
Theoretical Computer Science 109 (1993) 49-82

Elsevier

49

Monadic second-order evaluations
on tree-decomposable graphs*

B. Courcelle and M. Mosbah
Universit? Bordeaux-l, Lahoratoire d’lrzformatique ** 351, cows de la Libtration, 33405 Talence, ,
Frunce

Courcelle, B. and M. Mosbah, Monadic second-order evaluations on tree-decomposable graphs,

Theoretical Computer Science 109 (1993) 49-82.

Every graph generated by a hyperedge replacement graph-grammar can be represented by a tree,

namely the derivation tree of the derivation sequence that produced it. Certain functions on graphs

can be computed recursively on the derivation trees of these graphs. By using monadic second-order

logic and semiring homomorphisms, we describe in a single formalism a large class of such functions.

Polynomial and even linear algorithms can be constructed for some of these functions. We unify

similar results obtained by Takamizawa et al. (1982), Bern et al. (1987), Arnborg et al. (1991) and

Habel et al. (1989).

0. Introduction

Many UFP-complete problems become polynomial when restricted to particular

sets of graphs. A number of such cases are discussed in [22]. More informative

than isolated results are metaresults, exhibiting classes of sets of graphs, classes of

problems having polynomial algorithms on the sets of graphs of the corresponding

classes, and uniform descriptions of these algorithms. Such an approach is that of

[25, 6, 3, 7, 8, 121.

Correspondence to: B. Courcelle, Universiti: Bordeaux-I, Laboratoire d’lnformatique, 351, tours de la

Lib&ration, 33405 Talence, France. Email addresses of the authors: courcelliiqgeocub.greco-prog.fr and

mosbah@;geocub.greco-prog.fr.

*This work has been supported by the “Programme de Recherches Coordonntes: MathCmatiques et
Informatique” and the ESPRIT Basic Research Action 3299 “Computing by Graph Transformations”.

A preliminary version of this paper has been presented at the conference WG ‘91, Fischbachau, Germany. in

June 1991, and has appeared in the proceedings (Lecture Notes in Computer Science, Vol. 570).
** Laboratoire associC au CNRS.

0304-3975/93/$06.00 c 1993-Elsevier Science Publishers B.V. All rights reserved

50 B. Courcelle. M. M&ah

The present paper follows this line of research, where the notion of a problem is

extended into that of an evaluation. An evaluation is a function that associates with

every graph a value in some set S, say N, R, N x N. Hence, a decision problem is an

evaluation where S= {true, false}. However, the value of an evaluation can also be

a set of vertices, or a set of edges of the given graph. It follows that we can consider

the problem of evaluating optimal subgraphs of the given graphs, and we can consider

the problems raised in [6], in particular, that of giving a syntactic characterization of

the so-called regular properties. See the conclusion of [6].

The sets of graphs we deal with are those definable by hyperedge replacement

grammars. The sets of seriessparallel graphs, Halin graphs and outerplanar graphs

are examples of such sets. So are, for each k, the set of graphs of tree-width at most

k and the set of graphs of bandwidth at most k. Since every set of graphs generated by

a hyperedge replacement grammar has bounded tree-width, the tree-width bounded-

ness is common to all these cases. These grammars can generate sets of directed as well

as undirected graphs, with possible labels attached to vertices and/or to edges. They

can also generate sets of hypergraphs.

Grammars are essential in that every generated graph can be described by a tree,

namely the derivation tree of the derivation producing the graph. Graph evaluations

of the appropriate type (we shall say, following Habel [19], that they are compatible

with the grammar) can be computed by means of one bottom-up traversal of the

derivation tree (like in attribute grammars when there are only synthesized attributes.)

The purpose of this paper is to describe, in a uniform way, a class of compatible

evaluations that is as large as possible. This will be done in a formalism that associates

logic and algebra, or, more precisely, monadic second-order logic and semiring

homomorphisms.

Let us present briefly and informally the basic ideas. Let cp be a monadic second-

order formula with set W of free variables. For every graph G (we consider it as

a logical structure), we denote by sat(cp)(G) the set of W-assignments in G that satisfy

the formula q. The fundamental result of Courcelle [14] says that sat(q)(G) can be

evaluated bottom-up on any derivation tree of G.

Some evaluations c’ can be expressed by u(G)= h(sat(cp)(G)). This expression does

not give immediately an efficient way of computing v(G), because sat(q)(G) is fre-

quently a very large, although finite, set. If h is a homomorphism, in an appropriate

sense, the mapping v(G) can be evaluated directly bottom-up on any derivation tree of

G, without needing the costly computation of sat(q)(G). Linear algorithms can thus be

constructed, provided the computations to be done at every node of the tree take

constant time.

We obtain in this way a new proof of some results established by Arnborg et al. [3],

and linear algorithms’ in some cases not covered by the extended monadic second-

order logic introduced in their paper (for instance, when one wishes to compute the

sum of cardinalities of all sets satisfying an MS-formula with one free set variable). We

’ For uniform cost measure, as everywhere else in this paper.

Monadic second-order etaluations on tree-decomposable graphs 51

obtain a syntactic expression for a large class of compatible evaluations, including the

special cases considered in [19, 201. We also obtain linear or polynomial algorithms

for the sample optimization problems considered in [6]. We actually apply the

method introduced in this paper to a large class of problems, described syntactically in

a uniform way, and we answer the questions raised in its conclusion.

However, we do not claim to cover in our formalism all graph problems that are

polynomial, say, on partial k-trees (for fixed k), i.e. on simple loop-free undirected

graphs of tree-width at most k. Bodlaender [9] has considered games on graphs. For

one of them, called VERTEX GENERALIZED GEOGRAPHY, the existence of

a winning strategy for one of the two players is decidable in linear time on partial

k-trees, but does not seem to be expressible in our formalism. Similarly, the diameter

of a partial k-tree or its chromatic index [lo] can be computed in polynomial time, but

we cannot express them in our syntactic framework.

Two closely related papers are [12] and [21]. The former uses monadic second-

order logic to specify decision problems and evaluations (like the one counting the

number of tuples satisfying a given monadic second-order formula), and to obtain

linear algorithms. The latter uses semiring homomorphisms for handling evaluations

and constructing linear or polynomial algorithms; however, decision problems and

evaluations are specified informally, i.e. outside any syntactic framework like the ones

used in [3, 121 and in the present paper.

We also establish that if a graph transformation is specified by monadic second-

order formulas, i.e. if it is a d@nahle transduction as introduced in Courcelle [15], then

it is computable in polynomial time for input graphs or hypergraphs of bounded

tree-width.

The paper is organized as follows. Section 1 gives a few definitions concerning

many-sorted algebras, graphs and graph operations. Section 2 introduces monadic

second-order logic, monadic second-order evaluations on graphs, and establishes the

central results of this paper (Theorems 2.3 and 2.10). Section 3 discusses the construc-

tion of efficient algorithms. Section 4 reviews the main evaluation structures and

contains the applications. Section 5 compares our approach with that of [20] and

raises a few open questions.

1. Notations and definitions

In the following definitions, we let Y be a possibly infinite set of sorts, F an

.Y-signature, and M = ((M,),,Af, (fM)fEF) an F-algebra. In particular, if f~ F has

profile s1 x s2 x ... x s,-+s, then& is a total mapping M,, x M,, x ... x Msn+M,. The

functions fM are called the operations of M. A derived operation of M is a function

M,, x M,, x ... x Msn+M,, defined by a term t of sort s built with the operation

symbols from F, variables x1, . . . , x, of respective sorts sr, . , s, and additional

constants denoting fixed elements of M. We assume that each variable has at most one

occurrence in t, and that t is not reduced to a single variable (we would obtain in this

52 B. Courcelle, M. Mosbuh

case the identity). For more details, the reader is referred to [14, 13, 53. If X is a set of

variables with sorts, we denote by M(F, X) the set of finite well-formed terms written

with F and X.

The set of subsets of a set D is denoted by P(D). Its set of finite subsets is denoted by

PPf (D).

1.1. Computable evaluutions

Definition 1.1 (Inductive families of evaluations). Let D be any set. A family of evalu-

ations on M is a set 8 of unary mappings such that each mapping v in & maps

M a(L’j into D. The object U(V) belongs to 9 and is called the type of v.

A family of evaluations B is F-inductive if for every f in F of profile

s1 x s2 x ... x s,-+s, for every v in & of type s, there exists an operator f3,,, on D and

asequence(v,., ,..., UI,ml ,..., uz,l, v~,,,~ ,..., ~,,,~)oflength(m,+m,+~~~+m,)of

elements of B such that

(1) ~(Vi,j)‘Si for allj=l, mi,

(2) for all d,EM,,,d.,EM,,,,

=b,,h,1@1), . ..>vl.,,(dl), vz,l(dz),vz.m>(dz)rv.,mn(4,)).

The sequence (0,. J‘, vl, 1, . . . , o’,. ,,,,) is called a decomposition of v with respect tof, and

19,, s its decomposition operator.

The existence of such a decomposition means that the value of v for any object of

the form fM(dI, . . . ,d,) can be determined and computed from the values of finitely

many mappings of B at d, , . . , d,.

If D = {true, false), then a family of evaluations is a set of predicates and an operator

8,. s is a Boolean expression. This special case has been considered in [14].

Lemma 1.2. If 8 is F-inductive, then it is G-inductive, where G is any set of derived

operations constructed over F.

Proof. Let g be a derived operation, defined by a term t written with some symbols of

F, some variables and some constants. For every v of type o(t), one can construct

a decomposition of v with respect to g from those of finitely many mappings from 8,

with respect to the functions of F occurring in t. This construction uses also some

values of some functions of 8 for the constants occurring in t. The usefulness of

derived operations is discussed in Section 3.4. q

Definition 1.3 (Inductively computable evaluations). Let s,,E.Y be a sort of interest.

A mapping v: M,,+D is F-inductively computable if there exists a family of evaluations

Q such that

Monadic second-order ecaluations on tree-decomposable graphs 53

(1) EC!?,

(2) 8 has finitely many functions of each type and

(3) d is F-inductive, with known decompositions.

Hence, by Lemma 1.2, if u is F-inductively computable, then it is G-inductively

computable for every set G of derived operations over F.

