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Abstract

Graphs are finite and handled as relational structures. We give some answers to the following
general questions: (1) For which classes of graphs € is it possible to specify a linear ordering of
the set of vertices of each graph of € by fixed monadic second-order formulas? (2) For which
classes of graphs € does there exist an extension & of monadic second-order logic such that
a subclass L of € is recognizable if and only if it is the class of graphs in @ that satisfy a formula
of £ (In this paper, recognizability is understood in an algebraic sense, relative to a finite set of
graph operations and basic graphs that generate all graphs of €.) (3) For which classes of
graphs € is it possible to consttuct, in every graph of the class, and by fixed formulas of
a suitable extension of monadic second-order logic, its hierarchichal structure, i.c., a finite term
written with the operations and basic graphs of (2), that defines the considered graph?
Applications concern dependency graphs of partially commutative words, partial k-paths.
cographs, and graphs, the modular decomposition of which uses prime graphs of bounded size.
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0. Introduction

This article continues the investigation of Monadic Second-Order Logic as a logical
language able to express formally graph properties and graph transformations.

The logical definability of linear orders on finite structures has been considered
recently in Hella et al. [17]. Their motivation is to obtain logical characterizations of
complexity classes. In particular. a class of linearly ordered structures is in the
complexity class PTIME if and only if it is characterized by a formula in a certain
extension of first-order logic with fixed point operators. 1t is still open to obtain
a similar characterization of polynomial-time classes of finite unordered structures.
On the other hand, the class NP and the other classes of the polynomial hierarchy
have logical characterizations in terms of second-order logic, without needing to
assume a linear ordering of the structures. It is actually straightforward to specify
a linear ordering if quantifications on binary relations are allowed. Hence, the
definability of linear orders in finite structures has a certain importance. We shall
consider the following question:

Question 1 (Courcelle [10]). For which classes of finite graphs it is possible to specify a
linear ordering of the set of vertices of each graph of € by fixed monadic second-order
Sformulas?

This is not possible for all finite graphs: take the discrete (edgeless) graphs; they
have nontrivial automorphisms, so no linear order can be defined. Even if we choose
in a given discrete graph k sets of vertices (by means of k set variables that we shall call
“parameters”), we cannot define a linear order if it is “too large” because discrete
graphs with at least 2* + 1 vertices have nontrivial automorphisms preserving these
k subsets. This explains why the discrete graphs cannot all be linearly ordered by
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a unique MS-formula (MS will abbreviate “Monadic Second-order”), even with
parameters denoting sets of vertices. Hence, we can only hope to order linearly the
graphs of specific classes. In [9] we considered the similar question of specifying by
MS-formulas an orientation of the edges of an undirected graph.

Our motivations for investigating the MS-definability of linear orders are different
from those of [17]. In addition to the intrinsic interest of Question 1, understanding
the relationships between recognizability and MS-definability is our main motivation.
The notion of a recognizable set of graphs has been introduced in [6]. It is based on
graph congruences with finitely many classes and is relative to operations on graphs
that, typically, glue two graphs together or extend in some way a given graph. It is
known from Biichi and Doner (see [24]) that a set of words (or of binary trees) is
recognizable if and only if it is MS-definable. For trees of unbounded degree, a result
of this form is proved in [6] where definability is relative to an extension of MS-logic
called Counting Monadic Second-order logic (CMS i short). Its formulas are written
with special “counting modulo ¢~ existential first-order quantifiers: 3™4x ¢(x) means
that the number of clements x that satisfy ¢ is a multiple of g. We ask the following
general question, already considered in [7,9, 18,25]:

Question 2. For which classes of finite graphs € does there exist an extension £ of
monadic second-order logic such that, for every I. = €, L is recognizable if and only if it
is £L-definable?

In [7] we proved that CMS is the appropriate extension for the class of graphs of
tree-width at most 2.

We now explain the links between Questions 1 and 2. Let € be a class of graphs, let
& be the set of graph operations on € involved in the intended notion of recogniz-
ability, let us also assume that every graph in % is the value of an & -expression, i.e., of
a finite term over #. (The set & is in some sense a parameter: different sets % may
yield different notions of recognizability.) Assume we have a language £ (say an
extension of MS like CMS), for which we know that, if a subset of € is £-definable,
then it is recognizable. Assume finally that for every graph G in % we can construct “in
G an & -expression that defines this graph. Then, if L is a recognizable subset of €,
there exists a finite tree-automaton recognizing the set of & -expressions, the value of
which is in L. Given a graph G we can express that G € L by means of a formula in
£ that works as follows:

(1) It defines in G an # -expression, the value of which is G.

{2) Tt checks whether the automaton accepts this expression:
the graph G is in L if and only if the automaton accepts the expression, if and only if
the MS-formula holds.

So the logical language % must not be too powerful (we want that every £-definable
class of graphs be recognizable) but it must be powerful enough to do two things:

(1) to “parse” the graph (i.e., to define an & -expression for it) and

(2) to simulate the behavior of a finite automaton on the obtained . -expression.
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In some cases, a linear ordering of the given graph helps to parse it by MS-formulas:
this is the link between Questions | and 2. We now list the results of the paper.

Section 1 reviews definitions. In Section 2, we show how to define topological
sortings of dags (directed acyclic graphs) by MS-formulas. Two constructions are
given. The second one is less general but gives a topological sorting characterized as
the minimal one with respect to a certain lexicographical order. As a consequence, we
can construct by MS-formulas a path-decomposition of any k-connected partial
k-path. This is a further step towards the proof of the conjecture made in [7] that one
can construct by MS-formulas a tree-decomposition of any partial k-tree (and thus
answer to Question 2 for partial k-trees by showing that CMS-definability is equiva-
lent to recognizability).

Section 3 gives a new proof of results by Ochmanski [19] and Thomas [25]
concerning recognizable sets of traces and their dependency graphs. Section 4 shows
that every graph property that is expressible in MS-logic with the help of an auxiliary
“invariant” linear order on the vertices is recognizable. All properties expressible in
CMS-logic are of this form: a linear ordering is helpful to express that a set X has an
even number of elements, because one can divide X into two parts, the elements of
even rank and those of odd rank, where ranks are relative to this linear order; X has
even cardinality if and only if the last element has even rank; the answer, namely the
parity of the cardinality of X, does not depend on the chosen ordering of the vertices
although it is expressed logically in terms of this order: this is what the term
“invariant” means. This extension of MS-logic that we denote by MS(<) is our most
expressive candidate for logical characterizations of recognizable sets of graphs. For
trees, recognizability, CMS-definability and MS(<)-definability are equivalent no-
tions, all strictly larger than MS-definability.

In Section 5, we show that with the help of such an auxiliary “invariant™ ordering,
we can reconstruct the “internal structure” of a tree from its leaves and from a ternary
relation on leaves that “projects” the internal structure. We can do the same recon-
struction without any linear order for the class of trees having a degree bounded by any
fixed constant. In Section 6, we apply this to prove that the unique modular decomposi-
tion of any graph can be defined by MS(<)-formulas (i.e., MS-formulas using an
auxiliary invariant linear order). We obtain logical characterizations of recognizable
sets of cographs and of graphs having modular decompositions with prime graphs of
bounded size. Section 7 is a review of results and open questions.

1. Basic definitions

1.1. Graphs

All graphs will be finite, directed, simple (no two edges have the same ordered pair
of vertices). A graph will be given as a pair G = (V;,edgs> where Vg is the set of
vertices and edgg; © Vi x Vi, is the edge relation. Undirected graphs will be defined as
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(directed) graphs with a symmetric edge relation. We shall assume that Vg is always
a subset of a fixed countable “universal set of vertices” that we need not specify. It
follows that all graphs form a set. (A “class” or a “family” of graphs will always be a set
in the sense of set theory.) If X = V; we denote by G[ X] the induced subgraph of
G with set of vertices X. A path is a sequence of pairwise distinct vertices (x4, ..., X,)
such that (x;, x; ) € edgg for every i = 1,...,n — L. It connects x, to x,. It is empty if
n=1. A cycle is like a path except that x; = x,, and n > 1. A graph is a path if its
vertices form a path (xy, ..., x,) and all edges of the graph are in the path, ic., are of
the form (x;, x; ) for some i. A discrete graph is a graph without edges.

We let Sucg(x):= {y|(x,y)is an edge} and we call it the set of successors of x. The
relation edg will also be called the successor relation. We say that x is a predecessor of
y if y is a successor of x. The outdegree of G is the maximal cardinality of the sets
Sucg(x). A graph without cycles is called a dag (directed acyclic graph); a tree is a dag
such that every vertex is reachable by a unique path from a (necessarily unique) vertex
called the root. A forest is a dag, each connected component of which is a tree; hence,
a forest that is not a tree has several roots. A vertex without successors is called a leaf.
The transitive closure of a graph G is a graph denoted by G*.

