph L(G) is prime, then it is connected and G is connected.
The graph G is simple because, if it has at least three edges and two of them e, f
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with same end vertices, then {e, f} is a nontrivial module of L(G), and L(G) is
not prime. If G has a loop e incident to a vertex v, then this loop can be made
into a pending edge incident to v without changing the line graph. (A pending
edge has one end of degree 1, called a pending vertex.)
For proving the second assertion, we first consider the special case where G

is a tree T with at least two edges and L is its line graph. It is clear that every
vertex of L belongs to one or two maximal cliques. We denote by KL is the
set of maximal cliques of L, by V 1

L the set of vertices of L belonging to a single
maximal clique. Hence, V 1

L is the set of pending edges of T. The set of vertices
of T is in bijection with V 1

L ∪KL : a pending vertex of T corresponds to a vertex
in V 1

L , namely the corresponding pending edge of T , and a vertex of degree >1
with incident edges e1, ..., ep corresponds to the maximal clique {e1, ..., ep}.We
let K0

L = KL ∪ {{v} | v ∈ V 1
L}.

We now consider a connected graph G and H = L(G). Let E be a set of
vertices of H, i.e. of edges of G, such that G−E is a spanning tree of G. Then
L(G−E) = H[VH−E], the induced subgraph of H with set of vertices VH−E.
A vertex of H belonging to E is adjacent to all vertices of A ∪B where A and
B are disjoint sets in K0

H[VH−E]. The sets A and B are disjoint because G has
no multiple edges.
We now show how these notions can be represented in MS logic. We first

consider a tree T and L = L(T ). We choose a pending vertex of T as root. Its
incident edge r is called the root edge and is colored by 0. The edges incident
with it are colored by 1. The uncolored edges incident with those colored by
1 are colored by 2. The still uncolored edges incident with those colored by 2
are colored by 0, and then we repeat by using colors 1,2,0,1, etc... Hence, on
every path in T starting from the root, the edges are colored successively by
0, 1, 2, 0, 1, 2, 0...
This defines in L a particular vertex r and a vertex coloring with colors

0,1,2. The graph L, r and its coloring satisfy the following properties :
(1) r is colored by 0 and its neighbours are colored by 1 ;
(2) the binary relation defined by : edgU (x, y) : ⇐⇒ x and y are adjacent in

L and for some i, x has color i and y has color (i+1)mod. 3, defines a directed
tree U , the root of which is r ;
(3) if edgU (x, y) and edgU (x, z) then y and z are adjacent in L, hence x

and its sons in U form a clique ;
(4) every maximal clique of L is of the form described in (3) ; it has one

vertex colored by some i, (it will be called the leader of the clique), and all
others are colored by (i+ 1)mod. 3.
We add a new vertex to U , we link it by an edge to its root r and we obtain

a tree isomorphic to T up to edge directions (T is undirected). Hence, a given
graph is the line graph of a tree having at least two vertices if and only if it has
a vertex r and a coloring satisfying conditions (1)-(4). From such a coloring,
one can construct U and T as explained above, and L = L(T ).
We now consider a graph H, for which we want a graph G ∈ S such that

L(G) = H. One can construct an MS formula ϕ(E, r,X0,X1,X2) expressing in
a graph H that E,X0,X1,X2 is a partition of VH , X0,X1,X2 define a coloring

22



of VH − E with colors 0,1,2, this coloring and the vertex r satisfy conditions
(1)-(4) and each vertex of E is adjacent to all vertices of A ∪ B where A and
B are disjoint sets in K0

H[VH−E]. If H = L(G) for some G ∈ S there exist
E, r,X0,X1,X2 satisfying ϕ. From such sets one can construct a graph G as
follows :

VG = {x | x ∈ V 1
H[VH−E]} ∪ {ex | x is the leader of a maximal clique},

("leader" is meant with respect to the coloring defined by X0,X1,X2),
EG = VH and the incidences are as follows :
if e = r, then r : r − er,
if e ∈ V 1

H[VH−E] − {r}, then e : e− ey where edgU (y, e) in the directed tree U
constructed from r,X0,X1,X2,
if e ∈ VH − (V 1

H[VH−E] ∪ E), then e : ee− ey where edgU (y, e) in the directed
tree U constructed from r,X0,X1,X2,
if e ∈ E, then e : v(A)−v(B) where e is adjacent in H to all vertices of A∪B

and A and B are disjoint sets in K0
H[VH−E] ; we denote by v(A) the vertex x

(of G) if A = {x}, the vertex ex if A is a maximal clique with leader x.
It is easy to check that L(G) = H. Hence G is constructed from H by

a (1,2)-definable MS transduction λ with parameters E, {r},X0,X1,X2. It is
(1,2)-definable because the vertices of H are used to specify the edges of G as
individual objects.¤

Remarks : In technical terms, Propositions 4.6 and 4.7 say that (λ,L) is
an MS coding of the class L(S) into Inc(S) the class of incidence structures of
the graphs in S.
The mapping L−1 is not a (1,2)-definable MS transduction on LG. Assume

it is, call it τ . Let M be the set of graphs S consisting of the vertices 0, 1, ..., n
and two parallel edges between 0 and each i > 0. It is definable by an MS2
formula. We have L(S) = Km iff Km ∈ τ−1(S). Hence the set of cliques of
the form L(S) for some S in M is MS definable. But Km ∈ L(M) if and only
if m is even. We get a contradiction because the set of even cliques is not MS
definable (Courcelle [7],[9]). This proves the claim.