We shall use these definitions in the case where M is the HA-algebra of finite

hypergraphs defined in [S] and the evaluations are functions on graphs defined in

monadic second-order logic, as explained below.

1.2. Graphs and hypergraphs

Hypergraphs are finite, labeled, directed and are equipped with a sequence of

distinguished vertices called the sources, as defined in [14, 13,5]. The labels are chosen

in a ranked alphabet A, i.e. an alphabet given with a mapping s:A+N. We shall call

r(a) the type of a. The type of the label of a hyperedge must be equal to the length of its

sequence of vertices.

Formally, a k-hypergraph, also called a hypergraph of type k over A, is a quintuple

G = (VG, E,, lahc, vertc, srcG), where

~ Vc is the finite set of vertices,

~ E, is the finite set of hyperedges (with VG n&=@),

~ labc:E,+A is the hyperedge labeling function,

~ vertc: E,+ VT; associates with every hyperedge the sequence of its vertices; the ith

element of vert,(e) will be denoted by vertc(e, i),

~ srcG is a sequence of k vertices called the sources; srcc(i) denotes the ith element of

this sequence; we shall consider srcG as a mapping [k]- Vc, where [k] denotes

{1,2 ,..., k) (and CO]=@).

We denote by Gk (A) the set of all finite hypergraphs of type k over A. If r(a) = 2 for

each agA, then a hypergraph over A is just a graph. In order to simplify the

terminology, we shall formulate most of our results and definitions for graphs.

Nevertheless, the extension to hypergraphs is straightforward. (The reader may also

consider that we use the term “graph” as an abbreviation for “hypergraph”, and the

term “edge” as an abbreviation for “hyperedge”.)

In contrast to what was done in [S, 13-151, we do not consider two isomorphic

graphs as equal. The reason is that we aim at results concerning graph algorithms, and

it is convenient to view vertices and edges as concrete objects. We shall consider that

the sets Vc and E, are subsets of a fixed countable linearly ordered set D.

1.3. Graph operations

A graph operation is a mapping that associates a graph with one or several graphs.

Graph operations are also essential in [6, 12, 251, and in other works dealing with

graph algorithms (see [2]). The following three basic graph operations have been

defined in [S, 14, 131.

54 B. Courcelle, M. Mosbah

First, if G’ is a k’-graph and G” is a k”-graph disjoint with G’, i.e. such that

(Vcs u E,,)n(Vo,, u E,,,) = 0, then G’ 0 G” denotes their union, equipped with the

concatenation of srcG, and srcGCC as a sequence of sources. Hence, @ is a partial

operation.

Second, if 1 6 i < j 6 n, we let Bi. j be the mapping such that if G is an n-graph, then

G’=Hi. ,(G) is obtained by “fising” the ith and the jth sources of G. If src,(i)=srco(j),

then G’= G. Otherwise, VG, = V,- {srcc(j)}, EG. =I& and the vertex srcG(j) is

replaced by srcG (i) everywhere in the mapping vert, and in the sequence srcG .

Finally, if r: [p]+[n] is a total mapping, if G is an n-graph, then o,(G) is the

p-graph consisting of G equipped with src,(x(I)), src,(a(2)), . ., src,(a(p)) as a se-

quence of sources, instead of srcG. Note that 8i.j and gz are total.

The set of nonnegative integers tV is the set of sorts of the signature H consisting of

OILIn of profile n x m-+n + m,

fli,j,n of profile n+n and

0 z,p.n of profile n+p.

We shall also use a constant a of sort r(a) for each ae.4, the constants 1 and 0 of

respective sorts 1 and 0. We let

H,=HuAu(O, 1).

We say that a term t in M(H,) denotes a graph G if

l either t = a and G is a s(a)-graph consisting of one edge e with label a and such that

srcG = vertc(e),

l or t = 0 and G if the empty O-graph,

l or t = 1 and G has a unique vertex that is the unique source and no edge,

0 or t=tl@,,, t2 and G = G1 0 G2, where tI denotes G1 and t2 denotes Gz, of types

n and in, respectively,

l or t=Oi,j,n(tl) and G=8i,j(G,), where tl denotes G1 of type n,

0 or t=oz,p.n (tl) and G =g2(GI), where tl denotes G1 of type n.

It follows from this definition that a term t in M(H) denotes several graphs which are

all isomorphic. We shall write G=val(t) as an abbreviation of “t denotes G”.

The signature H, is infinite. We shall get effective results and efficient algorithms by

restricting ourselves to graphs that are denoted by terms over finite subsets of H, with

finite subsets of N as sets of sorts, and finitely many operations.

We quote from [S], [Z], and [13] the following results.

Fact. (1) A set L c G,,(A) is expressible by jinitely many qf the operations of H, iflit

has bounded tree-width.

(2) This is the case qf partial k-trees (i.e. qf simple loop-free undirected graphs

of tree-width at most k), sets of graphs and hypergraphs generated by hyperedge

replacement grammars, and k-terminul recursive families qf graphs in the sense of

Wimer [28].

Monadic second-order rmluarions on tree-decomposable graphs 55

We shall, in general, omit the sort subscripts and denote, slightly ambiguously, the

above operations by 0, 8i_ j or (T,

2. Monadic second-order evaluations on graphs

By considering a graph as a logical structure, we can express graph properties in

logic. In the present paper, we consider graph properties (and more generally graph

evaluations) expressible in counting monadic second-order logic.

Definition 2.1 (Hypergraphs as logical structures). In order to express properties of

k-hypergraphs over A, we define the following symbols:

v, the oertex sort,

e, the edge sort,

si, a constant of sort V, for each i, 1 <i < k,
edg,, a predicate symbol of arity evv . . v (with T (a) occurrences of v), for each a, UEA.

With a k-hypergraph G over A, we associate the logical structure ICI =

< vc> EG, (%G)iE,kl, (edgaG)ntA), where VG is the domain of sort v, E, is the domain of

sort e, sic is the ith source of G, and edg,,(e, ul, . .., un)= true iff lab,(e)=a and

vertc (e) = (c, , . . , rn).

Definition 2.2 (Counting monadic second-order logic). To build formulas, we use

object variables u, x, y, z, u’, . . . of sort v or e, denoting, respectively, vertices or edges,

and set variables U, X, Y, Z, U’ of sort v ore, denoting, respectively, sets of vertices or

sets of edges.

Let $6“ be a finite sorted set of variables {u, u’, . . . , U, U’, . . . }, each of them having

a sort o(u), I, a(V), a(U’), . . . in (v, e). We denote by H? the set

%“u {sl ,sk). Uppercase letters denote set variables and lowercase letters denote

object variables or constants.

The set of atomic formulas consists of

u=L~‘, with u,u’~$V~, a(u)=a(u’),

UEU, with u, UE%“~, g(u)=(~(Uj),
edg,(u, u;, IA;), with u, u; ,..., u:E%“~, cr(u)=e, o(u;):=~..=o(u~)=v,

Card,,,(U), with O,<m<p and 26~.

The last formula has the following meaning:

Card,,,, J U) = true ifT Card(U) = m mod p (where Card (U) denotes the cardinality

of U).

The language of counting monadic second-order logic (CMS) is the set of formulas

formed with the above atomic formulas together with the Boolean connectives and

quantifications over object and set variables. The language of monadic second-order

logic (MS) is the set of such formulas not using the atomic formulas Card,,,(U). It has

been proved by Courcelle [14] that the former language is more powerful than the

latter.

56 B. Courcelle, M. Mosbah

In what follows, we consider CMS-formulas with set variables only. This is not

a loss of generality because each CMS-formula can be translated into an equivalent

CMS-formula using only set variables (see [26] or [14] for details). We denote by

@2,:(%/) the set of CMS-formulas of height at most h and variables in “/V, where p < 4

in all subformulas of the form Card,& U). The integer k is a bound on the types of the

graphs these formulas express properties of, and A is the finite set of edge labels. The

height of a formula is the depth of nested quantifications.

To shorten our writing, we will fix YV, h, 4 and A and refer to the previous sets by (Pk.

We shall work with several types of graphs at the same time; hence, k will have to vary.

For every graph G, DG will denote the set E,u V,. (We take always Eon Vc=8.)

Furthermore, we shall let D be a countably infinite set (say the set of integers) such that

Do c D for all graphs G.

A formula, say cp, will usually be given as a member of Q,(w), where

$V={X1,..., X,}. We shall denote it also by q(Xi, X,) in order to recall what is

in %“. This does not mean that each variable X i, . . , X, actually occurs free in cp, but

only that all free variables are in {Xi, . . . , X,}. A w-assignment in G is a mapping

v associating with every variable X in ?Y a subset of Do such that v(X) c E, if X is of

sort e and v(X)G Vc if it is of sort v. Such an assignment will be written as

v=(v, , v,), with Vi=V(Xi) in the usual case, where w is {Xi, X,}.

For each k-graph G, we let sat(G):Qk +P(9(DG)n) be the mapping such that for

every cp(Xi, X,) in Qk, sat(G)(cp), also denoted by sat(G, cp), is the set of assign-

ments v=(v~, v,)E.Y(D,)” such that (G, v)l=cp. This notation means that cp holds

in G for v. If no assignment satisfies cp in G, then sat(G, cp)=@.

Our first result is that the mapping saf can be computed inductively with respect to

the sets of operations {O,,, 1 n,m>O}, (ei,j,,I 1 bi<jba] and {~~,,,~l~:[n]+[p],

n, p>O}, recall d S t’ e m ec ion 1. This shows that, given a graph G resulting from the

composition of some other graphs by these operations, the set of assignments in

G satisfying a CMS-formula can be computed from those in the composing graphs

satisfying some CMS-formulas. We state it as follows.

Theorem 2.3. For every k,for every q in @ kr the mapping s~t(cp):G~(A)-~~(~‘f(D)“)

such that sat(cp)(G)=sat(G, cp) is H,-inductively computable.