If G is a dag, the relation edg? (the reflexive and transitive closure of the successor
relation) is a partial order on V;. Two vertices x and y are comparable if x edgé y or
yedgé x; otherwise they are incomparable and we write this as x L ; y. The reduction of
a dag G is the least subgraph H of G such that H* = G™. It is unique and denoted by
red(GY); it is the Hasse diagram of the partial order edgé. A topological sorting of a dag
Gisalinear order < on its set of vertices vertices such that x < y for every edge (x, y)
of G. We say that a graph G is linear if it is a dag and any two vertices are linked by an
edge (equivalently, G is an acyclic tournament); its reduction is a path and the order
edg is linear.

1.2. Relational structures and monadic second-order logic

Let R be a finite set of relation symbols where each element r in R has rank p(r) in
N ., which will be the arity of relations denoted by r. An R-(relational) structure is
a tuple § = (Ds, (rs),.ry Where Dy is a finite (possibly empty) set (also a subset of the
“universal set of vertices”), called the domain of S, and rg is a subset of D4® for each
r in R. We shall denote by & (R) the set of R-structures.

The formulas of monadic second-order logic, intended to describe properties of
R-structures S, are written with lowercase symbols x, x', y, ... called object variables,
ranging over elements of Dg, and uppercase symbols X, Y, Y’, ... called set variables,
ranging over subsets of Dg. The atomic formulas are of the forms x = y, x € X, and
r(xy,...,X,), where ris in R and n = p(r), and formulas are formed with propositional
connectives and quantifications over the two kinds of variables. For every finite
set W of object and set variables, we denote by Z(R, W) the set of all formulas that
are written with relational symbols from R and have their free variables in W;
we also let Z(R):= #(R,0) denote the set of closed formulas. A formula is
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first-order if it has no set quantification (it may have set variables). Counting monadic
second-order logic is the extension of monadic second-order logic with the counting
modulo q existential first-order quantifiers such that 3™%4x ¢(x) means that the
number of elements x that satisfy ¢ is a multiple of g. We shall use MS for “monadic
second-order” and CMS for “counting monadic second-order”.

Let S be an R-structure, let ¢ € £ (R, W), and let y be a W-assignment in S (i.e., y(X)
is a subset of Dg for every set variable X in W, and y(x) € D for every object variable
x in W). We write (S, 7) k= ¢ if and only if ¢ holds in S for y. We write S = ¢ in the case
where ¢ has no free variable. A set of R-structures L is MS-definable if there is
a formula ¢ in #(R) such that L is the set all R-structures S such that S ¢; it is
closed under isomorphism.

A graph is thus an {edg}-structure G = (V;,edg;)> where edg is binary. We shall
say that a property P of the graphs G of a class % is MS-expressible if there is an
MS-formula ¢ such that, for every G in %, the property P(G) holds if and only if
GE= @. Any two isomorphic graphs satisfy the same MS-expressible properties.
Similarly, we shall consider CMS-expressible properties.

In other articles [6-10], we considered MS- and CMS-formulas where set variables
can also denote sets of edges. These extended languages are denoted by MS, and
CMS,, respectively. They are still monadic second-order languages, but relative to
a different representation of graphs by relational structures: the edges become ele-
ments of the domains and appropriate relations express incidence. The language MS,
1s in general strictly more expressive than MS, but for particular types of graphs like
those of degree bounded by a fixed constant, they are equally powerful (see [10]).
Since we shall not write explicit MS,- and CMS,-formulas we need not define
formally these languages.

1.3. Definable transductions of structures

The notion of (monadic second-order) definable transduction of structures is surveyed
in [11]. Let R and Q be two finite ranked sets of relation symbols. Let W be a finite set
of set variables, called the set of parameters. A (Q, R)-definition scheme is a tuple of
formulas of the form

4= ((pv l/’lv "'7‘//k1(6w)weQ"k)ﬂ

where
k>0, Q*:={(¢./)lqeQ.je k],
pe LR W),

Ve ZRWU {x,}) fori=1,...k,
O L(RW U {x1,....X,}) forw=1(q.j)€ Q%

(We denote by [k] the integer interval {1,...,k}.) These formulas are intended to
define a structure T is & (Q) from the structure S in &(R) and will be used in the
following way: T is well-defined only if ¢ holds true in S; assuming this condition is
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fulfilled, the domain of T is the disjoint union of the sets D, ..., D, where D; is the set of

elements in the domain of S that satisfy y;; finally, the formulas 8, for w = (q, ),

je[k]P9, define the relation gr. Here are the formal definitions. Let S € #(R), let 7 be

a W-assignment in S. A Q-structure 7" with domain Dy < Dy x [k] is defined in(S,7) by 4 if:
1) S E e,

(i) Dy = {(d.i)|d e Dy, i € [K], (S,7.d) = Wi

(i) for each g in Q: q7 = {({d,i1), ....(d,, i,)) € D%|(S.7.d;,....d) = 0, |, where
j={i1,...,i) and t = p(q).

(By (S,7.dy,....d) = 0y ;), we mean (S,7')E= 0, ;). where ' is the assignment
extending 7, such that 7'(x;) = d; for all i = 1,...,t; a similar convention is used for
(S,v,d)= ;) Since T is associated in a unique way with S,y and A whenever it is
defined, we can use the functional notation def (S. y) for T. The transduction defined by
A is the relation

def,:= {(S’, 7")|§' is isomorphic to S, 7" is isomorphic to 7,
T = def (S, y) for some W-assignment y in S} = S (R) x £(Q).

A transduction f< & (R)x F(Q) is definable if it is equal to def, for some (Q, R)-
definition scheme 4.

We shall use the facts concerning definable transductions that are collected in the
following proposition [7, Proposition 2.5; 11, Proposition 3.2]:

Proposition 1.1. (1) The inverse image of an MS-definable set of structures under
a definable transduction is an MS-definable set of structures.

(2) The inverse image of a C MS-definable set of structures under a definable transduc-
tion is a CMS-definable set of structures.

(3) The composition of two definable transductions is a definable transduction.

The proof is based on the immediate observation that if § = def (7. y), then an
MS-property P of S can be expressed as an MS-property P’ of (T, ), where the
translation of an MS-formula expressing P into an MS-formula expressing P’ is
effective and depends only on 4. (See [11, Proposition 3.2] for a formal statement.)

1.4. Recognizable sets

Let & be a possibly infinite set of sorts. An &-signature is a set F such that each
(function symbol) fin F has a type of the form s, x5, x --- x5, > s where s, ..., 5,,$
are sorts. An F-magma (usually called an F-algebra) is an object M = ((M,)sce,
(fu)sery, where, for each s in &, M, is a set called the domain of sort s of M, and for
each fe F of type s;Xs;x - x5,— 5. fyy is a total mapping: M, X M, x---x
M, - M,

We denote by T(F) the F-magma of finite terms over F and by hy, the unique
homomorphism: T(F) — M that associates with a term its value. We shall say that ¢ is
a term denoting hy(1).
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We now review the notion of a recognizable set. Let F and & be as above. An
F-magma A is locally finite if each domain A, s € &, is finite. Let M be an F-magma
and s € &. A subset B of M, is recognizable if there exists a locally finite F-magma A4,
a homomorphism h: M — A, and a (finite) subset C of 4, such that B=h (C). In
order to specify the relevant set of operations or the relevant magma, we shall also say
that B is F-recognizable or M-recognizable.

Proposition 1.2. Let M and N be two F-magmas, let h be a homomorphism of N onto M:
a subset L of M, is F-recognizable if and only if the subset h™'(L) of N, is F-
recognizable. In particular, if N is T(F), F is finite and every element of M is the value of
some term in T(F), then L is F-recognizable if and only if h~ 1 (L) is a recognizable set of
terms.

Since recognizable sets of terms can be effectively handled by means of tree-
automata (see the monograph [16]), this proposition gives an effective way to describe
and manipulate recognizable sets.

Proposition 1.3. Let M be an F-magma. Let N be a G-magma, the domains of
which are domains of M and the operations of which are defined by finite combinations
of operations of M. If a subset of a domain of N is F-recognizable then it is
G-recognizable.