Corollary 4.8 : If M is a set of graphs of bounded tree-width then L(M)
has bounded clique-width. If M ⊆ S and L(M) has bounded clique-width then
M has bounded tree-width.

Proof : This is a consequence of Propositions 4.6 and 4.7 and of Corollary
2.5. ¤

This result is also proved by Gurski and Wanke [22] who give precise bounds.

Theorem 4.9 : The class of line graphs satisfies Seese’s Conjecture.

Proof : We prove SC(L(S)) and this yields SC(LG) by Proposition 3.10
since Prime(LG) ⊆ L(S) and LG is closed under taking induced subgraphs. If
a set M ⊆ L(S) has a decidable MS satisfiability problem, then L−1(M)∩ S
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has a decidable MS2 satisfiability problem by Propositions 4.7 and 2.3, hence
has bounded tree-width. Hence M = L(L−1(M)∩S) has bounded clique-width
by Proposition 4.6 and our basic results. ¤

5 Comparability graphs

The comparability graph of a partial order P = (V,≤) is the simple, loop-free,
undirected graph Comp(G) with set of vertices V and where two vertices x and
y are adjacent if and only if x < y or y < x. A graph is a comparability graph if
and only if it has a transitive orientation, i.e., an orientation such that if there
are edges x −→ y and y −→ z, then there is an edge x −→ z.
Gallai has proved that a finite simple, loop-free, undirected graph H is a

comparability graph if and only if it does not contain as an induced subgraph
any of the graphs in an infinite set F , described in the article by Trotter and
Moore [35] and in the book by Trotter [34]. This characterization is valid for
countable graphs : if a graph contains an induced subgraph of F , then it is not
a comparability graph, because the class of comparability graphs is closed under
taking induced subgraphs. If, conversely, it does not contain any such subgraph,
one can use Koenig’s Lemma to extend to the considered countable graph some
transitive orientations that exist for its finite subgraphs. (See Courcelle [11] for
this type of use of Koenig’s Lemma.)
The set F consists of ten finite graphs and 8 infinite families of graphs

A,B,C,D,E ,G,H,J where X is the set of edge-complements of the graphs in X
and :
A = {C2n+1 | n ≥ 2} where Cn is the undirected cycle with n vertices,
B = {Cn | n ≥ 6},
C = {(a ⊗ P b,c

2n ) + {b − d, c − e} | n ≥ 2} where P b,c
m denotes the path with

m vertices, m− 1 edges and two ends named b and c ; the notation H + {x −
y, z − t, ...} means that we add to a graph H the edges x− y, z − t, ... and their
end vertices if they are not already in H ; the operations ⊗ and ⊕ are defined
in Subsection 2.3,
D = {((a⊕ d)⊗ P b,c

2n ) + {b− e, d− e, a− f, c− f} | n ≥ 2},
E = {((a⊗ d)⊗ P b,c

2n+1) + {b− e, d− e, a− f, c− f} | n ≥ 1},
G = {(a⊗ P b,c

n ) + {b− d, c− e, a− f} | n ≥ 2},
H = {((a⊗ d)⊗ P b,c

n ) + {a− e, a− g, b− e, c− f, d− f, d− g} | n ≥ 2},
J = {((a⊕ d)⊗ P b,c

n ) + {a− e, a− g, b− e, c− f, d− f, d− g} | n ≥ 2}.

Lemma 5.1 : The class of comparability graphs is MS-definable.

Proof : We first prove that the set F is MS-definable (up to isomor-
phism). The ten finite graphs form an MS-definable set. Since, whenever a set
is MS definable, so is its edge-complement, it suffices to observe that each set
A,B,C,D,E ,G,H,J is MS-definable. This is easy from the above descriptions.

24



We only give the proof for the set C. The other proofs are similar. The formula
expressing that a graph is in C is the conjunction of the following conditions :
(i) there exist a set of vertices X inducing a graph Pm for m even and at

least 4, the ends of which are vertices b and c,
(ii) there are exactly three vertices not in X, say a, d, e,
(iii) in addition to the edges of the path induced by X, there are edges

between b and d, between c and e, and between a and each vertex of X.
These conditions characterize the graphs in C. They are expressible by an

MS formula. Hence, by using similar descriptions for the other infinite sets, we
obtain that F can be defined by an MS formula α that is the finite disjunction of
the MS formulas describing the various types of graphs. One can then construct
an MS formula β expressing that a given graph G has no set of vertices Y such
that the induced subgraph G[Y ] satisfies α. This formula defines the class of
comparability graphs. ¤

Gallai has also proved that if a finite comparability graph is prime, then
it has only two transitive orientations. (See the book by Golumbic [21] or the
article by Kelly [25]). This means that one can choose the orientation of one
edge arbitrarily, and that this choice determines in a unique way the orientations
of all other edges.
Consider for an example the graph u − v − x− y − z (i.e., the path with 5

vertices u, v, x, y, z and the edges u− v, etc...). The orientation u −→ v forces
v ←− x (otherwise the edge between u and x is missing) which forces x −→ y,
and then also y ←− z (each time with the same argument).
The proof given in [21] works for countable graphs as well as for finite graphs.