Proof. Lemmas (2.4))(2.6) prove that the family of evaluations {sat(q) 1 (PE&, k>Oj

is H-inductive. If cp is in Qk, then the type of sat(q) is k. We note that Qk is finite up to

tautological equivalence (see [14] for details). We assume that any formula in Qk is

replaced by a minimal tautologically equivalent one (minimal with respect to some

fixed lexicographical ordering that need not be specified in detail here). Hence, Qk is

finite as well as closed under Boolean operations, and this yields the theorem. q

We need some notations and lemmas from [14]. We let ^Iy={Xr,X.}. If

v’ = (V’l , v;) and v”=(v’i’, vl) are two assignments in G’ and G”, respectively,

then the assignment v:= v’uv” in G’OG” is defined as (v~uv~,...,v~uv~), where

Monadic second-order eoaluations on tree-decomposable graphs 51

viuvi’ is a shorthand writing of V’(Xi)uv”(Xi) for Xi in -ty-. We shall keep in mind

that the sets we handle are sets of n-tuples of sets.

Let us define some operations on sets of n-tuples. Two sets A and B c 9’r(D)” are

called separated if

(U{G!Ii=l,..., n,(Y., ,..., a,)EA}
>

f? u{piIi=l,...,
(

n,(B1,P.,)EB}
)

=8.

If A and B are two sets of n-tuples of sets, then we define an extended union u by

A w B= {CXU~ 1 EEA, BEB}. If, in addition, A and B are separated, then we shall write

A v B instead of A w B.

ItisclearthatQ={@,@,...,@)}isth e unit of u (and of u), i.e. for each A, A VJ 0 = A.

We observe that the empty set 0 is the zero element of U: for each A, A w8= 8. (Note

that 0 is an element of Pr(D)” whereas 0 denotes the usual empty set.)

The disjoint set union will be written as ti. That is, if A and B are two sets such that

An B=@, then A WB is nothing but Au B. We assume that Ati B is undefined if

An B #@. It is evident that the unit of w is 0.

Let us assume that AU B is not defined if A and B are not separated. Note, in

particular, that A ti B is defined if A = 0, and that A v B is defined if A = 8 or A = 8.

In Lemma 2.4, we will consider the case where a graph is obtained as the disjoint

sum of two other graphs.

Lemma 2.4. Let k= k’+ k”. Given cp in Qk, one can construct a finite sequence of

formulas *;, $;,*k in QPk8 and a finite sequence of formulas $;‘, $5, . . . , It/z in

@+ such that for every k’-graph G’, for every k”-graph G”,

saf(G’O G", cp)= i& sat(G', $j,w sat(G”, $;‘I .
l<j<m

Proof. It was proved by Courcelle [14] that, given a formula cp in Qk, one can

construct a finite sequence of formulas q;, cp;, . , cp;, in Qk,, a finite sequence of

formulas cp;‘, cp;‘, cp$ in Qk,, and an (n’+ n”)-place Boolean expression B such that,

for every k’-graph G’, for every k”-graph G”, for every assignment v’ in G’, for every

assignment v” in G”, if v = V’ u v” and G = G’ 0 G”, then

(P~(v)=B[$,~.(v’),&..(v’), q&=(v”), ...,~;,,G”(~~“)],

where (Pi denotes the Boolean value true iff (G, v)l= cp and false otherwise; hence,

cpG(v)= true iff sat(G, cp) # 8.

This Boolean expression can be put in the form W1 S i<* ,?:c, (v’) A J.;b.. (v”), where

1.; and ;*I’ are some Boolean combinations of the cpl’s and the cpy’s respectively. The

58 B. Courcelle, M. Mosbah

formulas).I and ;I:’ are, respectively, in Qks and Qkzz, because each set Qk is closed under

Boolean operations. We then have the following identity:

sat(G, q)= u sut(G’, i:)wssat(G",~;').
1 Qi<r

(1)

It is easy to arrive at this statement by proving a double inclusion, i.e. that an

assignment of any side of (1) belongs to the other side. (Since G’ and G” are disjoint,

sat(G’, 3.:) and sat(G”, i.;‘) are separated.)

Now, we shall transform this union into a disjoint one. For each nonempty subset

I Of [I”], we let J.;=nr\i,rAi A nr\i$I 1j-i and A;‘=nr\i,l?.j’ A nr\i~,l~r’. We assert

that

sut(G, cp)= u sut(G’, A;)usut(G”, 1.;‘). (2)
I.Ji[rl,InJ#0

We will prove Eq. (2) by proving the two inclusions.

First, let us show that the left-hand side is included in the right-hand one. If v is an

assignment belonging to sut(G, cp), then v=v’uv” in a unique way. By identity (l),

there exists an integer i0 in [r] such that v’~sut(G’, 26) and v”gsut(G”, 2;:).

It suffices to take Z={i~[r] 1 &(v’)=true} and J={ie[r] 1 ~~~t~(~“)=t~~e}. Since

i0 belongs to both I and J, In J # (8. Therefore, the left-hand side is included in the

right-hand one.

Second, we shall prove the inclusion in the other direction. To do so, consider an

element v of the right-hand side; there exist two assignments v’ and v” such that

v= v’uv”, r’~sut(G’, A;), v”~sut(G”, A;‘), where I and J are subsets of [r] such that

In J # 0. Then, we can find an integer j in In J such that A& (v’) and AyG,. (v”) are true,

by definition of j-1 and j.;. Hence, v’ belongs to sut(G’, A>) and v” belongs to

sut(G”, ?_I’). Finally, v belongs to sut(G, rp).

It remains to show that the union w of Eq. (2) is actually disjoint. Otherwise, there

exists v in sut(G, cp) that can be written as v=v’uv”, where v’~sut(G’, A;)nsut(G’, A;,)

and v”~sut(G”, iy)nsut(G”, i;‘,) such that In J #0 and Ii n J1 # 0. If the sets I and

Ii are distinct, then, for an integer i that belongs to one of these sets and not to the

other, we will have & and 1 Ai at the same time, which is impossible. Hence, we must

have Z = Ii and, similarly, J = J1.

By renumbering the formulas in (2), one gets an equality as stated in the lemma. 0

In some applications, formula (1) may suffice. That is, one need not always take

a disjoint union as in the statement (see Example 2.11).

The lemma below expresses that sat(q) has a decomposition with respect to the

operation Qi, j. Let the graph G’ = Oi, ,(G) be the result of the fusion of the two vertices

srcc(i) and srcG(j). Formally, this operation is defined by a surjective mapping

f: V, + VG9, where f maps srcG (j) to srcc(i), and v to v for VE Vcs. Then for every

assignment v in G, we define the assignment v’ = ei, j(v) by

v’(U)=v(U) for U of sort e (since EG8=EG),

v’(U)=f(v(U)) for U of sort v.

Monadic second-order evaluations on tree-decomposable graphs 59

The same definition can be written in terms of tuples. That is, if r=(vi, .., v,) is an

assignment in G, then Oi,j(v) is the assignment defined on fli,j(G) by Oi,j(v)=

tei, jtvI 12 ...> Oi, jtvn)).

Lemma 2.5. Given a ,formula cp in Qk and i, j in [k], i < j, one can construct a jinite

sequence of formulas $1, . . . , $,,, in Qk such that, for every k-graph G,

sUt(Bi,j(G), C/V)= u $“i, i’ w sat(G, $i,),
1 <i'<m

where each ? q,i, is a singleton consisting qf an n-tuple, the elements of which are either

fsrcc(i)) or 8.

Proof. It was proved by Courcelle [14] that, given a formula q in Qk and i, j in [k],

i<j, one can construct a formula $ in Gk such that for every k-graph G, for every

assignment v in G, if G’=ei,j(G) and V’=Bi.j(V), then c~~,(v’)=$,(v).

Consider first the case of a formula p having one free variable X. If this variable is of

sort e, then sat(G’, ~)=sat(G, $). If it is of sort v, then sat(G’, cp) will be computed as

follows.

Let pi,j(X) be the formula si=sj v (si$X A sj$X) and pj.j(Y) be the formula

si # sj A si$ Y A sj+ Y. The former says that the sources src,(i) and srcG(j) are equal

or both not in X, whereas the latter expresses that they are neither equal nor in Y.

Note that Pi,j(X) is not the negation of p~.j(X).

We have sut(G’, q)=Oi,j(sat(G,II/)). The formula $ can be written as

($ A pi, j) v ($ ~1 pi.j). In other words, two cases are possible. In the first case,

pi,j holds, which implies that X remains unchanged under the operation Qi,j, i.e.

f(X)=X. Hence, Ni,j(sUt(G, Ic/ A pi.j)) is s~t(G, $ A pi,j). Consequently, s~t(G’, cp)=
sut(G, t/i A Pi,j)~,i.j(sut(G, $ A7pi,j)). It is a disjoint union because the two for-

mulas cannot hold simultaneously.

NOW, it remains to calculate Hi,j(sUt(G, $ A lpi,j)). In this case, at least srcc(i)

or srcG(j) belongs to X. Let Y be a new variable and $‘(Y) the formula

GCsli)(y)l v +Cs{j,(y)lv II/Cs{i,j)(y)l. w e use here a new notation. For I& N, we

let S,(Y) be a new term denoting in a graph G of interest the set Yu{srcG(i) 1 iE:I}.

IJ [S,(Y)] denotes the result of the substitution of S,(Y) for X, after some renamings

have been done to the variables of $, as usual. The special symbols S, can be easily

eliminated: xcS,(u) will be replaced by XEU A Wier(X=Si). Using them is just

a tool for denoting complicated formulas.

We claim that

We prove this claim in two parts.

(i) Let UEei,j(sUt(G, I// A 1 pi, j)). Then, one can find a set U’ in sut(G, I) A 1 pi. j)

such that u=,f(u’). Since the mappingf‘transforms the sources srcG(i) and srcG(j)

60 B. Courcelle, M. Mosbah

into srcc(i), f(U’) is of the form {srcG(i)}uU”, where U” is the set U’-

{srcG(i), srcG(j)). Thus, three cases are possible: src,(i)~ U’; srcG(j)~ U’; and srcc(i)

and srcG(j) are both in U’. It follows that U” belongs to sat(G, II/’ A p;,j).

(ii) Conversely, let U” belong to sat(G, rj’ A pi, j). If U’ is one of the sets

U”u {srcG(i)}, U”u {srcG(j)} or U”u{srcc(i), srcG(j)}, then it does satisfy

$ A1pi.j. Hence, U=f(U’)=U”u{~cc(i)} belongs to ei,j(sat(G,$ Alpi,j)). This

completes the proof of the claim.