Proof. An immediate consequence of the definitions since a homomorphism: M — 4
yields a homomorphism: N —» 4’ where A’ is a G-magma with the same domains
as A. O

1.5. Graph operations

The notion of a recognizable set of graphs results immediately from the definition of
a signature F of graph operations, making the set of graphs into an F-magma. We
shall use operations concerning graphs with distinguished vertices called sources. We
shall use N as set of source labels. A graph with sources is a pair H = {G, s) consisting
of a graph G and a total one-to-one mapping s:C — V; called its source mapping,
where C 1s a finite subset of N. We say that s(C) < Vj is the set of sources of H and that
s(c) is its c-source where ¢ € C. We shall also say that the vertex s(c) has source label c.
A vertex that is not a source is an internal vertex. The set C is called the type of H and
is denoted by 7(H). We shall denote by G the set of all graphs of type C. We shall
denote by G the set of abstract graphs of type C, i.e., of isomorphism classes of graphs
in &c. The graphs in G will be called concrete for emphasizing the distinction with
abstract ones. We shall use the set & of finite subsets of N as a set of sorts. We now
define some operations on concrete and abstract graphs with sources. These opera-
tions will form an %-signature.
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1. Parallel composition: If K € G¢ and K’ € G, the parallel composition of K and
K’, denoted by K ||¢c ¢ K', is defined if and only if:

(1) For every c € C n C’ the c-source of K is equal to the ¢-source of K.

(2) Every vertex in Vg N Vg is of this form for some ¢ in C n C".

If these conditions hold, then K | ¢ K’ is the graph H in G¢ ¢ such that
V; = Vi U Vi, edgy = edgy U edgy, the c-source of K is the c-source of H for every
cin C, and the c-source of K' is the ¢-source of H for every ¢ in C'. Note that an edge
(x,y) belongs to K and to K’ if x and y are sources in these two graphs with same
labels. It yields a unique edge of H and not a pair of parallel edges. (We only consider
simple graphs.)

If GeG¢ and G’ € G, their parallel composition H = G |c.c G’ (in Ge ) 18
defined as the isomorphism class of K ||¢.¢- K’ for suitable graphs K and K’ respective-
ly isomorphic to G and G’. It is well-defined since graph isomorphism is a congruence
for parallel composition of concrete graphs.

For concrete as well as for abstract graphs G and G’, we shall use the overloaded
notation G || G’ when C and C’ are known from the context or are irrelevant.

2. Source renaming: For every one-to-one mapping h:C— C’, we let
ren,: G — G¢ be the total mapping such that rem,({G.s)) = {G,s<h). In other
words, the c-source of ren,({G,s)) is defined as the h(c)-source of G. If c € C" — h(C)
the c-source of {G,s> is an internal vertex in renm,(<G,s>). We shall say that
ren,(<G,s)>) is the source renaming of {G,s)> defined by h. Since the mapping ren,
commutes with graph isomorphisms, we have a total mapping ren,: G¢ — G¢. If his
the identity mapping: C — C u P, where C n P = ), we shall denote ren,, by fg,: we
say that fg, “forgets” the p-sources for p in P.

A set of abstract graphs is recognizable if it is with respect to the operations
he.cr»rem,. A subset of G¢ is recognizable if the set of isomorphism classes of its
members is recognizable.

The notion of recognizability is thus associated with certain graph operations. It is
robust in the sense that small variations on the definitions of the operations do not
modify it (this is shown in [12]). However, in Section 6, we shall introduce completely
different graph operations, based on substitutions of graphs for vertices in graphs,
yielding a different notion of recognizability.

It is proved by Courcelle [6] that every CMS-definable set of graphs is recogniz-
able. Obtaining logical characterizations of recognizability has been considered in [7]
and is also one of the motivations of the present article.

2. Monadic second-order definitions of linear orders

Certain graphs are linearly ordered in a natural way: so are typically the paths
and the acyclic tournaments. Others are not, for instance the discrete (edgeless)
graphs. Is it possible to specify a linear order on every graph by fixed MS-formulas?
The answer is “no” and the counterexample is given by the discrete graphs.
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We shall thus ask for which classes of graphs this is possible. Here is a precise
definition.

Let & be a class of R-structures (that may represent the graphs of a fixed class). We
say that a linear order on the structures of & is MS-definable if there exist two
MS-formulas (X4, ..., X,) and 6(x, y, X,, ..., X,) such that for every § in &

) SEIX,. ... X, 0.

(2) Forallsets D,....,D, = D, if (S, Dy, ..., D,) = ¢ the binary relation P such that

(u,v)e P = (S,u,v,D,,...,D,)=0

1s a linear order on Dy.

Note that the linear order is defined “uniformly”, by the same formulas for all
structures of the class, and in terms of parameters D,,...,D,. In other words, there
exists a definable transduction mapping any structure S in & into a structure S’
consisting of S equipped with a linear order of its domain (this linear order will be
denoted by a new binary relation symbol, usually <). This does not mean that every
linear order on the domain of § is obtained in this way, by some choice of sets
D,.....D,.

In this section, we shall give two constructions of linear orders on dags, both of
them being MS-definable. The first one concerns dags for which one already knows
a linear ordering of the set of successors of each vertex. From these “local orderings”
we shall construct, using depth-first search, a certain topological sorting of the given
dag. The second one concerns dags with bounded antichains and constructs topologi-
cal sortings that are, in a certain sense, lexicographically minimal.

2.1. Locally ordered dags

A vertex of a dag G having no predecessor is called a root and Root; denotes the set
of roots of G. (Since graphs are finite, if a dag G is nonempty, then Root, is nonempty.)
A partial order % on Vg locally orders G if the sets Rootg and Sucg(x) for every x € Vg
are linearly ordered by «; we let Paths(G) denote the set of paths in G starting from
a root; Paths(G) is linearly ordered by <, where <, is the lexicographical order of
sequences of vertices associated with x. For each x € V;;, we let n(x) denote the unique

<, minimal path from a root to x. For x,ye Vg, we let x <,y if and only if
m(x) <, n(y). Hence, <, is a linear order on V;. The enumeration of V;; in increasing
order with respect to <, is called the x-depth-first traversal of G. 1t is nothing but the
order in which the vertices of G are visited during the depth-first search of G obtained
from the following rules:

(1) Start at the x-smallest root,

(2) Whenever the current vertex has unvisited vertices, visit next the x-smallest one,

(3) Whenever the current vertex is a root, all successors of which have been visited,
visit next the x-smallest unvisited root; if there is no unvisited root, then the search is
finished.
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We let P be the binary relation on V; such that
(x,y) € P < x is just before y on the path n(y).

The graph F(G,a):= (Vg P> is the x-depth-first spanning forest. See [2] for
details. In particular, since G is a dag, an edge (x,y) of G can be only of 3 types, by
[2, Lemma 5.6]:

(1) either it is a tree edge, 1., an edge of F(G, ),

(2) oritisa forward edge, i.e., x is an ancestor of y in some tree of F(G, «), but (x, y)
is not an edge of F(G, o),

(3) or it is a cross edge, i¢., x and y are incomparable in F(G,2) and y <, x.

Finally, we define the a-canonical traversal of G as the x-depth-first traversal of
F(G,x ') where » ! is the opposite order of « (i.c., (x, y) € «~ ' if and only if (y, x) € ®).
It orders G locally if and only if « does.

Theorem 2.1. Let G be a dag locally ordered by a. The a-canonical traversal of G is
a topological sorting that is MS-definable in {V;,edgg, ).

Proof. Consider any edge (x,y) of G. If it is a tree edge or a forward edge (in
F(G,x™')), then x is before y in the x-depth-first traversal of F(G,« '). Otherwise it is
a cross-edge, hence x > -1y, and x <,y where < is defined in terms of the paths in
F(G,2™'); hence, x is before y in the x-depth-first traversal of F(G,«~ ). Hence this
traversal is a topological sorting of G. We now formalize its definition in MS.

Claim. If G is a forest locally ordered by = then its a-depth-first traversal is MS-
definable.

Proof. The relation x <,y defined by n(x) <,7n(y) can be written as follows (where
xedgg y 1s another notation for (x, y) € edgg): x <,y if and only if
(1) either x'edgg x, y" edg¥ v for some roots x" and y’ such that (x",y') €=, x" # ¥/,
(2) or xedgf y,
(3) or zedng edgé x and zedg; y" edg¥ v for some z,x" and y” such that x” # y"
and (x",y") e
This can be written in MS-logic. [

It is thus enough to show that F(G,« ') is MS-definable in {Vg, edgg, x>, because
having defined this forest (namely, its edges), we can MS-define its a-depth-first
traversal by the claim. We shall do the proof for F(G,«) in order to simplify the
notation. The result will follow since «~! is definable from « We shall basically
translate into MS-formulas the various notions involved in the definition of F(G, ).
The reduction red(H) of any dag H is the graph K with the same vertices as H and
edges defined as follows:

(x,y) e edgy <« (x,y)€edgy and there is no z # y such that
xedgyz and zedgy y.
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We claim the existence of formulas ¢, ..., ¢, with the semantics given below, in
a dag G locally ordered by a. The letter X denotes sets of vertices; letters x, y,z ...
denote vertices of the considered dag G.