Proposition 5.2 : There exists an MS formula γ(x, y, u, v) such that for
every graph G and vertices x, y, u, v, G |= γ(x, y, u, v) if and only if G is a prime
comparability graph with edges x−y and u−v, such that x 6= u, y 6= u, v 6= x
and, in the two transitive orientations of G, either x −→ y and v −→ u , or
x←− y and v ←− u.

Proof : We need a technical construction. Let G be a comparability graph
with transitive orientation

−→
G . Let x, u be two distinct vertices, let X = {a ∈

VG | a −→ x} and U = {b ∈ VG | u −→ b} where edge directions are relative to−→
G . Let x0 and u0 be two new vertices and

−→
G(x, u,X,U) be the directed graph

consisting of
−→
G and the following edges :

(a) x0 ←− u0,
(b) a −→ x0 for every a ∈ X ∪ {x},
(c) u0 −→ b for every b ∈ U ∪ {u}.
We let G(x, u,X,U) be the corresponding undirected graph.

Claim 1:
−→
G(x, u,X,U) is transitive.

Proof : Let w, y, z be vertices such that w −→ y −→ z. We must prove
that w −→ z. We distinguish several cases.
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Case 1 : w, y, z are all in G. Then, we have w −→ z because
−→
G is transitive

and the edges w −→ y and y −→ z are in
−→
G .

Case 2 : One of w, y, z is u0 or x0. Since x0 and u0 are of outdegree and
indegree 0 respectively the only possibilities are z = x0 and w = u0. We consider
the first one and we distinguish subcases.
Subcase 1 : x = y

We have w −→ x in
−→
G hence w ∈ X, and w −→ x0 = z.

Subcase 2 : x = w
We have w = x −→ x0 = z by the definition of

−→
G(x, u,X,U).

Subcase 3 : x is neither y nor w.
We have y −→ x0 = z in

−→
G(x, u,X,U) hence y ∈ X, and y −→ x. Since

w −→ y is in
−→
G, transitive, we have w −→ x in

−→
G. Hence w ∈ X and thus

w −→ x0 = z.
The case w = u0 is fully similar.
Case 3 : Two of w, y, z are u0 and x0.
Considering the indegree and the outdegree of u0 and x0, the only possibility

is w = u0 and z = x0. But we have u0 −→ x0 by definition of
−→
G(x, u,X,U),

hence w −→ z . This completes the proof of the claim.¤

Note that G(x, u,X,U) can be defined by the above conditions (a)-(c) and
by omitting edge directions from any two distinct vertices x, u and any two sets
X and U . With this definition, we have :

Claim 2 : Let G be a prime comparability graph, x− y and u− v be two
edges of G and x 6= u, y 6= u, v 6= x. We have v −→ u in the unique transitive
orientation of G such that x −→ y if and only if there exist two sets X and U
such that y /∈ X, v /∈ U and G(x, u,X,U) is a comparability graph.

Proof : "Only if". Let
−→
G be a transitive orientation of G with x −→ y

and v −→ u. We let X = {a ∈ VG | a −→ x} and U = {b ∈ VG | u −→ b} and
the conclusion follows from Claim 1.
"If" Let X and U be such that y /∈ X, v /∈ U and G(x, u,X,U) has a

transitive orientation
−→
H such that x −→ y. Its restriction to G, an induced

subgraph of G(x, u,X,U) is a transitive orientation, and it is the unique one
for G such that x −→ y since G is prime. Since we have in G(x, u,X,U) a
path or a cycle y − x − x0 − u0 − u − v,(we can have y = v) without edges
y − x0, x − u0, x0 − u, u0 − v the orientation x −→ y forces v −→ u. Hence we
have v −→ u in the unique transitive orientation of G such that x −→ y.¤

By using the MS formula β expressing that a graph is a comparability graph,
one can build an MS formula δ(x, u,X,U) which expresses for a graph G, for
vertices x, u and for sets of vertices X and U that x 6= u and that G(x, u,X,U)
is a comparability graph. It follows then from Claim 2 that the desired formula
γ(x, y, u, v) can be taken as the MS formula expressing the following :
(i) G is a prime comparability graph,
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(ii) x 6= u∧ y 6= u ∧ v 6= x ∧ edg(x, y) ∧ edg(u, v)
(iii) G |= ∃X,U{y /∈ X ∧ v /∈ U ∧ δ(x, u,X,U)}.
That G is prime is easily expressible by an MS formula translating the defi-

nition. This completes the proof. ¤

Hence, the "unique" transitive orientation of a prime comparability graph is
MS definable, where "unique" is meant up to the arbitrary choice of orientation
for one edge.

Corollary 5.3 : There exists an MS transduction that associates with a
prime comparability graph its two transitive orientations.

Proof : The transduction uses two parameters {x} and {y} such that x− y
in the given graph G. The direction of an edge u − v in the unique transitive
orientation of G such that x −→ y is obtained as follows.
If x 6= u, y 6= u, v 6= x, it is directed v −→ u iff γ(x, y, u, v) holds. If

v = x and y and u are not adjacent, it is directed v −→ u. If v = x and
y − u, it is directed u −→ v if and only if γ(y, x, u, x) holds. (This implies
also the orientation u −→ y). The other transitive orientation is obtained by
exchanging x and y. ¤

Corollary 5.4 :1) Comparability Graphs ≡S Undirected Graphs.