Finally, by collecting all these results, we have

Or, more concisely, we can write this equality as follows:

sat(G’, cp)= i$ %';~kwsut(G, ;Ik),
ldkS2

with $‘;,2={(@)}, 'K,l={({srcG(~)))), &=$A&~ and ,!l=$‘~p;,j. We obtain,

then, the desired equality, as stated in Lemma 2.5.

The generalization to formulas with more than one variable is straightforward.

Consider, for example, the case where a formula cp has two variables X1 and X2. As

far as pi, j and pi, j are concerned, they shall be extended to two variables. That is,

pi,j(X,, X2) will be the formula Si=Sj v (Si4X1 A Sj$Xl A Si$Xz A Sj~X,) and

pi.j(X,, X2) the formula Si # ~j A Si~X, A Sj4X, A Si$X2 A Sj$X2. Simikirly, if pi,j iS

true, then Qi, j does not affect X1 and X2. We let Go0 be the formula $ A pi,j. When

pi, j is false, then srcG(i) or srcG(j) belongs to XI or to X2 or to both. This can be

written, respectively, by the following formulas:

(3) ~~II(YI> Y2)= W rc/(SI~(Y1)~SI,(Y2))API,j(Y1, Y2),
II. I2 C ii, j),

Il.12 #0

where Y, and Y2 are new variables. To simplify our writing, we define sr, by

sr,=(srcG(i)} if c(= 1 and

sr,=@ if a=O.

Then, we have

Monadic second-order eaaluations on tree-decomposable graphs 61

The subscripts of these formulas are words c(~ a2 such that a1 (g2) is 0 if the variable Xi

(X,) contains neither x,(i) nor src,(j) and 1 otherwise. More generally, if the

formula has II free variables, then the subscript will be in {0, 1)” and, consequently,

there will be 2” formulas. The proof of the lemma is achieved. 0

Lemma 2.6 deals with the source redefinition operation.

Lemma 2.6. Given cp in Qk, and c(: [k]-[p], one can construct aformula cp’ in QP such

that, for every p-graph G,

sar(o,(G), q)=sat(G, cp’).

Proof. This is just another form of Lemma 4.7 of [14]. 0

The purpose of the following definition is to unify the results of Lemmas 2.4-2.6 and

to extend them to derived operations.

Definition 2.7. A (W, v)-polynomial is an expression of the form 8, a monomial or

a sum of the form m, tim2 ti ... tirnk, where each term m,, . . ,mk is a monomial.

A monomial is an expression of the form 8, t 1 or t 1 v t2 v ... FJ t,, where each ti is either

a variable or a constant, denoting a fixed element of 9r(Yp,(D)“). Similarly, one gets

the notion of a (u, u)-polynomial, a (u, w)-polynomial and a (w, u)-polynomial.

The decomposition operators constructed in Lemmas 2.442.6 are (w, v)-

polynomials.

In the structure S = (Ppf(9,(D)“), u, CZJ, 0,0), a (u, Irl)-polynomial p denotes

a total function ~P,(~P,(D)“)m~~P,(~Pf(D)“), where m is the number of variables of p.

A polynomial of the three other types denotes a partial function since ti and w are

partial operations.

A semiring is a structure .%J = (S, u, LLI, I, E), where

- S is a nonempty set,
_ u and u are two binary total operations on S,

- (S, u, I) is a commutative monoid,

~ (S, q E) is a monoid with zero element I (i.e. a u I = I u a = _L for all a in S) and
_ w distributes over u, that is,

au(buc)=(aub)u(auc)

and

(buc)Ma=(bwa)u(cua).

These laws can be put in the form of equations and they make it possible to transform

every derived operation written with u, u and constants into a (u, N)-polynomial

denoting the same function. The structure (.Pr(Pr(D)“), u, VJ, &0) is a semiring.

62 B. Courcelle, M. Mosbah

Since w and v are partial operations, the case of functions written with them is not

so straightforward. The structure 9 = (Pp,(Pr(D)“), w, v, 8, 8) satisfies the follow-

ing identities:

(Si) xwy --yw,x,

(s.2) xti(ytiz) = (XWiy)@Z,

(Sj) x?J0=0tix=x,

(sq) xv(yuz)=(xGYy)vz,

(sg) xu8=0ux=8,

(se) xEJ(y~z)~(xuy)~(xwz),

(ST) (x*y)uz 2 (XVZ)~((yVZ).

In these identities, = means that both sides are always defined and equal, whereas

2 means that whenever one side is defined, so is the other and they are equal. We shall

use them as rewriting rules in both directions for (si), (sz) and (s4), and from left to

right for the others.

In this way, every term t(xi, .., x,) over w’, v can be transformed into a (ti,, v)-

polynomial p(xl, x,) such that, whenever t(xi,x.) is defined, then so is

p(.xI,...,.xn) and their values are equal. (The example of (x,tixl)uO reducing to

0 shows that p is, in general, more defined than t.)

It follows, in particular, that the function obtained by substituting a polynomial for

a variable in a polynomial can be transformed into a polynomial. For example,

Hence, we have the following corollary

Corollary 2.8. Let F be a derived signature of HA. For every k and cp in Qk, the mapping

sat(q) is F-inductively computable. Moreover, the corresponding decomposition oper-

ators are (ti, w)-polynomials.

Now, we shall define a class of evaluations on graphs that can be computed

inductively, in some sense “directly”.

Definition 2.9 (MS-evaluation). An evaluation structure is a structure 9?= (S, u,

M, I, E). In many cases, it will be a semiring, but we do not require this in general.

The notion of a homomorphism h: (9f(P,(D)“), u, U, 0,0)+9 is standard. (Note

the correspondence of u with u, u with M, 0 with I and 0 with E.)

The following weaker notions will be useful. A (w, u)-homomorphism

h: (9Pr(9P,(D)“), ti, v, f&0) into 3’ is a mapping such that

Monadic second-order evaluations on tree-decomposable graphs 63

h(AtiB)=h(A)uh(B) if AnB=0,

k(AuB)=k(A)wk(B) if A and B are separated.

Similarly, we define (u, u)-homomorphisms and (w’, u))-homomorphisms. As we

shall see later in more detail, the cardinality mapping (Card:gPf(9Pf(D)n)+N) is

a (w, v)-homomorphism but not a homomorphism.

Let us recall that for dealing with graphs, we let D be a countable set such that

DG = VG u EG is a finite subset of D for every graph G. (In a concrete implementation,

D is the set of memory locations that one considers, as usual, to be infinite.)

An MS-evaluation is a mapping u:Gk(A)-+S where .%J= (S, u, N, I, E) is an

evaluation structure, that is of the form u= hosat(where cp is a CMS-formula with

free variables in {Xi,,.., X,}, and k is a (ti, w)-homomorphism (Pf(gf(D)n),

ti’, w, 0,8)-92. We must remember that, as defined in Section 2, sat(q) is a mapping

G,(A)+.??,(P,(D)“). Hence, hosat is a mapping G,(A)-+S.

In words, an MS-evaluation is defined by a homomorphism which takes as input

the tuples computed by the mapping sat. Thus, its value for a graph G can be actually

determined from those for the subgraphs composing G. Moreover, its values for the

basic graphs (the empty graph, or graphs reduced to single edges or vertices) must be

known since these graphs are the leaves of the parse tree of graphs.

Theorem 2.10. Every MS-evaluation is HA-inductively computable.

Proof. This is a consequence of Theorem 2.3. In fact, it suffices to compose k and sat

in the three lemmas. We have, with the same notations as in Lemma 2.4,

k(sut(G’@ G”, cp))=k &j sut(G’, t,h;)wsat(G”, $7)
ldj<m >

cl<! m k(sat(G’, $;)usut(G”> $:))
. d

= u k(sut(G’, $;))tik(sut(G”, $j’)).
l<j<m

Hence,

u,(G’OG”)= u u~/;(G’)uu~~(G”),
lGj<m

where, for (PE&, uV(G) denotes k(sut(G, cp)).

Similarly, we get from the other lemmas,

k(sat(oi,j(G), CP))= u k(+‘i,i,)uJh(sat(G, $i,))
l<i’Cm

64 B. Courcelle, M. Mosbah

and

h(sat(o,(G), c~))=h(sar(G, cp’)).

Finally,

uq(ei,j(G))= u h(*‘i,i,)~~~~,(G)
lSi'Qf73

and

r,(a,(G))=r,,(G).

Hence, this proves that B = {hosar(cp) I q E Ok} is HA-inductive.

Example 2.11. We give a list of evaluations. Some of them are MS-evaluations, others

are not. (We shall discuss in Section 3 the appropriate data structures for computing

them.) We let A consist of symbols of type 2. Hence, we consider directed graphs, and

not hypergraphs. We also let k = 2 and cp (X) be the MS-formula stating that X is the

set of edges of a simple path (i.e. a path without cycles) linking the first source to the

second one. (Such a formula has been constructed in [14].) Let GEG~(A). We shall

consider the following evaluations expressed in terms ofsat(described in Fig. 1.

Evaluation Definition Description

Max{Card(X)IXesat(cp)(G)}

Min(Card(X)(Xmzt(cp)(G)}

Z{ Card(X)jXmxr(cp)(G)}

Average(sat(cp)(G))

DifW(~)(G))

-

Fig. I. Some evaluations.

The set of all simple paths from

src,(l) to srce(2).

The number of simple paths from

SK,(l) to s&.(2).

This evaluation has the value true if

s&(q)(G) # 0 and false otherwise.

It indicates the existence of a simple

path from SK,(~) and srce(2).

The maximal length of a simple path

from srce(1) to XC,(~).

(If cl(G)=@, then rq(G)= -CC.)

The length of a shortest path from

SK,(~) to m,(2)
(= +m if r,(G)=@).

The sum of the lengths of all simple

paths from src,(l) to srce(2).

The average length of a simple path

from X,(I) to SK,(~)

(=r6(G)/rz(G)).
The difference between the maximum

and the minimum lengths of simple

paths from SK,(~) to m,(2). That

is, tk(G)-us(G)
(=-CC ifr,(G)=0).

Monadic second-order evaluations on tree-decomposable graphs 65

MS-evaluation S U LL I E

1’2 N + x 0 1

L’3 [true, false} ” A false true

C’a NW{-m} Max + -cc 0

1’5 NU[+‘Z) Min + +cO 0

Fig. 2. Evaluation structures.