@i1(x,y, X} < x,ye X, x # y,and there i1s a directed path in G[ X ] (the induced
subgraph of G with set of vertices X) from x to y.

@2(x,y,X) < x,ye X, (x,y) is an edge of the graph red(G[X ]). (Write that
(x,y) € edgg and that there is no z in X — {x, y} such that x edg z
and ¢,(z,y, X') holds where X' = X — {x}.)

©03(x,y) = x # yand G is a path from x to y. (Write that ¢,(x,y, X) holds for
X =V; and that it does not if X is any proper subset of V;
containing x and y.)

@4(x.y,X) = x # yand X is the set of vertices of a directed path from x to y.
(Write that the graph red(G[ X ]) is a path from x to y).

@s(x,3,2,1,X}) < @4x, ¥, X) holds, z,t € X and z is the predecessor of ¢ on the
path red(G[X]) from x to y. (Write that ¢.(x, y, X) holds and
(z,1) 15 an edge of red(G[X]).

Pe(x,y,X) < x # yand X is the set of vertices of the minimal path from x to y.
(Write that ¢4(x,y,X) holds and that there does not exist
z,t,1" € Vg such that @s(x,v,z,t, X) holds, (z.1') € edgg, t' edgd y
and 1’ is strictly smaller than t with respect to «.)

@,(x,y) < there exist x and - such that z is a root of G, @e(z. ¥y, X) and
©s(z, v.x, v, X) hold.

Hence ¢-(x, y) holds if and only if (x, y) is an edge of F(G, «). This concludes the
proof. [

In the following result, we need not use a given local ordering, because we can
define one.

Corollary 2.2. For each d € N, some depth-first traversal of trees of outdegree at most
d is MS-definable.

Proof. Let T = {Vy,edgr) be a tree of outdegree at most d. A partition V,..., V; of
Vr is a good partition if no two successors of a same vertex belong to the same set V.
Clearly there exists a good partition of V; in at most d classes. A partial order on
V; can be obtained from (V. ..., V;) as follows:

(u,v) e 2 if and only if either u =vorue ¥, ve Vifor some 1 <i<j<d.
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One can thus construct two MS-formulas ¢(X;, ..., X,;) and 8(x, y, X, ..., X,) such
that, for every tree T of outdegree at most d, for every Vi,.... V; S Vr:

(D) (T, V,.....,V))= @ if and only if (V1,..., F) is a good partition.

2) If (V,,..., V,) satisfies ¢, then the relation P on Vy such that

(u,v) € P if and only if (T,u,0, ¥y, ... V)= 0

is the a-depth-first traversal of T, where « 1s associated with V4, ..., V5.

Hence P is a depth-first traversal, defined by the formula 6 in terms of sets V5, ..., V4
provided these sets satisfy ¢. Since for every tree of outdegree at most d one can find
Vi, ..., V, satisfying ¢, one obtains in this way a depth-first traversal of every such
tree. [J

In Theorem 2.1, we showed how to construct some topological sorting. In certain
applications (in particular to traces, see Section 3), one may wish to construct
a specific one.

Let us assume that x is a linear ordering of V; where G is a dag. There exists
a < ,minimal topological sorting of G where <, is the lexicographic ordering on
topological sortings considered as sequences of vertices associated with . The
topological sorting of a dag G defined in Theorem 2.1 is not this one. Take for example
the tree with vertices a, b, ¢, d, e, with root a and edges (a, b), (a,¢), (a, e), (b, d). Consider
the ordering a: a < b < ¢ < d < e. The minimal topological sorting is a,b,c,d, e and
the a-depth-first traversal is a, b, d, c, e, which is different. (Anticipating on Section 3,
we may note that this tree is the dependency graph of a trace.)

Open question 2.3. Let T be a tree given with a linear order x of its vertices. Can one
MS-define its < ,-minimal topological sorting?

2.2. Dags with bounded antichains

We shall now give an MS-definition of the < ,-minimal topological sorting of a dag
with antichains of size at most k where « is defined from a given covering of the dag by
chains.

Let G be a dag. A chain in G is a set of vertices that is linearly ordered by edgé. An
antichain in G is a set of pairwise incomparable vertices. We denote of o, the set of
dags having no antichain of cardinality more than k. By Dilworth’s Theorem a dag
G is in o7, if and only if every vertex of G belongs to one of k (not necessarily disjoint)
paths Py, P,, ..., P in G. A chain partition of Vg is a partition (X, ..., X;) such that each
set X;is a chain. From paths P; as above, one gets a chain partition by taking X, = P,,
X,=P,—(Pyu--uP,_|)fori=23,..., k(wedenote here by P; the set of vertices of
the path P;). Conversely, if a chain partition X1, ..., X, is given, then for each i one can
find a path P; that contains X;. Hence G is vertex covered by P, U --- U Py, a subgraph
of G that is the union of k paths. From X1, ..., X, we define as follows a linear order on
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Vg, denoted by a(X,, ..., X;):

(x,y) e 2(X,,.... X)) if and only if either x € X, ye X;and i < jor x,y € X; and
xedgly forsomeije 1, ... k.

We shall denote by S(G, X, ..., X,) the <,-minimal topological sorting of G where
2 =2(Xq,...,Xy) and (X,.,.... Xi) is a chain partition of G.

Theorem 2.4, For every fixed k, S(G,X,.,..., X)) is MS-definable in the structure
{Vg.edgg, X(,.... X, > if G is adag and (X, ..., X}) is a chain partition of V.

We need some notation and lemmas for the proof of this theorem. If S is a linear
order on a set V, we denote by 1S the enumeration of V in increasing order for S.
Concatenation of sequences is denoted by a big dot .. If G 1s a dag and « is a linear
order on a superset of V; (i, a set containing V), we let S(G,2) denote the
< ,-minimal topological sorting. If x is a vertex, we denote by G — x the graph
GV — {x}1.

Lemma 2.5. Let G be a dag and x be a linear order on a superset of Vi. Then
18(G, ) = be IS(G — b, 2) where b is the a-smallest root of G.

Proof. The sequence b.TS(G — b,2) is a topological sorting of G. (To see this, note
that 1S{G — b,%) is a topological sorting of G — b; we need only consider edges
between b and the other vertices; since b is a root, they all go in the desired direction.)
Every topological sorting of G must begin with a root. It follows that 1S(G, «) begins
with b. Let § be the sequence such that 1S(G,x) = b.S. It is a topological sorting of
G — b. If another one, say §', is smaller than § with respect to <, then b. §" is also
a topological sorting of G and is strictly smaller than 18(G, %) = b. S. [t is a topologi-
cal sorting of G and is strictly smaller than 7S(G,2). Hence S is < ,-minimal and
18(G,2) = bo1S(G — b,o). [

Our proof of Theorem 2.4 will be an induction on k. The following lemma will give
the inductive step.

Lemma 2.6. Let G be a dag, let (Y., Y,;) be a partition of Vg such that Y, is linearly
ordered by edg. We let a, be this linear order on Y, and o, be any linear order on Y.
Then S(G,a1+%5) = S(G U a, o] «%,) where oy = S(G*[ Y]], a4).

We denote by a; . 2, the linear ordering on V; such that (x, y) € 2, + o, if and only if
either (x,y) e o; for some i or x € ¥;, ye Y,. (Hence Taye0; = 124+ Ta,.) This lemma
means that one can construct S(G,a,.2,) in three steps: one first constructs
a) =S(G*[Y,],a;), namely the <, -minimal topological sorting of the restriction to
Y, of the transitive closure of G; then one lets G’ consist of G augmented by the edges
(x,¥), x # y, such that (x, y) € «}: we shall verify that G’ is indeed acyclic; and finally
one constructs S(G’, «’ ;) giving the desired S(G, x;+a5).
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Proof. We first verify that G’ defined above is acyclic. Assume that G has a cycle. We
shall shorten it into a strictly smaller one, and this will give a contradiction. Since
G'[Y,] is acyclic (its edges are in S(G*[Y,],%,)) and G'[V>] = G[Y»] is also acyclic
by the hypothesis on Y5, this cycle cannot be totally within G'[Y; ] or G'[ Y, ]. It must
contain vertices in ¥, and vertices in Y,. Hence it can be written as (x;, ¥1...., Vn,
X2,X3, 0 Xy Xy ) With X1, %, € YV, ¥1, 2, ... € Yo, n 2 1, X3,...,x, e U Y. We
have (y1,y2)(y2,¥3) s (yn-1,¥n) € €dgg. Also we have (x;,y;) € edgg, (y,.X2) €
edg;, hence (x,,x;)cedgs since G'[Y,]< G'. Hence (x1,X2,X3,..., X, X1) IS
a strictly shorter cycle in G'.