2) The equivalence also holds for the corresponding classes of finite graphs.

Proof : The reduction ≤S follows from the inclusion of classes. For the
other direction, we prove that Partial Orders ≤S Comparability Graphs. It is
enough by Proposition 3.10 to consider prime partial orders ("prime" is meant
with respect to the directed graph of the corresponding strict partial order).
The comparability graph of a prime partial order is a prime undirected graph,
by [28] (Theorem 1.5.1 page 287). If L is a set of prime partial orders having a
decidable MS satisfiability problem, so has the set C(L) of their comparability
graphs. This set is tree-definable by the hypothesis. By Corollary 5.3, and since
the graphs in C(L) are prime, one can obtain L as the image C(L) by an MS
transduction. Hence L is tree-definable. This proves the result for prime partial
orders. The case of Partial orders follows then from Proposition 3.10. ¤

The edge-complement of a comparability graph is called a cocomparabil-
ity graph. We let CiCC be the class (Comparability Graphs)∩(Cocomparability
Graphs), and FCiCC be its restriction to finite graphs. A partial order P has
dimension k if k is the minimum number of linear orders, the intersection of
which is P .
The Hasse diagram of a finite linear order is a directed path, hence a directed

graph of indegree 1. A finite partial order P of dimension at most k can be
represented by the union U of k directed paths representing k finite linear orders
of which it is the intersection. The edges of the different paths are labelled by
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1, ..., k in order to be distinguished from one another. It is then easy to build an
MS transduction transforming U into P . We obtain a representation of finite
partial orders of dimension at most k by uniformly k-sparse directed graphs.
If we could construct such a representing graph U from P by an MS trans-

duction, we would prove that for each k, the class of the finite partial orders of
dimension at most k satisfies the Conjecture. We can only do this for k = 2.

Proposition 5.5 : The class FCiCC and the class of finite partial orders of

dimension at most 2 satisfy Seeses’s Conjecture.

Proof : We will use the fact proved by Golumbic in [21], Theorem 5.38
page 138, that a partial order has dimension at most 2 if and only if the edge-
complement of its comparability graph is also a comparability graph, hence
belongs to the class CiCC.
Since the classes of comparability and of cocomparability graphs are closed

under taking induced subgraphs, it is enough to prove the Conjecture for the
prime graphs in FCiCC. Let G be a prime graph in FCiCC. It is not complete
and its edge-complement is not either. Let us choose two adjacent vertices x
and y. One can define by an MS formula a transitive orientation H of G such
that x −→ y.
Let u be adjacent in G to x and not to y. Since the edge-complement G

of G is also prime, one can define by an MS formula a transitive orientation K
of G such that u −→ y. The opposite one K−1 is also MS definable. Each of
the binary relations H ∪ K and H ∪ K−1 is a strict linear order on VG, and
their intersection is a partial order P of dimension 2, the comparability graph
of which is G (we use here the argument by Golumbic).
Because they are finite, we can represent each linear order by a directed

path. Hence, these two linear orders can be represented by an edge-labelled
directed graph U that is uniformly 2-sparse. Then U is definable from G by
an MS transduction. We obtain the validity of SC(Prime(FCiCC)), whence of
SC(FCiCC) by Proposition 3.10.
For finite partially ordered sets of dimension at most 2, it is enough to

consider those which are prime when considered as directed graphs. As recalled
above, the comparability graph of a prime partial order is a prime undirected
graph ([28], Theorem 1.5.1), and so is its edge-complement (because the notion
of a module is invariant under taking edge-complements). Hence we can use the
argument of the first assertion to complete the proof. ¤

6 A monadic second-order coding of countable
linear orders

The statement of Proposition 5.5 is limited to finite graphs and to finite partial
orders because the proof uses the representation of linear orders by their Hasse
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diagrams, which does not always work for infinite linear orders. In particular,
the Hasse diagram of the ordered set of rational numbers is empty. We overcome
this difficulty by representating countable linear orders by sets of nodes of binary
ordered trees, and by showing that this representation is definable by an MS
transduction using an auxiliary and arbitrary linear ordering of type ω of the
given set.

By a tree, we mean here a binary tree defined as the simple directed edge-
labelled graph T = (NT , lsonT , rsonT ) where NT is the finite or countable set
of nodes, lsonT and rsonT are two binary functional relations defining for each
node its left son and its right son. A node may have no son, two sons, or just
a right son or a left son. The root is the unique node of indegree 0. Whether a
structure T is a tree can be expressed in MS logic.
We will write x −→l y if y is the left son of x, x −→r y if y is the right

son of x, and x −→ y if y is the left or the right son of x. A linear order, the
in-order, on NT can be defined as follows :

x vT y if and only if :
x = y or x −→r z −→∗ y or y −→l z −→∗ x for some z, or u −→l z

−→∗ x and u −→r z
0 −→∗ y for some u, z, z0.

We let Ω(T ) be the linearly ordered set (NT ,vT ). It clear that Ω is an MS
transduction. Our objective is to construct T from Ω(T ) by an MS transduction.
An ω-order is a linear order which is finite or isomorphic to the ordinal ω.