The evaluations v2, L’~, v4, v5 are MS-evaluations. The corresponding evaluation

structures are listed in Fig. 2. The others, u6, v7, u8, are not, but they are computable

in terms of auxiliary MS-evaluations so that they are HA-inductively computable. The

complexities of the corresponding algorithms will be discussed in Section 3. Let us

check that u2 is really an MS-evaluation. If A and B are two elements of Yr(Y,(D))

(two finite sets of finite subsets of D), then

Card(A wll)=Card(A)+Card(B).

We also have

Card(AwB)=Card({ocu/3I@EA, BEB})

= Card(A) x Card(B)

because A and B are separated, i.e. are such that (u{rxJi= 1, it, (a,, E~)E

A})n(UBili=l,..., n, (/?i , /&,)EB})=@. Finally,

Card(@)=O,

Card(B)= 1.

Note the difference between 0 and @ in the current example. In fact, sat(q)(G) = 8

means that there is no path between the first and the second source, whereas

o~sat(cp)(G) means that the empty path links them (i.e. they are equal).

Hence, Card is a (w, w)-homomorphism of (Pr(Yr(D)), w’, w, 0,0) into

(N, +, x , 0, 1) and u2 is an MS-evaluation. Similarly, we can prove that u4 and u5

are MS-evaluations. Other interesting evaluation structures will be presented in

Section 3.

3. Building algorithms

We now explain how algorithms can be constructed to compute inductive evalu-

ations on graphs given by terms defining them. We first specify carefully the problem.

Let F be a finite derived signature of HA (its set of sorts is a finite subset Y’(F) of N).

Let kEY(F) and L: be an evaluation G,(A)+S for some set S.

66 B. Courcelle, M. Mosbah

3.1. The basic algorithm

A (u, k, F)-algorithm is an algorithm that takes as input a term t in M(F),, denoting

a graph G in G,(A), and produces the value v(G). Letting the size of a graph G be

size(G)=Card(VG)+Card(E,), we have size(G)bm. ItI for some constant m, where

tgM(F) and G=val(t). Conversely, 1 t /<m’.size(G)+ 1 for some constant m’. More

precisely, every term t denoting G can be reduced into one, t’, denoting G, such that

It’ (d m’. size(G)+ 1 by deleting some redundant parts of t. We do not wish to detail

this small technical point. It follows that if an algorithm decides a graph property in

time 0(I t Ik), where t denotes G, then one can also say that its time complexity is

O(size(G)k).

Proposition 3.1. If v is F-inductively computable, then there exists a (u, k, F)-algorithm

with time complexity 0(I t I q), where ‘1 is an upper bound on the complexity of the

computation of each right-hand side of an equation, as in Definition 1.1.

Proof. We first present a basic algorithm and we shall describe later how to improve

it.

Let (6?s)s.,Y,F, be the finite set of evaluations that we have by the definition of an

inductively computable evaluation.

Let t E M (F), denote G and be considered, as usual, as a finite tree. Each node u of

t has a labelfin F. The sort offwill be called the sort ofu, and is actually the common

type of the graphs defined by the term t/u, namely the subtree issued from node u oft.

With each node u oft, we associate attribute occurrences w(u), for each WE&~, where

s is the sort of u. The intended value of an attribute occurrence w(u) is w(G,), where G,

is denoted by t/u. We now explain how it can be computed from the values of other

attributes at the successor nodes of U.

Let u be a node, w(u) an attribute at U, andfthe symbol of F that labels U. Then, by

Definition 1.1,

W(U)=~,,,(W1,1(U1),...,Wl,ml(~1),W2,1(~2),...,W2,ml(~2),...,W,,,~(~,)),

(1)

where(O,,~,~~,,,...,w,,,”) is the decomposition of w relative toA and ur , . . . , u, is the

sequence of successors of U. (This assumes that the rank off is n; if n =O, then 8,. / is

a constant value.)

It is, thus, clear that one can compute bottom-up on the tree t all the attributes

associated with all its nodes. We are actually in the case of a purely synthesized

attribute grammar. See [17] for a survey of attribute grammars and their evaluation

algorithms. Among the attributes of the root, one finds U(E) = v (G), namely the value

to be returned as output of the algorithm.

The time complexity can be evaluated as

u), (2)

Monadic second-order evaluations on tree-decomposable graphs 61

where ~(w, U) is the time complexity for the evaluation of w(u) by Eq. (1). An upper

bound can be given as follows:

ItI.Max{Card(b,)Is~~(F)}.~?, (3)

where n (w, u)Q y for all w and u. 0

3.2. An improved algorithm

Rather than computing all attributes at all nodes oft, one can compute only those

that are useful for the final result, namely for V(E).

To do so, one can use a preliminary top-down pass on the tree that determines the

necessary attributes. The only necessary attribute at the root is V(E). Assuming that

W is the set of necessary attributes at a node CL labeled by f; then the necessary

attributes at Ui (the ith successor of U) are those of the form w’(ui), where w’= Wi,j and

(0 w,f, w1,1,...) wi,j)...) is the deco mposition of some w in W relative to f:

It is not possible to decide at this abstract level of presentation when this optimiza-

tion is actually interesting. Our subsequent considerations relative to complexity will

be based on formula (2) and its approximation (3). Any improvement obtained from

them, say by limiting the sizes of the sets & or the values ~(w, u), will apply both to the

basic algorithm and to its improved version.

Remark. For A sPr(D)S we let p(A) be the least set of subsets of Pp,(D)” such that

(i) AEP(A),
(ii) if B=C&D and BEG, then C, DEB and

(iii) if B=CwD and Bep(A), then C, DEB.

It is clear that, when we use the improved algorithm for evaluating sat(G, q) for some

formula cp, the auxiliary sets sat(G’, $) that are needed are all in p(sat(G, cp)).

3.3. Issues for the construction of &icient (v, k, F)-algorithms

The usability of this technique depends on the following facts:

(1) For each w,J one needs to define a subroutine implementing 9,. f. Clearly, good

data structures for storing and computing the values of attributes must be designed.

(2) It is clear that the use of as few sorts as possible, and as small sets 8, as possible,

improves time and space complexity.

We first comment on fact (2) and propose two methods that help reduce the number

of sorts and the sizes of sets 8,. The basic ideas are to use derived operations and to

avoid logic.

3.4. Using derived operations

We first consider the example of the set L of “two-terminal” directed series-parallel

graphs. We let e denote the graph of the form 1 l --+@2, with two sources linked by

68 B. Courcelle. M. Moshah

a directed edge from the first source to the second one. We let 11 be the parallel
composition of 2-graphs, defined by

G II G’=o,(~,,,(%,(GO G’))),

where ~(1) = 1 and 2(2)=2. This operation glues G and G’ by fusing their ith sources,

for i = 1,2. We let l be the series composition of 2-graphs, defined by

where fl(1) = 1 and /I(2) = 4. This operation glues G and G’ by fusing the second source

of G with the first source of G’, and keeping as new sources the first of G and the

second of G’.

Then L is the least subset of G2 (A) containing e and closed by 11 and 0. Hence, every

graph in L can be expressed in terms of two operations (with a single sort, namely 2)

and one constant. For expressing them in terms of the basic operations, one would

need to use the following operations:

@ of profile 2 x 2-4,

0 1.32 13~~ 3, Q,, 4 of profile 4-4,

ca, cp of profile 4-+2 and

the constant e of sort 2.

Hence, we would use six operations instead of two, and two sorts instead of one. The

improvement is fairly clear.

Another example can be found in [2]. Derived operations of sorts 0, . . . , k are used

to generate the graphs of tree-width at most k, whereas the use of the basic operations

would need the use of sorts up to 2k.
Note that when choosing a set F of operations generating a set of graphs of interest

K, one should also consider the existence of a pursing algorithm that, given GEK,

produces as efficiently as possible a term tEhrl(F) defining G. One should do this

because the (u, k, F)-algorithm applies to a term t defining the graph of interest G. The

construction of t is linear in the cases of series-parallel graphs (see [27]) and

polynomial in that of partial k-trees (for fixed k> 3; see [l, 43). Efficient algorithms

have been given by Lagergren [23], Bodlaender and Kloks [111, and Hohberg and

Reischuk [21].

3.5. Avoiding logic

Theorems 2.3 and 2.10 are stated in terms of logical formulas. However, it seems

intractable to use them in the way they are established, because the proofs involve

very large sets of auxiliary formulas.

In concrete cases, one should rather work in terms of graph properties, knowing

what they mean, and forgetting the logical formulas. One can enrich the logic with

auxiliary predicates, that do not increase the power but shorten the writings, as done

in [12].

Monadic second-order evaluations on tree-decomposable graphs 69

We illustrate this with an example, namely the construction of all 3-vertex colorings
of seriessparallel graphs. Series-parallel graphs will, of course, be expressed in terms

of /I, l and e, as explained above. There exists a monadic second-order formula

cp(Xi , X,) expressing that, in a given graph, X1, X2 and V, -(Xi u X,) are sets of

vertices defining a 3-vertex coloring of G (where XEX~ iff x has color i for i = 1,2, and

XE V,-(X, uX,) iff x has color 3).

Hence, we wish to express

3-col(G)=sat(cp)(G)E~P,(9P,(Vc)2)

as an inductively computable mapping over (G2 (A), //, 0, e).

We shall give two constructions. The first one uses (ti’, u)-polynomials. For every

graph G of type 2, with distinct sources, we let, for i, jc { 1,2, 3},

Ci,j(G)=((X,,X,)lX,,X,S v,-{src,(l),svc,(2)$, and(X1,X2,X3)
defines a 3-coloring of G, where srcG(1) gets color i and srcc(2)

gets color j and every xcXi gets color i}.

In this definition, we let

x,:= v,-({src,(l),src,(2)}uX,uX2).

We then get the following inductive definitions:

(1) If G=e, then

Ci,i(G):=@ for i= 1, 2, 3,

Ci,j(G):={(&@)}=8 for l<:i#j63.

(2) If G = G1 11 G2, then

Ci,j(G):=Ci,j(G,)~Ci,j(G,).