Hence S(G', | «a5) is well-defined and we need only verify that it equals S{G, 2, «a;).
The proof is by induction on card(Vy), using Lemma 2.5. Let b be the (x; .2, )-smallest
root of G. If b € ¥, then G has no root in Y,. Then G’ has no root in Y] either, because
G < G'. Hence b is also the smallest (x).x;)-root of G'. If be ¥, then b is the
a-smallest root of G*[Y;], hence the first element of «;. Hence b is also the
(a7 st;)-smallest root of G'. Hence 1S(G,xye%;)= be1S(G — b,a,+%,) and
1S(G o etty) = be 1S(G’' — b, 2+ a5) by Lemma 2.5. We know by the induction
hypothesis that 1S(G — b,a,+2,) = 1S(G", «(+2,) where 2] =8((G-b)"[Y; —
{b}1, 2} and G” = (G — b) L x7. We need only prove that

18(G" — b, 2 et} = TS(G”, o] e 203). (1)
Since b is a root of G we have
(G=b)7[Y,-{bj]1=G"[V, - (bj]=G'[V,]—-b

because b cannot be an intermediate vertex on any directed path in G* connecting
two vertices of G — b. Hence «] = S(G*[Y;] — b, ;) and is the restriction of «} to
Y; — {b}, and we have G' — b = (G U «}) — b= (G — b) U ] = G". Equality (1) fol-
lows. [

Remark. Given a partition (Y;, ¥>) of V; and two linear orders x, on Y;,and «, on Y5,
one cannot compute separately ay = S(G*[Y;],2,) and a% =S(G"[Y¥;],%,) and
simply get S(G, 2;02,) as S(G U o} U x5, ) «x5) because the graph G u a) U o) may
have cycles. Here is an example. Take Vo= Y, U ¥, with Y, = {x,y}, ¥, = {z.1},
edgs = {(y,2),(t, %)}, (x,y) € %y and (z,1) € 2,. Then o} = 2,045 = ¢z and G U 1) U &)
has the cycle (x, y, z, t, x). However G' = G U « has the edges (¢, x), (x, y) and (y, 2). It is
linearly ordered and S(G,o;+25) = G'.

Proof of Theorem 2.4. We use an induction on k. Let us recall that G is a dag and
(Xi,...,X,) a chain partition of V;. The case k = 1 is trivial. We consider the case
k=2

Claim. The relation S8(G, X,, X,) is equal to the relation S such that

(x,¥) € S if and only if either xedgfy or x Loy, xe X, ye X,.
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Proof of Claim. Clearly S is reflexive. We check that S is symmetric. Let (x,y) and
(y,x) € S. We cannot have x 1y because X; n X, = 0. Hence xedgg yedgg x and
x = y since G is acyclic.

We now check transitivity. Let (x, y) and (y,z) € S. This happens if xedgf yedg¢ z
which gives (x,z) € S as desired. The case where x Ly Lz cannot happen because
y cannot be both in X, and X,. Let us consider the case xedg&y Lz, with y € X,,
ze X;:
~ If xedg& z then (x,z) € S as desired.

If zedg¥ x then zedgf y and this contradicts y 1z

If x 1 ¢z then we cannot have x and z both in the same set X, (because we started
with a chain partition); hence x € X; and (x,z) € S.

The case x L yedgé z is similar.

Then S is a linear order (because incomparable elements must be in different sets Xj;)
and furthermore a topological sorting of G.

It remains to check that S(G, X;, X,) = S. We shall use Lemma 2.5. Let b be the
a(X,,X,)-smallest root of G. Then 1S(G,X,,X,)=b.1S(G — b, X1,X3) where
X;= X, — {b}. It is easy to check that (b,x) € S for every x € V5. Hence 1S = b1S§
for some linear order S' on V;_,. We claim that, for x,y € Vg — (b},

(x,y) €S <> either xedgf_,yorxLl; ,vand xe X;,ye€ X,.

But this is clear from the fact that b is a root, and we get 1S = 1S8(G — b, X1, X3),

™

whence the result. O

The definition of § is expressible by an MS-formula (because transitive closure is
MS-expressible), and this completes the proof of the case k = 2. We now consider the
casek >2. Welet Y = X, U - U X,_;. We have, letting 8; be the linear order equal
to the restriction of edg¥ to X,

S(G,X,,....X:) = S(G, 8+ 20 -+ + 5;) by definitions
=S(Gu B,pf) by Lemma 2.6,

where f = B1efye--ofi_, and g =S(G'[Y], f).

By induction S(G* [ Y], B) is definable by an MS-formula in terms of X, ..., Xy~ ;.
By the case k =2, another formula can define S(G U f',f+f), ie.. the desired
S(G.Xy,....X,). O

2.3. General graphs

Can one extend Theorem 2.1 to directed graphs with cycles? One cannot of course
define a topological sorting but one may want to define a linear order. Let us assume
that G is directed and has an origin, namely a vertex r from which every vertex is
reachable by a directed path; let us also assume that o is a partial order on V; that
orders linearly each set Sueg(x). For every x there is a < ,-smallest path in G from r to
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x denoted by n(x) and the definition of F(G, «) extends. The x-depth-first traversal of
the tree F(G, a) is a linear order of G (but not always a topological sorting). However,
we do not know how to define it in MS. The reduction red(H ) is not uniquely defined
for graphs H with cycles (take for example a complete directed graph with 3 vertices)
and we do not know how to define an alternative formula with the same meaning as
@afx, y, X). Actually, no such formula does exist; otherwise one could express in MS that
a directed graph has a Hamiltonian cycle and this is not expressible (see [10, p. 125]).

Open question 2.7. Is it possible to MS-define a linear order on every locally ordered
directed graph having an origin?

The answers to this question is “yes” if, instead of MS, we use the more powerful
language MS, where quantified variables can denote sets of edges. One can easily
express in MS; that a set of edges forms the spanning tree F(G,«) and the proof
continues using this tree and the claim of Theorem 2.1. However, by the results of
[10], MS,-formulas can be translated into equivalent MS-formulas for graphs of
bounded degree, and for graphs excluding a fixed graph as a minor (whence in
particular for planar graphs and also for graphs of bounded tree-width). Hence the
answer to this question is also “yes” for graphs that are restricted in any of these two
ways (and by using MS-formulas).

2.4. Recognizability versus MS-definability

We now consider sets of graphs, the recognizable subsets of which are MS-defin-
able. Applications to traces will be given in the next section.

We let €, = o/, be the class of dags G such that there exists a chain partition
(X1,...,X:) of Vg and a topological sorting S such that:

for each edge (x,y) of G, if x € X then x is the last vertex
in X; that precedes y in the linear order S. 2)

We shall see later that the dependency graphs of traces over an alphabet with
k letters are in €.

Lemma 2.8. The class 6, is MS-definable and MS-formulas can define in every graph
G of €, a chain partition and a topological sorting witnessing that G is in 6.

Proof. An MS-formula (X, ..., X,) can express that (X,, ..., X;) is a chain parti-
tion of the considered dag. From any chain partition (X4, ..., X;) we define a graph G’
by adding to G an edge (x, y) if and only if:

there exist z € V; and i € [k] such that z,y € X}, (z, x) € edgg
and y is the successor of z in G*[X;].
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Claim. A topological sorting S of G satisfies condition (2) if and only if it is a topological
sorting of G'.

Proof of Claim. Let S satisfy (2). Let (x. y), i, z be as in the definition of G". Then (z, x)
and (z, y) belong to S. Since z is the S-largest element of X; before x and z,y € X, we
must have (x,y) € S. Hence S is a topological sorting of G'.

Let us conversely assume that S is a topological sorting of G'. It is thus one of G. If
S does not satisfy (2), we have (z,x) € edg; such that zedg;- y and (y,x) e S with
7,y € X;, vy # x. Let ) be the successor of zin G * [X;]. We still have zedgg- v’ edgg+ v

hence (3, y) € S, and also (y'. x) € S since (¥, x) € S. Hence there 1s in G an edge (x, y").
But § is not a topological sorting of G'. [

The edges of G’ that are not in G can be defined by an MS-formula
Yo, v, X1, .... Xx). We can thus construct an MS-formula ¢;(X,..... X,) that ex-
presses that G' constructed from X,,..., X, is acyclic. If it is, then any topological
sorting S of G’ is a topological sorting of G satisfying condition (2). By Theorem 2.4,
one can define one by an MS-formula ¢ 4(x, v. X, ..., X;) since G’ also belongs to s7,.
Hence, the formula ¢4(X., ..., X,) expresses that (X, ..., X;) is a chain partition for
which a topological sorting satisfying (2) does exist and y,(x.v. X;, ..., X,) defines
such a topological sorting. The class 6, is defined by the formula: 3X,, ..., X, ;. O

Example 2.9. We construct graphs showing that the class o7, is not included in any
class €,. For each n € N, we let G, be the dag in .7, shown in Fig. 1. We shall prove
thatif n > k + 1 then G, ¢ €,.