Proposition 6.1 : There exists an MS transduction γ that defines from a
structure (N,v,≤) such that v is a linear order and ≤ is an ω-order on N , a
tree T such that Ω(T ) = (N,v).

Proof : Let (N,v,≤) be given as in the statement. We leave out the case
where N is finite, for which the construction is immediate, without using ≤.
We take r, the ≤-least element of N as root of T . For every x in N , x 6= r,

we let :
m(x) be the v −largest element y such that y @ x and y < x,
M(x) be the v −smallest element y such that x @ y and y < x.

We have m(x) @ x and x @M(x) whenever m(x) or M(x) is defined.
a) If M(x) is undefined, we let (m(x), x) belong to rson.
b) If m(x) is undefined, we let (M(x), x) belong to lson.
If M(x) and m(x) are both defined, we have m(x) @ x @M(x) and
c) if m(x) < M(x) we let (M(x), x) belong to lson and finally
d) if M(x) < m(x) we let (m(x), x) belong to rson.
This can be expressed by first-order formulas λ and ρ defining lson and rson.

For an example consider the sequence :

9 @ 8 @ 1 @ 6 @ 0 @ 7 @ 2 @ 5 @ 3 @ 4,

where the order ≤ is the natural one : 0 < 1 < 2 ... The associated tree is
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{[(9)8]1[6]}0{[7]2[(5)3(4)]}.

The sequence of nodes is the original@ −sequence. Parentheses and brackets
define the binary tree structure. Node 8 has 9 as left son and has no right son.
We make some observations to help the understanding and the forthecoming

proof. For every pair (y, x) in lson or in rson, y is before x in the enumeration
defined by <. This guarantees the absence of circuits. The construction consists
in putting in a tree the elements of N in the order defined by <. There are four
ways to add a node x:
as right son of the rightmost node m(x), by clause a) above ; in the above

example this is the case of nodes 2 (m(2) = 0), 3 (m(3) = 2), 4 (m(4) = 3) ;
as left son of the leftmost node M(x), by clause b) above ; in the above

example this is the case of nodes 1 (M(x) = 0), 8 (M(8) = 1), 9 (M(9) = 8) ;
in cases c) and d) the node x must be placed between m(x) and M(x)

which are the elements of N before x with respect to <, which are closest to
x with respect to v (they already exist in the tree). Depending on whether
m(x) < M(x) or M(x) < m(x), x is defined as left son of M(x) (case c)),
or right son of m(x) (case d)) ; in the example, case c) applies to nodes 5
(m(5) = 2,M(5) = 3) and 7 (m(7) = 0,M(7) = 2) and case d) applies to node
6 (m(6) = 1,M(6) = 0).
It remains to prove that (N, lson, rson) is actually a tree T such that

Ω(T ) = (N,v). For every x in N, we let T (x) be the restriction of the structure
(N, lson, rson) to the set A(x) = {y | y ≤ x}.

Claim : T (x) is a finite tree and Ω(T (x)) = (A(x),v).

Proof of claim. By induction on <. The least element of N is r. The tree
T (r) is reduced to r and the assertion holds.
Consider x 6= r and x0, its predecessor with respect to <. Hence T (x0)

satisfies the property. From the definitions, x is the second component of a
unique pair (y, x) either in lson or in rson, and furthermore, y < x. We review
the different cases.
In Case a), y = m(x), M(x) is undefined, we have m(x) @ x. Then y has

no right son in T (x0) because otherwise, if it had one say z, then either x @ z
and M(x) would be defined or z @ x and m(x) would not be y (y would not be
the @ -predecessor of x in A(x)). Hence by setting x as right son of y, we get a
tree T (x) satisfying Ω(T (x)) = (A(x),v).
In Case b) the argument is the same by exchanging left and right, and m(x)

and M(x).
In the next two cases M(x) and m(x) are both defined and we have m(x) @

x @ M(x). This means that x must be inserted "between" m(x) and M(x)
which are consecutive in (A(x0),v). Furthermore, in T (x0), m(x) is an ancestor
of M(x) or vice-versa, because otherwise, they have a common ancestor, say z,
m(x) @ z @M(x) hence they are not consecutive in (A(x0),v).
If m(x) < M(x) (case c) ), we have y =M(x), x is set as left son of y, m(x)

is an ancestor of M(x). (This cannot be the reverse because m(x) < M(x)).
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Assume y has already a left son, say z, in T (x0). Either x @ z and M(x) would
not be y (because x @ z @ y) or z @ x but then m(x) @ z (because m(x) is an
ancestor of M(x), so that M(x) is, or is below, the right son of m(x)) but this
contradicts the definition of m(x). Hence we can set x as left son of y. And we
get thus a tree T (x) satisfying Ω(T (x)) = (A(x),v).
If M(x) < m(x) (case d) ) the proof is fully similar. ¤

We now complete the proof of Proposition 6.1. We take for T the union of
the trees T (x) which extend one another. Every x in N is a node of this tree,
because the isomorphism type of < is ω, hence x is added at some step. The
tree T is thus (N, lson, rson). We have noted that lson and rson are definable
by first-order formulas. Hence we have the desired transduction γ. ¤

Proposition 6.2 : If a set of partial orders of dimension 2 or a subset of
CiCC has a decidable MS-OI satisfiability problem, then it has bounded clique-
width.