(3) If G=G1 0 G2, then

Ci.j(G):= Is, Ci.k(Gl)VSk~Ck,j(GZ),
lSk63

where

(Recall that when constructing G from Gi and G,, one deletes the first source of G2, so

that the “middle” vertex of G is ,srcG, (2).)

Finally, the desired set is

70 3. Courcelk, M. Moshah

where

s;, I:= {({s%(l), S%(2)1, S)>,

s;, *:= i({srcc(l))> {s%(2)))),

s;,3:={({s%(l)s, (b)),

s;, I:= {(l9CG(2))> ImA~)~)~~

&2:= {CS, (.w?U), ~%O>,},

G,,:=(CS, {.m(l)))),

&.l:=(((~w(2))~ 0))?

6. ,:=(CS, (~~%(2)))),

sj, 3:= ((0, S,}.

We give a second definition using (ti’, I;r)-polynomials. We let

Di,j(G)={(Y,, Yz)lY,, Y~E VG, and (Y,, Y,, Yj) defines a 3-coloring of

G, where srcc(l)E Yi, srcG(2)E Yj, Y3 = Vc-(Y1 u Y,) and x gets

color i iff XE Yi >.

We then have the following:

(1) If G=e, then

oi,i(G):=Q) for i=l, 2, 3,

ol.z(G):=((jsrc,(l)), (src,(2)})j,

D1,3(G):=(((src~(l)},~)f,

02,1(G):={({srcG(2)}, {src&l)})},

&.3(G):={@, {src(;(l)j)),

D3,1(G):={((srcc(2)},0)j,

&,2(G):={@, (srcG(2)))).

(2) If G=G1 11 Gz, then

Oi,j(G):=Oi,j(Gl)~,i,j(G,).

(3) If G=G1 0 Gz, then

Monadic second-order ecaluations on tree-decomposable graphs 71

4. A catalogue of evaluation structures

We review the evaluation structures already presented in Example 2.11, indicate the

relevant data structures, and discuss briefly the complexity. They are presented in the

order of increasing complexity. We also indicate some extensions to weighted graphs

and to linearly ordered ones.

4.1. Boolean values

The evaluation structure is 8 = ({true, false}, v, A , false, true). Each attribute has

a Boolean value.

Let p map A to true iff A # 8. Then p is a homomorphism of (Pf(Ppf(D)“),

u, U, 8,8) into g. We have p(sal(G, cp))= true iff sat(G, cp) # 8, iff cp is satisfiable in

G for some assignment.

The complexity parameter v](w, U) is bounded by a constant depending linearly on

the length of the decomposition operator 8,,,, f, where f labels u. The corresponding

(u, k, F)-algorithm is linear in 1 t 1, where t is the input term.

4.2. Curdinality

WeconsiderhereCard:(~,(~pf(D)“),u,~,~,Q)~(N,+,x,O,1).Itisa(~,v)-

homomorphism. If cp has one free variable, then Card(sat(G, cp)) is the number of sets

X satisfying cp in G.

Integers can represent the values of the corresponding attributes. As before, ~(w, U)

is bounded by a constant depending linearly on the length of Q,, s, wheref labels U.

By using this structure, one can count, e.g., the number of Hamiltonian circuits or

the number of perfect matchings in a graph. (A perfect matching is a set of pairwise

nonadjacent edges X such that every vertex belongs to some edge in X.)

4.3. Maximum and minimum curdinulities

We let here n= 1, and we only consider the maximum. The function Max-

Card:PP(Ppl(D))-+Nu{-co}, defined by MaxCard(A)=Max({Card(a)(ccEA}), is

a (w, u)-homomorphism in (RJ u (- a), Max, +, - m, 0) (with Max(@) = - GO).

Note that here one can deal with u instead of w, since

MaxCard (A u B) = Max (Max Card (A), Max Card(B) 1 even if A n B # 0. Actually,

MaxCard is a (u, v)-homomorphism. As before, q depends linearly on the sizes of the

operators 0,, /.

With this structure and the dual one for the minimum, one can express some

J’q-complete problems (numbered as in [lS]) such as

~ Vertex cover [GTl],

~ Minimum maximal matching [GTlO],

- Clique [GT19],

72 B. Courcelle. M. Mosbah

~ Independent set [GT20],

- Induced subgraph with property rr [GT21] (for a monadic second-order property

7~) and

- Planar subgraph [GT27].

To be more precise, we obtain that the following functions are MS-evaluations:

f,(G)=Min{Card(X)IXcV,, every edge of G has at least one vertex in X}.

fr 0 (G) = Min (Card(X) 1 X E EG, no two edges have a common vertex and

every vertex of an edge not in X belongs to some edge in X}.

fi9(G)=Max {Card(X) 1 X c_ V,, every two vertices of X are adjacent).

f,,(G)=Max{Card(X)IX c V,, no two vertices of X are adjacent}.

fil (G) = Max { Card(X) 1 X 5 V,, the induced subgraph of G with a set of

vertices X satisfies z}, where 7t is any monadic second-

order graph property.

fZ7(G)=Max{Card(X)/Xc_E, such that X defines a planar subgraph of G}.

For id{ 1, lo}, the problem [GTi] consists in deciding whether J(G)< k for a given

G and k. For in{ 19,20,21,27}, the problem [GTi] consists in deciding whether

J(G) 3 k for a given G and k. One obtains linear algorithms

Bern et al. [6] show how the irredundance number of a tree can be computed in

linear time. By our technique, we can compute this number in linear time for every

graph given by a term. (A subset X of VG is redundant if there is a proper subset X’ of

X such that X’u {the set of vertices adjacent to some vertex of X’} =X u {the set of

vertices adjacent to some vertex of X}. It is maximal irredundant if it is not redundant

and if every set of vertices of the form X u {u}, where v$X, is redundant. It is clear that

an MS-formula q(X) can be constructed to express that X is maximal irredundant.

The irredundance number of G is then the minimum cardinality of a maximal

irredundant subset of VG. This number is of the form MinCard(sat(G, cp)).)

4.4 Sum of cardinalities

We also let n = 1. We consider 1 Card (A) = 2 {Card(a) I AXE A 1, so that 1 Card maps

?r(Yr(D)) into N. It is clear that

xCard(AwB)=xCard(A)+CCard(B).

The definition of 1 Card (A v B) needs the auxiliary use of Card(A) and Card(B):

xCard(A v B)=Card(B).xCard(A)+Card(A).xCard(B).

(The verification is easy.) It follows that an evaluation of the form 1 Card(sat(G, cp)) is

not an MS-evaluation, but is nevertheless H,-inductively computable, with the help of

Monadic second-order ecraluations on tree-decomposable graphs 13

the auxiliary evaluations Card(sat(G, cp)). The corresponding algorithm is again

linear with uniform cost measure.

An application of this result is the computation of the average cardinality of a set

X satisfying a formula cp in G (assuming there is at least one) defined by

Note that the cost of computing AverageCard(sat(G, cp)) is the same as that of

computing CCard(sat(G, cp)) since, for the latter, one need also to determine

Card(sat(G, cp)). Note, also, that AverageCard is HA-inductively computable without

(apparently) being an MS-evaluation.

As examples of applications, one can compute the average cardinality of a maximal

independent set of G or a maximal clique of G.

4.5. Set of cardinalities

Here, we consider Setcard({Card(a) 1 WA}. Hence, Setcard maps PPf(gr(D))+

Pp,(PV). It is a (u, v)-homomorphism (Pp,(P,,(D)), u, V_J, 8,8)-(.9,(N), u, +,

S,(O)), where for N,MsKJ, N+M={n+mln~N,rn~M}.

In a computation relative to a graph G, each attribute (see Section 3.1) is a set of

integers c_ (0, 1 , . . . , Card (DC)}. It can be represented by a Boolean vector of length at

most Card(D,). It follows that q is bounded by O(Card(D,)‘). The corresponding

algorithms are of time complexity 0(lt13), where t is the input tree.

4.6. The universal evaluation

For completeness sake, we consider now the evaluation structure 9=

(Pf(Pf(D)“), u, QJ, 8,8) and the computation of the whole set sat(G, q). We take

n= 1 in order to simplify the presentation. The attributes range over yf(yf(DG)), and

can be implemented by 2-dimensional Boolean arrays of size m x 2”, where

m=Card(D,). This gives for q an upper bound of order O(2”‘). The corresponding

algorithm is of time complexity O(2”‘).

In certain cases, the computation of sat(G, cp) is tractable and useful, as we now

explain by an example. For each graph G, let fc: DG-+DG be a partial function such

that there is an MS-formula cp(X, Y) satisfying:

(G,X, Y)(=q iff X=(x} and Y={fc(x)} for some XED~.

The computation of sat(G, cp) yields a table defining fG.

Let us say that a set of pairs A c 9”f(Dc)2 is functional if the following conditions

hold:

(i) if (c(, &A, then Card(a), Card@)< 1,

(ii) if (a, /?) and ((x, P))EA, then p=fi’.

74 E. Courcelle, M. Mosbah

It is clear that p(sat(G, cp)) (where p is defined in Section 3.2) is a set of functional sets

of pairs; hence, the data structure will have to store functional sets of pairs only if we

use the improved algorithm of Section 3.2 (see the remark made there).

Clearly, a functional set of pairs A can be represented by a vector with index set

DG u {@} and values in DGu (0, I } (where I stands for undefined; the value of x is I if

(Ix}, 8) belongs to A for no fl).

The operations A ti B and A v B can be performed in time O(Card (DG)). It follows

that sat (G, cp), i.e. the table forfc, can be computed in time 0 (1 t 12), where t defines G.

In many cases of practical interest, one need not compute the whole set sat(G, q)

but only one tuple (cur, . , a,) of it. One may require that this tuple is optimal in

a certain sense, say be such that Card(ai) is maximum or minimum (for some fixed i),

over all tuples in sat(G, cp).
We now explain how a choice function, associating such a tuple with a given graph

G, can be efficiently computed. Let G be given by a term t. At every node u oft labeled

by f; we have

W,(U)=Of.~(W~,,,(Ul), . ..?.“,,“(U> (1)

where w,(u) is the attribute occurrence evaluating to sat(val(t/u), cp) and 8,, V is

the corresponding decomposition operator, namely a (w, v)-polynomial by

Corollary 2.8.