Let us assume by contradiction that G = G, € €,.n =k + 1, we let (X, ..., Xi) be
a chain partition of G. Some chain, say Xs. must contain two vertices of [ y,,..., ¥},
say y3 and yg, where yy is the successor of y; on G* [ X5]. Another one, say X5, must
contain two vertices of [f,,....t,}, say t4 and t,,, where 1, is the successor of 4 on
G [X,]. Let us now consider G’ as in the proof of Lemma 2.8. It must contain the
edges (z3,yg) and (x4.t;;), hence it has the cycle (z3.vg. Vo, ..... Xaligs Fi2seens
Z1.2;.23.) A contradiction.

Y1i—Y2 —P -« s — Y 1 — Yp—B X —8 X3 - o0 — Xp ] P X,

t~|—>t2 —» - - '—‘»tn"l ——btn——bz‘—» 22 <+« —9 Zp1 —P 2,

Fig. I.
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Theorem 2.10. Let k € N. Every recognizable subset of €, is M S-definable.

Proof. By the methodology described in [7], it is enough to construct a finite
signature of graph operations, a definable transduction that associates with every
graph in %,, a finite term over these operations that denotes this graph. By
Lemma 2.8, we can assume that a graph G in €, is given as a structure containing
(Xi.....,X,) and § witnessing that G belongs to @, since these objects can be
MS-defined in G. Let vy, ..., v,, be an enumeration of V; in increasing order for S. For
j=1..mweletG;= G[{v,,...,v;}]. We let H, be the sourced graph (G, s) where
s 1s a source mapping with s(i) = x if and only if x is the S-largest element of
(v1,...,0;} 0 X, Tt follows that t(H;)= {i e [k]|{vy....,t;} n X; #@}. Note that
G = fgyy(H,,), where fg. is the graph operation that “forgets” the c-sources for all ¢ in
C. (This operation is a special case of the source renaming recalled in Section 1.)

We need only describe unary graph operations f5, f3,..., f,, € F where F is a fixed
finite set such that G = fgy( fin( fr— 1 ( f3 (f2(Hy))...))) and such that for every g € F
there is an MS-formula 6, € 3({edg <L {X. ...,Xk,x}) such that

(G.5,X,..... Xy, x) =4, if and only ifg =f;
where j € {2,....m} is such that x = v},

For i i’ e [k], with i # i', we denote by e(i,i') the graph consisting of one directed
edge linking the i-source to the i’-source. We now define f; such that H; = f;(H,_ ).
There are two cases.

Case 1: ©(H;) = ©(H; ) { p}. We let x be the unique vertex in H, that is not in
H;_ . 1tis the p-source of H;. We let {i;,....i,} < t(H,_,) be the set of integers i, such
that there is in H; an edge from the i,-source of H;_, (which is also the i,-source of H;)
to the vertex x. We can take for f; the mapping

fitwy:=elir.p)lleliz.p)l - [l iy, p) |l u.

where || is the parallel composition defined in Section 1 and u is a variable denoting
graphs of type t(H; ;). Hence f; is of type t(H;,_;)— t(H;), and we have
H; = f;(H;_). Note that f; can be determined by an MS-formula from x, the order
S (from which we get the set of vertices before x) and the sets X, ..., X,.

Case 2: ©(H;) = ©(H;_ ). The vertex x (added to H,_, to form H,) is the p-source of
H;: so the p-source of H;_ | is internal in H;. We let { 11, ....ig} be as above and we let

filw) = vem, . (g ey k + D[ -+ |eligk + )] )

Here f;is of type (H;_ () — 1(H;_)(=1(H;)) and again H; = f;(H;_,). (We denote by
ren, .., the source renaming operation (see Section 1) that makes the r-source into the
p-source.) Again f; can be determined from x, X, ..., X, and S by an MS-formula. It
follows that the expression fgu( fu( f—1(...(f2(H;))...)) denotes G and can be con-
structed as the result of a definable transductlon. This completes the proof. [
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1
3 \
Hj- /‘X Hj-1
4 5
6
H H.

i j

N b W =
E-N

Fig. 2.

It follows from this construction that graphs in %6, have path-width at most k. We
shall use this fact shortly.

Example 2.11. We illustrate the two cases of the construction of f;.

Case 1: See the left part of Fig.2. We have 1(H;_;)={13,4,6},
(H) = t(H;- 1) U {5}, fiw) = e(1,5) | e(4,5) ] e(6,5) || u.

Case 2: See the right part of Fig. 2. We have t(H;_,)=1(H;)= {1,3,4,6}.
fi(u) = ren,_,(fg.4,(e(1,7) || e(6,7) || u)). The absence of an edge between the 4-source
of H;_; and that of H; does not contradict the hypothesis that X, should be linearly
ordered under edgf: we can have in H;_, an edge from the 4-source to the 6-source.

We let und(G) denote the simple undirected graph obtained from G by letting
edg g = edge U .(edgGy g

Corollary 2.12. Let ke N. A subset of €6, is recognizable if and only if it is MS-
definable. The same holds for a subset of und(%€,).

Proof. The “if” directions of the two assertions follow from the main theorem of [6].
The “only if” direction of the first assertion is Theorem 2.10. We now consider the
“only if” direction of the second assertion. Let L be a recognizable subset of und(%,).
Since the mapping und is a homomorphism for the operations of parallel composition
and source renaming, it follows from Proposition 1.2 that und ™ '(L) is a recognizable
set of graphs; the set €, is recognizable since it is MS-definable (Lemma 2.8) hence
K =und (L) n @6, is recognizable, and K is MS-definable by Theorem 2.10. By
Theorem 3.11 of [9], L = und(K) is MS,-definable. We have observed that the graphs
in €, hence also those in und(%, ), have path-width at most k. By the results of [ 10],
an MS,-definable set of graphs of path-width at most k is MS-definable. Hence, L is
MS-definable. O

2.5. Partial k-paths

We conclude with an application to a “classical” class of undirected graphs.
A partial k-path [21] is a simple undirected graph G such that, for some n, we have
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Ve=Viu W, u---u F, and the following holds:

(1) the two ends of every edge belong to some set ¥,

(2) a vertex in ¥, n V; belongs to ¥, for every ¢ between i and j,

(3) card(V)) =k + 1 foreveryi=1,...,n,

4) card(V; "V, )=k foreveryi=1,....n— 1,

Sy VinVie, £2Vigin Vi, fori=1,...,n—2

A graph is k-connected if it has at least k + 2 vertices and there is no set of vertices
with at most k — 1 vertices, the deletion of which disconnects the graph.

The graph operations upon which recognizability is defined also apply to undirec-
ted graphs. Hence, the notion of a recognizable set of undirected graphs is well-
defined.

Corollary 2.13. Let k € N. Every k-connected partial k-path belongs to und(%,). A set
of k-connected partial k-paths is recognizable if and only if it is MS-definable.

Proof. For every k-connected partial k-path G we shall define an orientation G/,
a topological sorting S and a partition (X, ..., X, ) of ¥; making G’ into a member of
%.. Welet (V],..., V,) be as in the definition of a partial k-path; since G is k-connected,
n is at least 2.

We first define S. Its first element is the unique vertex in ¥; — V;. The next
k elements are those of V; n }, in any order. Then comes the unique element of
V, — Vi, then that of V3 — 1}, etc., the last one being the unique elementof J, — V, ;.

There is a unique orientation G’ of G for which S is a topological sorting. We now
define X{, ..., X;. We put in X, the unique vertex in ¥ — V5. We put each of the
k vertices of ¥} n V¥, in exactly one of the sets X, ..., X;, and we putin X| the S-largest
of these vertices. We consider then, in turn, the vertices in V,— ¥_; for
i=23,..,n— 1 Let x; be the unique vertex in ¥; — ¥;_,. By condition (5) of the
definition of a partial k-path, some vertex yin ¥; » V;_; does not belongto V, n V4.
Assume that this y has been put in X;, then we also put x; in X;. The last vertex (the
unique one in ¥, — V,_) is put in any of the sets X1, ..., X;. It remains to check that
(X4, ..., Xx) 1s a chain partition of G and that condition (2) of the definition of €, holds.