Proof : The proof of Proposition 5.5 is restricted to finite graphs because
it uses a representation of linear orders by directed paths. By Proposition 6.1,
and by using an auxiliary ω-order, we can represent the countable linear orders
by binary trees, hence by graphs of degree 3. Hence, we get an MS-coding into
graphs of bounded degree. The argument goes on as in Proposition 5.5. ¤

7 Interval graphs

Let V be a finite or countable set of intervals of the real line. Let G(V) be the
graph with set of vertices V and such that two vertices (i.e., intervals) I and J
are adjacent if and only if they meet, i.e., if and only if I ∩J 6= ∅. We denote by
N(I) the set of intervals that meet I. We say that a graph G(V) is an interval
graph.
The set V is a standard if the following conditions are satisfied :
(1) The intervals are closed.
(2) No real number is an end of two intervals.
(3) For every two intervals I, J , if N(I) = N(J), then either I ⊂ J or J ⊂ I.
(4) For every two intervals I, J , if N(I) ⊂ N(J), then I ⊂ J .

Lemma 7.1 : Every finite or countable set of intervals can be transformed
into a standard one defining the same interval graph.

Proof : For the case of a finite set, this can be done by easy geometrical
transformations. Let V be a countable set of intervals defined as the union of
an increasing sequence of finite sets Vi. For each i we transform Vi into a
standard set V 0i where, in conditions (3) and (4), the sets N(I) are understood
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with respect to the set V and not only with respect to Vi. There are finitely
many ways to replace Vi by a standard set V 0i. By using Koenig’s Lemma (as
in [11]), one can select an infinite sequence V 0i of intervals that can be merged
to form the desired transformation of V. The details are routine. ¤

This shows that instead of using the real line, one can represent an interval
graph by intervals of a countable linearly ordered set. Our effort will consist in
constructing such a set from G(V), by an MS transduction.
The following observation will be crucial. Let V be a set of intervals (not

necessarily standard). Let ≺ be the strict partial order on V defined by I ≺ J
if and only if every element of I is strictly smaller than every element of J . It
is a transitive orientation of G(V), the edge-complement of G(V). Hence G(V)
is a comparability graph.
Let V be a standard set of intervals. Let an interval x be written [a(x), b(x)].

Let H(V) be the directed graph with set of vertices V ∪ V 0 where V 0 =
{a(x), b(x) | x ∈ V}, and with the following directed edges:
edges labelled by 0 representing the sucessor relation on V 0,
edges labelled by 1 directed from x to a(x) for each x in V,
edges labelled by 2 directed from x to b(x) for each x in V.
This graph is uniformly 2-sparse (because it has an orientation of indegree

at most 2). The graph G(V) can be obtained from H(V) as follows :
its vertices are those of H(V) which are the sources of edges labelled by 1

and 2,
there is an edge between two vertices x and y if and only if there exist in

H(V) : edges labelled by 1 from x and y to x0 and y0 respectively, edges labelled
by 2 from x and y to x” and y” respectively, and a vertex z that belongs to the
path in H(V) from x0 to x”, and to the path from y0 to y”.
This transformation, call it δ, is an MS transduction. It is clear that it

produces G(V) from H(V).

Proposition 7.2 : There is an MS transduction associating with every finite
prime interval graph G a uniformly 2-sparse graph H such that G = δ(H).

Proof : Let G be a finite or countable simple undirected graph, that we
assume to be G(V) for some standard set of intervals V on a countable linear
order <. (The main part of the proof works for countable as well as finite
graphs.) Let us also assume that G is prime with at least 3 vertices. This
implies that for any two vertices x and y of G, we have N(x) 6= N(y), (we
denote by N(x) the set of vertices adjacent to x) otherwise {x, y} is a nontrivial
module and G is not prime.
Let us associate with every vertex x two pairs (x, 1) and (x, 2) intended to

represent a(x) and b(x). We let V 0 be the set of such pairs.
Let us also choose two non adjacent vertices u and v such that u ≺ v where ≺

is the order on the set V of intervals. Since G is prime, so is its edge-complement
which is a comparability graph, and has thus a unique transitive orientation such
that u −→ v. Furthermore, this orientation can be defined by an MS formula
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by Proposition 5.2. By the uniqueness of the transitive orientation (because G
is assumed to be prime), its transitive closure coincides with the order ≺ on V.
We have thus available some information on the relative ordering of the ends

of our intervals. We now prove that this information can be completed so as
to give a reconstruction of the linear order on V 0, corresponding to < by the
bijection of V 0 onto the set of ends of the intervals. We define W as the set of
all pairs of the following types :
(i) ((x, 1), (x, 2)) for x in V,
(ii) ((x, 2), (y, 1)) for x, y in V and x −→ y,
(iii) ((x, 1), (y, 1)) and ((y, 2), (x, 2)) for adjacent vertices x, y in V, such

that N(y) ⊂ N(x),
(iv) ((x, 1), (y, 1)), ((y, 1), (x, 2)), ((x, 2), (z, 1)), ((z, 1), (y, 2)), for x, y, z in

V such that y is adjacent to x and to z, x ≺ z, and neither N(x) ⊂ N(y) nor
N(y) ⊂ N(x),
(v) ((y, 1), (z, 2)), ((z, 2), (x, 1)), ((x, 1), (y, 2)), ((y, 2), (x, 2)), for x, y, z in V

such that y is adjacent to x and to z, z ≺ x, and neither N(x) ⊂ N(y) nor
N(y) ⊂ N(x).