If for each u and q, we assume w;(u) to satisfy

w;D(U)~Bf.m(W;l.I(U1),...‘W~“.“,”((U,)),

as opposed to (1). One then gets

(2)

w;(u) G sat(val(t/u), q) (3)

by bottom-up induction on u in t and by using the monotonocity of (ti, w)-

polynomials for set inclusion.

Each time we use (2), we can choose w&(u) to be a singleton; then one obtains at the

end W;(E), a singleton reduced to a tuple in sut(G, cp), as desired.

If in each case we choose

(ml, . ..>GW.,,(W~,,,h)> . ..&J%)) (4)

such that Card(ai) is maximal (or minimal) to form w;(u)= { (ai,. ., cc,,)}, then we

obtain at the end in w;(u) a tuple in sut(G, cp) with an ith component of maximal

(minimal) cardinality.

This shows that optimal sets in the sense of [6], satisfying an MS-property, can be

constructed in time 0() t 12) (and even in time 0(/t I) by the variant presented in [6],

Theorem 1).

This construction of optimal sets extends easily to the case of weighted graphs, that

we now discuss.

Monadic second-order ecaluations on tree-decomposable graphs 15

4.7. Weighted graphs

Many graph problems involve weighted graphs. Routing and network design are

examples of such problems (see [lS]). Formally, a weighted graph G is a graph

equipped with a function w: D, + R associating a weight w(x) with each edge or vertex

x. The mapping w is called a weight function. To take a few examples, a weight may be

a capacity, a distance, a cost or a probability.

We shall assume that w is a mapping from D to [w, where D is the countable set of

which all sets V, and E, are subsets. If G=Gi @G2 or G=o,(Gi), then G1 and Gz

inherit the weights of G in a natural way. In the case of G = Hi, j(G1), we shall use the

convention made just before Lemma 2.5: V, E V,, , srcG(i)=srcG, (i) and srcG, (j)$ V,

whenever SYC~, (i) # srcc, (j). It follows that all elements of D,, have their weight as in

DG, except possibly srcG(j), the weight of which may be arbitrarily chosen or taken

conventionally to be 0.

For every finite set X g D, we let

Other evaluations can be defined in terms of weights, notably

MaxWeight(A)=Max{w(X)/XEA},

MinWeight(A)=Min{w(X)IXEAj,

where AEP~(~~(D)).

These mappings are nothing but generalizations of the ones used in Case 4.3. The

relevant evaluation structures are ([w u { - x }, Max, + , - a, 0) and (Iw u { + x },

Min, +, + c~, 0), and the corresponding algorithms are linear (for uniform cost

measure). They make it possible to express the following evaluations:

1. Length of a minimal Hamiltonian circuit in a graph (where each edge has

a positive length; the length of a path is the sum of the lengths of its edges; the result is

+ a if the graph is not Hamiltonian). This makes it possible to express the traveling

salesman problem ([ND22]).

2. Length of a longest or a shortest simple path linking the first source to the

second.

Another useful evaluation structure is ([w, u { + a}, Max, Min, + cc, 0), by which

one can formalize the evaluation of the maximal capacity of a path from the first to the

second source, namely

Cap(G)=Max{Min(w(e)Ie~X}IX~sat(G, cp)},

where q(X) is the formula already used in Example 2.11. In fact, if we let, for

A c Pf(D),

MM(A)=Max{Min{w(x)Ixccc}IaEA),

16 B. Courcelle, M. Moshah

we have

and

MM(AuB)=Max(MM(A), MM(B))

MM(AwB)=Min(MM(A), MM(B)).

The following A ^P-complete problems can also be expressed:

~ Steiner tree in graphs [ND12]. (Is there a subtree T of G including all vertices of

a given set R E VG such that the sum of the weights of all edges of T is at most a given

value m?)

4.8. Evaluation fomulas

We now assume that, instead of one weight function w: D + IL!, we have n of them,

1~~: D -+ [w, not necessarily all different. We let Wi(X)=C { WI(X) 1 XEX} for X finite,

X c D.

Let cp(X1, X,) be a formula. Let G be a graph. For every (X1,. . ., Xn)~Pf(DG)n,

we let

0(X 1,Xn)=c.wl(X,)+ .” +c,w,(X,),

where ci, c, are real numbers. Hence, ~9 is a linear evaluation term in the sense of

[3]. For every set of tuples A, we let

@(A)={Q(X,,Xn)l(Xl.X.)gA}

and

@(G, cp)={QX,, . ..rXn)l(Xl.Xnksat(G. 4n))

= 0 (sat(G, 9)).

Since

@(AuB)=O(A)uO(B),

O(AVB)=O(A)+O(B):= {m+m’~m~O(A), m’&(B)},

O(8)=@, @(0)=(O),

we get that 0: (~Pf(~Pf(D)“),u,~,(D,~)~(~f(lW),u,+,~,{O}) is a (u,v)-

homomorphism.

Hence, one can compute O(G, cp) from t such that G=val(t) in time 0(2”lfl). (One

does not have here polynomial time because one must, in general, record the values of

O(A) for an exponential number of tuples of A.)
Let us now consider the special case where cl, . . . , C,E R + and wi : D + [w. We let

MaxO(A)=Max{B(cr)lccEA},

MinO(A)=Min{B(cc)/ccEA}.

Monadic second-order eaaluations on tree-decomposable graphs II

Then, we have

MaxO(AuB)=Max(MaxO(A), Max O(B)),

MinO(AuB)=Min(Min@(A), MinO(B))

and

MaxO(AuB)=MaxO(A)+MaxO(B),

MinO(AuB)=MinO(A)+MinO(B),

from which it follows that Max @(G, cp) and Min O(G, cp) are computable in time

0(Itl) if REM defines G (where F is fixed and finite). The computation of

Max O(G, cp) or Min O(G, cp) is called a linear EMS extremum problem in [3]. Hence,

we obtain another proof of the result of [3], stating that a linear EMS extremum

problem can be solved in linear time (with uniform cost measure) for graphs of

tree-width at most some fixed k (given by their tree-decompositions of width at

most k).

4.9. Ordered graphs

Let us recall that we assume that D is linearly ordered by d D. (If D is a set of

memory locations, it is linearly ordered in a natural way.) Given an MS-formula q(X)

and a graph G (with DG G D), one may consider the problem of computing the

lexicographically jrst maximal set X such that q(X) holds in G, i.e. the unique set

X g DG such that

(1) Gl= V(X)>
(2) if Y 2 X (and Y # X), then G I= 1 cp (Y) (maximality of X) and

(3) if X’ also satisfies (1) and (2), then X <,,, X’ (since X and X’ are subsets of

a totally ordered set, one can order them in increasing order and compare them by the

lexicographic order associated with < D).

Such a set X will be denoted by LFM(G, cp).

The complexity of finding lexicographically first maximal sets satisfying certain

properties has been investigated by Miyano [24]. We consider the mapping

Ifm:Bl(,Ppf(D))+P~(D)u { I} such that Ifm(A) is the lexicographically first maximal

element of A, namely,

(1) lfm(A)cr for no CI in A and

(2) Lfm(A) < rex CI for every c -maximal element !I of A.

If A =@, then Ifm(A)= I (undefined).

We have the following two facts, holding for all nonempty sets A and B in

Pf(Yp,(D)) such that A w B and A v B are defined:

Fact 4.1. Ifm(A tiB)=lfmax(lfm(A), Ifm(B)).

Fact 4.2. Ifm(AuB)=lfm(A)ulfm(B).

78 B. Courcelle, M. Mosbah

The operation lfmax is defined as follows:

lfmax(x,y)=x ifycx or y=l

=y ifxcyorx-I

= the first element of {x, y} with respect to the order Glex if

x, y are both # I and are incomparable for G.

Letting X u I = I UX = I, Facts 4.1 and 4.2 also hold when A or B (or both)

are empty. Note that Ifm({ 0})=0. H ence, Ifm is a (w, w))-homomorphism

(.Yr(gr(DY), ti, u,O,O>-(~f(D)u{l},Ifmax,u, L0>.
It follows that, for every monadic second-order formula cp (X), the evaluation LFM

is inductively computable. Each attribute has a value G DG (or I) which can be

represented by a Boolean vector of length Card(DG). The basic operations can be

performed in time 0 (Card(DG)). Hence, one obtains a global time complexity 0 (I t* I).

4.10. A deterministic choice function

By using a linear ordering GD on D, we now construct a choice function

Ch,:8,(~f(D)“)-+9f(D)“u{ I>, that is a (u, u)-homomorphism from 5’ into an

appropriate evaluation structure.

From < D we deduce an ordering of Ppf(D), denoted by eD, such that

M <Dr’ iff Card(a)<Card(a’)

or

Card(cc)=Card(cc’) and g <iex~‘,

where d,,, is as in Section 4.9. We let then, for A c Yp,(D),

prem(A)= the unique 4.-minimal element of A

= l_ (undefined) if A = 8.

We have

prem(AuB)=prem(A)uprem(B)

(with srul=lucc=l for all a~Y~(D)u(l}) and

prem(AuB)=p(prem(A), prem(B)),

where

p(l, a)=p(x, I)=&

p(cr, fi)=prem({x, P}) if 3, P f 1.

This function is the desired choice function for n= 1. For n> 1, we let

Ch,(A)= I if A=0

Monadic second-order ecaluations on tree-decomposable graphs 79

where

cc,=prem({cc/(a, P2,!&@A for some P2,/&I)

and

(~~,...,CI,)=C~,-~(((P~,...,B~)I(C(~,/~~,...,P~)EA)).

It is easy to establish that

Ch,(AuB)=c,(Ch,(A), C%(B)),

where c,(-L, c()=c,,(r, I)=@ and c,(tl, fl)=Ch,,({cc, fi}) if r, p # 1.

We also have

Ch,(AuB)=Ch,(A)uCh,(B)

=(%uPI,...,&uPn),

where Ch,(A)=(cc,, CY,) and Ch,(B)=(/?,, /I,,).

It follows that Ch,(sat(G, cp)) can be computed in time 0(I t I*), where t defines G.

4.1 I. The evaluation of dejnable graph transductions

A graph transduction is a multivalued mapping from L to L’, where L and L’ are two

sets of graphs. Courcelle has shown in [15, 161 that MS-formulas can be used to

specify such transductions, called monadic second-order dejinable graph transductions.