The vertex xin ¥; — V; is linked to all vertices of V; n V5, otherwise G would not be
k-connected (a proper subset of V; » V; would separate x from the vertex in V;, — 1}).
Hence, the first two vertices of X, are linked by an edge. Consider now the step in the
above algorithm where we put x; in X;. We claim that (y, x;} is an edge of G. If this is
not the case then ¥ n ¥;_; — {y} would separate x; from y, contradicting the
k-connectedness. Finally, the last vertex is the target of edges having as origins each of
the k vertices in V,_, — V,_,. Hence, each set X; induces a path in G".

Finally, one can observe that every vertex x;, i = 2, ..., n, has incoming edges from
V, n V;_1 only, and that each set ¥, n ¥,_, contains one and only one vertex of each
set X, ..., X;. This ensures that for every edge (x, y) the vertex x is the last one before
y in the same set X;. Hence, G’ is in €;.

The second assertion follows from Corollary 2.12. [
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It is conjectured in [7] that a set of graphs of tree-width at most k for any fixed k is
recognizable if and only if it is CMS-definable. This result is a further step towards the
proof of this conjecture since partial k-path have tree-width at most k.

Example 2.14. We show in Fig. 3 an example of the construction of G’ where k = 3.

In this example we have n = 6. The boxes show the sets V;,..., V5. The vertices are
numbered from 1 to 9 in the order of S. The vertices of X, are dots, those of X, are
hearts and those of X are diamonds. Let us review the construction of X, X, and X3.
The vertex 1 is placed in X, 2, 3,4 are placed respectively in X,, X3 and X;. Then 5is
the unique vertex in V; — ¥, and 4, the vertex in ¥, — V;, belongs to X,. Hence 5 is
placed in X,. Then 6 is the unique vertex in V; — V5, and 2, the vertex in V3 — J,,
belongs to X,. Hence 6 is placed in X,. We continue in this way. Finally, we redraw
the graph. The vertices in a same set X; are on the same horizontal line. See Fig. 4.

The classes of undirected graphs we have considered can be compared as follows:
k-connected partial k-path < und(%,) < und(7,),
und(%€,) < partial k-paths,

and the class of partial k-paths is incomparable with und(7,).

o

L AR 2
o 6 \7/§
N St

Fig. 3.
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3. Traces

As an application of Theorem 2.4, we give a new proof of a result of Ochmanski
[19] on recognizable sets of partially commutative words, also called traces. We recall
a few definitions and we refer the reader to [1] for more details.

A partially commutative alphabet is a pair (4, C) where 4 is a finite alphabet and
C a set of unordered pairs of letters of A that are said to commute. We let = denote
the least congruence on A* such that ab = ba for every {a,b} € C. An clement of
A*/= is called a trace. The quotient monoid M(4, C):= A*/= is called the trace
monoid defined by (A, C).

If L € A*/=, welet {L> & A* be the union of the sets ¢, for t € L. (Each trace t is an
equivalence class, hence a subset of A*.)

The notion of a recognizable subset of M(A, C) follows immediately from the
monoid structure. However, we shall use the following more concrete characteriza-
tion, that will be our definition:

L c A*/= 1s recognizable if and only if (L) is a regular language (i.c., a recogniz-
able subset of the free monoid A*).

Let us enumerate A in a fixed way as {a,, ....a; . Every trace ¢ contains a unique
< -minimal element (where < is the lexicographic order associated with the chosen
enumeration of A4) that we shall denote by min(t). Ochmanski has proved that a set
L = M(4,C) is recognizable if and only if Min(L) (defined as {min(t}|t e L}) is
a regular language. We shall give a new proof of this result, based on graphs and
monadic second-order logic.

Every trace can be represented by a dag with vertices labelled by the letters, called
its dependency graph. We fix A={a,.....a,} and C. With every word
u=bb,---b,€ A* (where by, ..., b, € A) we associate a graph G constructed as follows:
e V;=1{1,2,....n} (if n = 0 then G is empty),

e vertex i has the label b;,
e there is a directed edge from i to jif and only if i < jand {h;,b;} ¢ C (this is the case

in particular if b; = b;).

Finally, we let H be the reduction of G; it will be denoted by dep(u). It will be handled
as a relational structure { Vg, edgy ., (lab, g ),y > where lab,,(x) holds if and only if x has
label a.

Proposition 3.1 (Aalbersberg and Rozenberg [1]). For any two words u,v€ A*, u =v¢
if and only if dep(u) and dep(v) are isomorphic, if and only if v is a topological sorting of
dep(u).

It follows that the graph H as above is actually associated with the equivalence class
of u, i.e, with a trace t. We shall denote by dep{t) the abstract graph that is the
isomorphism class of dep(u) where u is any member of t. (The numbering of the vertices
of dep(u) depends on u but is irrelevant in dep(r).) If L is a set of traces, we let
Dep(L):= {dep(t)|t € L}.
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Lemma 3.2. The mapping dep from words to graphs is a definable transduction.

Proof. This is immediate from the definition and the fact that reduction is a definable
transduction. O

Proposition 3.3. Let (A, C) be a partially commutative alphabet.

(1) Every dependency graph satisfies the following properties: it is acyclic, reduced,
any two adjacent vertices are labelled by noncommuting letters and any two vertices
labelled by noncommuting letters (in particular any two vertices labelled by the same
letter) are comparable.

(2) Every directed graph with vertices labelled in A that satisfies the above conditions
is a dependency graph.

In particular every dependency graph G belongs to the class of dags €, defined in
Section 2 where k is the size of the alphabet: the sets of vertices with a same label form
an appropriate chain partition and the topological sorting S is the natural order on
the letter position of a word with dependency graph G. For such a graph G, we let

min(G) = min(dep ' (G))
'= the unique <-minimal word in the trace dep ™ '(G) < A*.

Proposition 3.4. The mapping min is a definable transduction from dependency graphs
to words.

Proof. Let A=1{a,,...,a}). Let G be a dependency graph. Let
Xi = {x € Vg|labs(x) = a;}. Then V5= X, u---u X, where (X{,...,X,) is a chain
partition. The word min(G) is nothing but the reduction of the linear graph
S(G, Xy, ..., X;), hence min is definable since it is the composition of two definable
transductions: the one defining S(G, X, ..., X;) (by Theorem 2.4) and the reduc-
tion. [

Theorem 3.5. Let (A, C) be a partially commutative alphabet. The following properties
of a subset X of A* are equivalent:

(1) <X is a regular language,

(2) Min(X) is a regular language,

(3) Dep(X) is an MS-definable set of graphs,

(4) Dep(X) is a recognizable set of graphs.

Before proving the result, we make a few observations. Since one can express in MS
(by Proposition 3.3) that a directed vertex-labelled graph is a dependency graph, it is
equivalent to saying that a set of dependency graphs is MS-definable among depend-
ency graphs (ie., is the set of dependency graphs satisfying an MS-formula) or is
MS-definable among all graphs. Hence (3) can be read in two equivalent ways. Also,
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since traces are graphs of bounded path-width, the language MS, is no more powerful
than MS in order to express their properties (by [10]). Hence, (3) can be read in total
in four different equivalent ways.

Proof. (1) = (2): By Proposition 3.4, one can construct an MS-formula 6(x, y) such
that, for every word u € A%, this formula defines in the relational structure represent-
ing u a linear order that corresponds to min(u). One can build a closed MS-formula &
that verifies that this order coincides with the natural order on the letters of u, i.e., that
min(u) = u. The set Min(4*) of minimal words is MS-definable, hence regular, by
Biichi’s Theorem which says that a language is regular if and only if it is MS-definable
(see [24]). Since Min(X) = {X > n Min(4*), we get the desired implication.

(2) = (3): The transduction min from dependency graphs to minimal words is
definable. Since Dep(X) = min~ !(Min(X)) we obtain that Dep(X ) is MS-definable if
Min(X) is, which is the case by Biichi’s Theorem since Min(X) is assumed to be
regular.

(3) = (1) The transduction dep that maps a word u € A* to the corresponding
dependency graph is definable (see Lemma 3.2). Note also that {(X) =
dep '(Dep(X)). Hence, so is the language dep !(Dep(X)) since Dep(X) is MS-
definable. The language {X ) is thus regular by Biichi’s Theorem.

(3) = (4): 1s a consequence of the result by Courcelle [6] saying that every MS-
definable set of graphs is recognizable.