We now prove that the transitive closure of W yields the linear order on the
ends of the intervals of V. Each pair (w,w0) in W satisfies w < w0 where w,w0

are the corresponding ends of the considered intervals. This is obvious for each
of cases (i)-(v).
Let us now consider two interval ends. The two ends of a same interval are

ordered by (i).
The ends of two disjoint intervals are ordered by (ii), (i) and transitivity.
The ends of two adjacent intervals x and y such that N(x) ⊂ N(y) or

N(y) ⊂ N(x) are ordered by (iii), (i) and transitivity.
Consider now two overlapping intervals x and y (the previous case does not

apply). Since G is prime there is some z which is adjacent to x and not to y
or vice versa.
If z is adjacent to y and x ≺ z, we must have the ordered pairs listed in (iv)

because y intersects x and z and does not contain x.
If z is adjacent to y and z ≺ x, we must have the ordered pairs listed in (v)

for the same reason.
If z is adjacent to x and not to y, we can exchange the roles of x and y in

(iv) and (v) and use them to order the ends of x and y.
Hence, for any two intervals, conditions (i)-(v) together with transitivity give

the linear order of the ends of the intervals as given in V. This linear order can
be thus defined by an MS formula.
For each x in V, we let I(x) be the interval [(x, 1), (x, 2)] of this linear order

on V 0. It is clear that the intersection graph of this family is G.

From now on we assume that G is finite. The above define objects can be
encoded into a graph H with set of vertices V∪V 0, having three types of directed
edges :
edges labelled by 0 representing the sucessor relation on V 0,

33



edges labelled by 1 directed from x to (x, 1) for each x in V,
edges labelled by 2 directed from x to (x, 2) for each x in V.
This graph is uniformly 2-sparse, and can be defined from G (assumed to be

a prime interval graph) by an MS transduction.
This transduction works properly under the following assumptions:
a) that G is prime : this is easily MS expressible,
b) that G is an interval graph : this is MS expressible by means of the

forbidden induced subgraphs characterizing interval graphs given by Trotter
and Moore in [35], which consist of two finite graphs, the cycles Cn for n ≥ 4
and the graphs of the families G and H used to describe comparability graphs ;
the proof is the same as for Lemma 5.1,
c) that u ≺ v in the given set of intervals : this condition is actually not

important. If it does not hold, we have v ≺ u and the opposite linear order on
the elements forming the intervals is constructed.
Hence only the verifications of a) and b) must be incorporated as preliminary

tests to the definition of MS transduction constructing H from G.¤

Theorem 7.3 : The class of finite interval graphs satisfies the Conjecture.

Proof : Immediate consequence of Proposition 7.2 since we have an MS cod-
ing of finite prime interval graphs into uniformly 2-sparse graphs. The general
case follows from Proposition 3.10. ¤

With the tools of Section 6, we can handle the case of countable interval
graphs.

Theorem 7.4: If a set of interval graphs has a decidable MS-OI satisfiability
problem, then it has bounded clique-width.

Proof : The proof of Proposition 7.2 only holds for finite interval graphs
because it uses a representation of linear orders by directed paths, which does
not hold for infinite linear orders. With the results of Section 6, we can encode
a countable linear order given with an auxiliary ω-linear order by a binary tree,
i.e., by a graph of outdegree 2. Hence, the graph H can be replaced by a graph
of degree 3, hence a graph which is uniformly 3-sparse. We obtain thus an MS
coding as desired. ¤

8 Intrinsic limits of the methods used so far

Our main technique to establish that a class of graphs C satisfies the Conjecture
is to find an MS coding C −→ Uk where Uk is the class of uniformly k-sparse
graphs. (The constructions of Section 4 for line graphs are also essentially of
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this form because the incidence structures Inc(G) are equivalent to uniformly 2-
sparse edge labelled directed graphs.) Is there any hope to prove the Conjecture
by this technique ? Our answer is no because of the following.

Proposition 8.1 : There does not there exist an MS coding (γ, δ) of Finite
Undirected Graphs into Uk, for any k.

Proof : Let C = Finite Undirected Graphs. We assume the existence of MS
transductions γ : C −→ Uk, δ : Uk −→ C such that for every G in C, for every H
in γ(G) we have δ(H) = G. We will get a contradiction by means of a counting
argument.
Let us consider a labelled graph G with n vertices labelled from 1 to n (this

is a "labelled object" in the sense of combinatorics, see [37]). Let us assume
that γ is p-copying. Then it produces graphs with at most np vertices. We
may consider that all the graphs of γ(G) have np vertices, with a special label
marking the vertices that should be considered as absent. We consider that the
graphs in γ(G) are directed, vertex and edge labelled : each vertex has one
label taken from a set of cardinality q, each edge has a direction and one label
taken from a set of cardinality r (without loss of generality, we assume we do
not have two edges with different labels and/or directions between two vertices).
How many graphs labelled in this way, with set of vertices {1, ..., np} can be

in Uk ? We first bound the number of labelled graphs that can be constructed
from G by γ (in terms of parameters). The vertices of these graphs are pairs of
a vertex of G and an integer in {1, ..., p}. The number of labelled rooted forests
with m vertices is (m+1)m−2 (see Wilf [37]). A uniformly k-sparse graph is the
union of k rooted forests. Hence with set of vertices {1, ..., np}, one can build
at most (np + 1)k(np−2) such graphs, each having at most knp edges. (This is
not a tight upper bound because some edges may be present in several of the k
forests).
The number of labellings of the vertices is qnp and that of labellings of edges

is at most rknp. Concerning edge directions, we have at most 2knp possibilities
to modify the directions given by the covering forests.
Hence, the domain of the decoding transduction δ has cardinality at most