There are numerous examples of interesting transductions: the mapping val from

a tree t in M(H,) to the graphs denoted by t, and the “parsing” mapping, that

associates with a graph G its derivation trees relative to a fixed “regular” hyperedge

replacement grammar (as defined in [15-J). See [161 for other examples and a survey of

MS-definable transductions.

We now recall the definition. It is simpler to formulate it in terms of logical

structures. Let R be a finite ranked set of relation symbols. The rank of a symbol r in

R is denoted by p(r). An R-(relational) structure is a tuple S = (Ds, (rs)rER), where Ds

is a finite set, called the domain of S, and rs is a subset of Dg”’ for each r in R. We

denote by Y(R) the class of R-structures. Let W be a set of set variables, called here

the set of parameters. (It is not a loss of generality to assume that all parameters are set

variables.) We denote by Y(R, W) the set of all MS-formulas that have their free

variables in W.

Let R and R’ be two ranked sets of relation symbols. An (R’, R)-dejnition scheme is

a tuple of formulas of the form

d =(4& $1,$!X. (&)wER’*k)>

where

k>O, R’*k:= {(r,j)lr~R’,j~[k]P”‘),

cp~y(R> W),

80 B. Courcelle. M. Mosbah

$iEsptR, w” {x1 }I for i = 1, , k,

B,E_Y(R, WU{X~,...,X~~~~}) for w=(r,j)ER’*k.

Let SEY(R) and let ?/ be a W-assignment in S. An R’-structure S’ with domain

Dsz G Ds x [k] is dejined by A in (S, y) if

(S, ?)I= cp>

&,={(d, i)ldEDs, iECk1, (&Y, d)l= tii},

for each r in R’

rs,=(((d,, iI),..., (d,,i,))l(S,y,d,,...,d,)I=8,,,j,},

wherej=(i,,...,i,) and t=p(r).

Note that S’ is associated in a unique way with S, y and A if it is defined, i.e. if

(S, y) i= cp. Hence, we can use the functional notation

S’=def,(S, y).

The transduction defined by A is the relation def,:= {(S, S’) I S’ =def,(S, y) for

some W-assignment 1/, in S} & Y(R) x 9’(R’). A transduction fs Y(R) x 9 (R’) is

dejinable if it is equal to def, for some (R’, R)-definition scheme A. In the case where

W=@ we say that fis definable without parameters (it is functional).

A binary relation on graphs f~ G,(A) x G,(A) is a dejinable transduction iff the

relation on structures {(I Cl, I G’I)I(G, G’)E~} is definable (by some definition scheme

A of appropriate type).

Proposition 4.1. Let f c G,(A) x G,,,(A) be a definable transduction, and F be a jinite

subset of HA. If t in M(F) denotes GE G, (A), then one can do the following in polynomial

time:
(1) decide whether f(G) = 8;

(2) iff(G) # 0, construct a graph G’ in f(G).

Proof. (1) It follows from [14] that one can decide in polynomial time whether

G I= 3 Y1 , . . . , Y,,,cp. (We let Y, , .., Y, be the parameters.)

(2) If G + 3 Yi, .., Y,,, cp, then one can construct in polynomial time a sequence

of sets (Yi,..., Yb) satisfying cp. From these sets, the object structure

def,(IGI,,(Y;,..., YM)) can be constructed in polynomial time by the results of the

preceding sections. El

5. Hyperedge replacement graph grammars and compatible functions

In the present section, we compare our results with those of [20].

Let I- be a hyperedge replacement grammar, and f be a function from graphs to

values. This function is r-compatible [20] if there exists a finite sequence of functions

Monadic second-order evaluations on tree-decomposable graphs 81

fo=“u1>fn such that, for every i and for every G, if G is obtained by a derivation

sequence

where H has nonterminals ui , , u,, then

.L=h(h,(Gj;),fj.,,(Gjk)),

where Ui:rrGi and G=H[Gl/u, , . . . , G,/u,] (and h is a fixed mapping associated

with H).

In our words, this means that f is inductively computable with respect to the

graph operations associated with the right-hand sides of the grammar. (In the

above definition, the graph operation associated with H maps (G,, G,) to

H [G, /ul, . , Cm/u,], the result of the simultaneous substitution of Gi for each ui in

H. See [S, 131 for more details.)

It follows that every inductively computable evaluation and, in particular, every

MS-evaluation is r-compatible for every hyperedge replacement grammar r.

The following compatible functions are considered in [20]:
_ number of nodes and number of hyperedges,
_ number of simple paths from one source to another,

- maximal and minimal length of a simple path,
_ number of simple cycles,

~ maximal and minimal length of a simple cycle and
_ maximal and minimal degree.

All these functions are MS-evaluations as we have seen above (the case of cycles is an

easy extension of that of paths).

Iffis an evaluation, from graphs to integers, then one can consider the following

“boundedness” decision problems, where ~EFV and r is a hyperedge replacement

grammar, both given as inputs:

(1) Does there exist GEL(T) such that f(G)<n (or >n or = n)? More difficult

seems to be:

(2) Does there exist m such thatf(G)dm for all GEL(T)?

It is proved in [20] that problems of form 1 are decidable for evaluations such that

all the decomposition operators can be written with +, x , max, min, and that

problems of form 2 are decidable too for those using only +, x , max.

It follows that problems of forms 1 and 2 are decidable for evaluations of the forms

Card(sat(., q)), Max Card(sat(., q)) and C Card(sat(., cp)), and that problems of

form 1 are also solvable for those of the form Min Card(sar(., cp)), where, of course,

cp is an MS-formula.

Acknowledgment

We thank H.J. Kreowski, S. Miyano and T. Nishizeki for helpful remarks and

suggestions on the topics of this paper.

82

References

B. Courcelle, M. Mosbah

Cl1

PI

c31

c41

c51

[61

171

PI

[91
Cl01

1111

[121

El31

1141

[I51

[I61

1171

Cl81

[I91

1201

PII

1221
1231

1241

~251

WI

1271

WI

S. Amborg, D.G. Corneil and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM

J. Algebraic Discrete Methods 8 (1987) 277-287.

S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese, An algebraic theory of graph reduction,

Report 90-92, Bordeaux-l University, 1990. Short version in Lecture Notes in Computer Science,

Vol. 532 (Springer, Berlin, 1991) 70-83.

S. Arnborg. J. Lagergren and D. Seese, Easy problems for tree decomposable graphs, J. Algorithms 12

(1991) 308-340.

S. Arnborg and A. Proskurowski, Characterization and recognition of partial 3-trees, SIAM J.

Algebraic Discrete Methods 7 (1986) 305-3 14.

M. Bauderon and B. Courcelle, Graph rewriting and graph expressions, Math. Systems Theory 20

(1987) 83-127.

J.A. Bern, E. Lawler and A. Wong, Linear time computation of optimal subgraphs of decomposable

graphs, J. Algorithms 8 (1987) 216-235.

H.L. Bodlaender, Dynamic programming algorithms on graphs with bounded tree-width, in: Proc.

15th ICALP, Lecture Notes in Computer Science, Vol. 317 (Springer, Berlin, 1988) 223-232.
H.L. Bodlaender, Improved self-reduction algorithms for graphs with bounded tree-width, Tech.

Report RUU-CS-88-29, University of Utrecht, 1988.

H.L. Bodlaender, Complexity of path forming games, RUU-CS-89-29, Utrecht University, 1989.
H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial

k-trees, J. Algorithms 11 (1990) 631-643.

H.L. Bodlaender and T. Kloks, Better algorithms for path-width and tree-width of graphs, in: SCALP

‘91, Lecture Notes in Computer Science, Vol. 510 (Springer, Berlin, 1991).

R.B. Borie, R.G. Parker and C.A. Tovey, Automatic generation of linear algorithms from predicate
calculus descriptions of problems on recursively constructed graph families, Algorithmica, to appear.

B. Courcelle, Graph rewriting: an algebraic and logic approach, in: J. van Leeuwen, ed., Handbook of

Computer Science, Vol. B (Elsevier, Amsterdam, 1990) 193-242.

B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of finite graphs, Inform.

and Comput. 85 (1990) 12-75.

B. Courcelle, The monadic second-order logic of graphs V: on closing the gap between definability

and recognizability, Theoret. Comput. Sci. 80 (1991) 53-202.

B. Courcelle, Monadic second-order definable transductions, in: CAAP ‘92, Rennes, February 24-28,

Lecture Notes in Computer Science, to appear, 1992.

P. Deransart, M. Jourdan and B. Lorho, Attribute grammars, Lecture Notes in Computer Science,

Vol. 323 (Springer. Berlin, 1988).

M.R. Garey and D.S. Johnson, Computers and Intractability (W.H. Freeman and Company, San

Francisco, 1979).

A. Habel, Hyperedge replacement: grammars and languages, Ph.D. Thesis, University of Bremen, 1989.

A. Habel, H.J. Kreowski and W. Vogler, Decidable boundness problems for hyperedge replacement

graph grammars, Lecture Notes in Computer Science, Vol. 351 (Springer, Berlin, 1989) 275-289.

W. Hohberg and R. Reischuk, A framework to algorithms for optimization problems on graphs,

Technical Report, Technische Hochschule Darmstadt, Germany, 1990.

D.S. Johnson, The NP-completeness column: an ongoing guide (16th), J. Algorithms 6 (1985) 4344451.

J. Lagergren, Efficient parallel algorithms for tree-decomposition and related problems, in: Proc.

IEEE Sqjmp. on FOCS (1990) 1733182.
S. Miyano, The lexicographically first maximal subgraph problems: P-completeness and NC algo-

rithms, Math. Systems Theory 22 (1989) 47-73.

K. Takamizawa, T. Nishizeki and N. Saito, Linear-time computability of combinatorial problems on

series-parallel graphs, J. Assoc. Comput. Mach. 29 (1982) 623-641.

J.W. Thatcher and J.B. Wright, Generalized finite automata theory with an application to a decision

problem in second-order logic, Math. Systems Theory 2 (1968) 57-81.

J. Valdes, E. Lawler and R. Tarjan, The recognition of seriessparallel digraphs, SIAM J. Comput. 11

(1982) 2899313.

T. Wimer, Linear algorithms on k-terminal graphs. Ph.D. Thesis, Clemson University, 1987.