(np+ 1)k(np−2)qnp(2r)knp. We can bound this number by 2a.nlog(n)+b for some
a and b depending on p, q, k, and r. Hence, the class C may have at most
2a.nlog(n)+b labelled graphs with n vertices. It cannot be equal to the class of
all undirected simple graphs with n vertices labelled from 1 to n which has
cardinality 2n(n−1)/2.

Actually this comparison is based on the interpretation of δ(H) = G as an
real equality and not as an equality up to isomorphism. This real equality is
actually the case in all the concrete constructions used in our proofs. However,
one must not exclude the case of an MS coding for which δ(H) = G holds only
up to isomorphism. Hence we should compare 2a.nlog(n)+b with the number of
unlabelled graphs with n vertices. Consider a labelled complete graph. Every
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permutation of its vertices leaves it invariant. This means that it is counted
only for one among the 2n(n−1)/2 graphs. On the opposite, a graph without
automorphism is produced n! times by n! different labelled graphs. It follows
that the number of unlabelled graphs with n vertices is larger that 2n(n−1)/2/n!,
which is itself of the order 2n

2/2−c.nlog(n)+d0 (since n! is of order 2c.nlog(n)+d )
hence is larger than 2a.nlog(n)+b.¤

Is it possible to improve the situation by constructing an MS coding of C
into a class D for which we already have an MS coding into Uk ? No because
in such a case, we can compose these MS codings and we obtain an MS coding
of C into Uk. Hence, even if we pile up ingenious constructions, we are always
facing the same problem. We conclude that something else must be invented to
prove the conjecture. This is done in Courcelle and Oum [17].

9 Conclusion and open questions
We have proved that many relativizations of Seese’s Conjecture turn out to
be equivalent. We have also established a few new cases of validity of the
Conjecture. The main results are summarized in Table 1 and 2

Undirected graph classes Directed graph classes
Undirected Directed
Bipartite Directed Acyclic
Chordal
Split

Comparability Partial Orders

Table 1 : Equivalent relativizations

Undirected graph classes Directed graph classes
Uniformly k-sparse Uniformly k-sparse
Line graphs Directed line graphs

Quasi-series-parallel partial orders
Finite interval graphs Finite partial orders of dimension 2

Interval graphs (for MS-OI) Partial orders of dimension 2 (for MS-OI)

Table 2 : Proved relativizations.

Table 1 shows the equivalent relativizations. One could add the extensions of
these classes by vertex and edge labellings. Table 2 shows the main established
relativizations. Here are some open questions.
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Question 9.1 : Do we have Finite Relational Structures ≤S Finite Graphs ?

Question 9.2 : Do we have Countable Graphs ≡S Finite Graphs ?

A countable graph is locally finite if every vertex has finite degree. A count-
able graph has clique-width at most f(k) if its finite induced subgraphs have
clique-width at most k, for some function f. By using this fact, one obtains the
following result (Corollary 11.3 of [12]) :

Proposition 9.3 : Locally Finite Graphs ≡S Finite Graphs.

A variant of MS logic is weak monadic second-order logic, which has the same
syntax but for which set variables range on finite sets. Seese’s Conjecture for
finite graphs is equivalent to the corresponding conjecture for countable graphs
relatively to satisfiability of weak monadic second-order formulas. (Courcelle
[12], Theorem 11.1).

Finally, one can strengthen the definition of a tree-definable set as follows.
Let us say that a set of graphs L is strongly tree-definable if there exists an
MS coding (γ, δ) of L into a set of labelled trees T . In such a case, the MS
satisfiability problems for L and for the subset γ(L) of T are interreducible by
Proposition 2.1.

Question 9.4 : Is it true that if set of graphs has a decidable MS satisfiabiliy
problem, then it is strongly tree-definable ?

Lapoire has proved [26] that for each k, one can define an MS coding of
the finite graphs of tree-width at most k into a set T of finite labelled trees
which encode tree-decompositions of width k of the input graphs. (The trees
in T are unordered and of unbounded degree). The proofs of relativizations
of the Conjecture shown in Table 2 reduce, via effectively constructible MS
transductions, to that of Proposition 2.6 for graphs of bounded tree-width.
Hence for all these cases restricted to finite graphs, the strong form of the
Conjecture holds. (The result of [26] is not known to hold for infinite graphs).

We have shown in Proposition 8.1 that the class of finite graphs has no MS
coding into any class Uk.

Question 9.5 : What are the common structural properties of the classes
of graphs which have MS codings in Uk for some k ?

Acknowledgements : Thanks to A. Blumensath and D. Seese for helpful
remarks.
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