{(4) = (3): We have observed that dependency graphs belong to the class &, where
k = card(A). The result follows from Theorem 2.10 saying that recognizable subsets of
%, are MS-definable. (The proof was done for unlabelled graphs, but it is straightfor-
ward to adapt it to labelled graphs.) [J

The equivalence of (1) and (2) in this theorem is also proved in [19] by a more
complicated method using rational expressions for representing the two considered
languages. The equivalence of (1) and (3) in this theorem is also proved by Thomas
[25], by using the asynchronous cellular automata [3] and the difficult result stating
that these automata define exactly the recognizable sets of traces; this equivalence is
also proved for certain infinite traces (whence for traces as a subcase) by Ebinger and
Muscholl [15] by means of rational expressions. Our proof does not use such complex
tools: it uses only MS-logic, and regular languages are handled through MS-logic by
Biichi’s Theorem.

4. Order-invariant MS-definable graph properties

In this section, we introduce an extension of MS-logic that is based on the use of
auxiliary linear orderings. This extension, denoted by MS(<) (read as MS logic with
linear order) subsumes CMS. It is useful only in structures where no linear ordering is
MS-definable, because whenever a linear order is definable its expressive power is no
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larger than that of MS. The main result of this section states that the MS(< )-definable
sets of graphs are recognizable. MS(< )-logic is thus a good candidate for the logical
characterizations of recognizability we are looking for. In Section 35, it will prove
useful for characterizing recognizable sets of cographs. Results are stated and proofs
are done in terms of relational structures. They are thus applicable to graphs of several
types and also to hypergraphs.

4.1. Order-invariant properties of ordered graphs and relational structures

An ordered graph is a pair consisting of a graph G and a linear order P of its set of
vertices. Note that G may be ordered itself in a natural way, for instance if it is a word:
however, P can be any linear order of V;. If % is a class of graphs, we let (<) denote
the class of all ordered graphs of the form (G, P) for G € 4. A property ¢ of ordered
graphs is order-invariant if, for every G € 4, for any two linear orders P and P’ on Vg:

#(G,PY) <= 4((G.P)).

Graphs are defined as {edg|-structures. We let < be a new binary relation symbol.
A property ¢ of graphs of a class 4 is MS(<)-expressible if and only if it is an
order-invariant MS-property of the graphs in %(<), hence, if and only if there exists
a formula ¢ in ¥ ({edg, <}) such that

(1) for every G € %, for any two linear orders P and P’ on V;:

{G, P> = ¢ if and only if (G,P"> = ¢ (where P and P’ are values of <),

(2) for every G e G:

#(G) holds if and only if (G, P} |= ¢ for some linear order P on V; (equiva-
lently, if and only if (G, P> = ¢ for all linear orders P on V;).

A set of graphs is MS(< )-definable if and only if it is the set of graphs satisfying an
MS(<)-expressible property.

As an example, we consider the property of a graph G: “card(V;) is even”. This
property 1s not MS-expressible if ¢ is the class of discrete graphs (see [6]). However it
is MS(<)-expressible. The appropriate formula in ¥ ({<}) is the one that says the
following:

there exist two sets X, X; that form a partition of the set of vertices and such that
the < -smallest element 1s in X,. the < -successor of every element of X, is in X,
the < -successor of every element of X 1s1n X, and the < -largest elementisin X;.

This formula holds if and only if card(V;;) is even and this property does not depend
on the considered linear order. More generally, every condition of the form
“card(X) = 0 modulo p” (for fixed p) is an MS(<)-property. It follows that every
CMS-definable property is MS(<()-definable. (We recall that CMS refers to Counting
Monadic Second-order logic, 1.¢., to an extension of MS in which one can say that a set
has cardinality = 0 modulo p, for any fixed p.) We have the following hierarchy of
families of sets of graphs:

MS-definable £ CMS-definable = MS(<)-definable < Recognizable.



B. Courcelle | Theoretical Computer Science 160 (1996) 87-143 113

where the last inclusion will be proved in Theorem 4.1 in the more general case of
relational structures. The first and third inclusion are strict in general but we shall
consider classes of graphs for which they are equalities. Whether the second one is
strict is an open problem. For classes of graphs having an MS-definable ordering, like
the classes &7, of Section 2, the first two inclusions are equalities. For the class of
discrete graphs or the class of trees, the first inequality is strict and the last two are
equalities. A table in Section 7 will summarize the known results regarding these
comparisons.

We shall compare MS(< )-definability and recognizability in the general framework
of [8], which deals with slightly more general relational structures than those used up
to now. Let R be a finite set of relation symbols as before. Let C be a finite set of
nullary symbois called constants. An (R, C)-structure is an object of the form
S = {Dgs,(rsher-(cs)eecy where {Dg,(rg),cr > is an R-structure, and cs belongs to Dg
for each ¢ in C. (One may have cg = ¢ with ¢ # ¢'.) We denote by #(R, C) the set of
(R, C)-structures. The nullary symbols are convenient to represent the sources of
graphs: each source label ¢ is turned into a constant and its value in the structure
representing a graph is its c-source. We denote by # (R, C, W) the set of MS-formulas
written with R, the nullary symbols in C, and having their free variables in W: they are
constructed from atomic formulas of the forms ¢y = v,, ¢, € X and r(vy,...,t,) where
each v; 1s an object variable or a constant in C and X is a set variable.

By an ordered structure, we mean a structure equipped with a linear order on its
domain, usually denoted by the binary symbol <. The notions of an order-invariant
MS-property of structures and of an MS( < )-definable set of (R, C)-structures can be
defined similarly as for graphs.

The language MS(<) is somewhat ineffective because it is not possible to decide
whether a given MS-formula defines an order-invariant property or not. However, we
shall write formulas that will define, by construction, order-invariant properties, as is
the case above for the formula expressing parity.

In order to prove this undecidability result we consider, for a Turing machine
M given with some initial configuration, the set L(M) consisting of the graphs that
either are complete (i... that have one edge from any vertex to any other one) or are
a square grid on which a terminating computation of M can be encoded (in the usual
way: the configurations of the computation are encoded on the successive lines of the
grid; we assume that the edges of these grids are directed and that there is an edge from
x to y for each edge from y to x). The set L(M) is MS-definable and a defining
MS-formula ¥,, can be constructed from M. Let us now consider the property of an
ordered graph saying that the sequence of its vertices listed in increasing order is
a Hamiltonian path. This property is expressible by a formula 8 in #({edg, <}). Now
the property defined by the formula y,, A 6 is satisfied by infinitely many graphs (in
particular by every complete graph, whichever linear ordering is given on it); it is thus
nontrivial; it is order-invariant if and only if M does not halt (because the validity of
¢ on an ordered square grid depends on the linear order). Hence, the order-invariance
of an MS-property of ordered graphs is undecidable.
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In order to define the notion of a recognizable set of (R, C)-structures, we define
some operations on structures. We shall distinguish the concrete structures belonging
to the sets S (R,C) from the abstract structures, ie., the isomorphism classes of
concrete structures which form the corresponding sets S(R, C).

4.2. The parallel composition of structures

Let S e #(R,C) and S" € #(R’, (') be disjoint structures, ie., structures such that
D;nDs =0. We let S|S be the structure 7 defined as follows. We let
D= Dg u Ds., we let ~ be the least equivalence relation on D such that ¢g ~ cs- for
everyce C n C’'. We let Dy = D/~ and we denote by [d] the equivalence class of an
element d in D. We also let:

cr=[cs]ifceC,

cr=[cs ] if ce C" (we have [cs] =[cs ] ifce Cn ('),

re([dy],....[d,]) holds if rg(d,...,d;) holds or if

rs(dy.....d;) holds for some d', € [d,],....d, € [d,].

Note that S |S'e (R U R, Cu ). If C~C =9, then Dg,;5- = Dy U Dy and
S|IS is the union of S and S". If SeS(R,C) and §' e S(R’,C’), then S| S’ is the
isomorphism class of T'|| 7" where T and T are disjoint and respectively isomorphic
to S and §’. Clearly, | is a total operation on abstract structures. This operation
extends the parallel composition of sourced graphs: if G is a sourced graph of type
C considered as a structure G = ( Vg, edgg, (cg)eec » Where ¢ is the c-source of G, if G’
is a sourced graph of type C’ defined similarly as an ({edg}, C')-structure, then the
structure G || G' represents the abstract graph G |¢c.¢ G'.

4.3. Quantifier-free definable operations

We denote by QF (R, C, &) the set of quantifier-free formulas written with R, C, and
the variables of & (where Z is a set object variables). Our purpose is to specify by
quantifier-free formulas total mappings: #(R, C) —» &(Q, D). We let 4 be a tuple of the
form {J.(0,)4e0,(Ta)depy such that:

— € QF(R,C,{x,}) and is of the form
vV V{x =14
deD

for some formula &' in QF(R,C, {x,}),

- 0,€ QF(R,C,{xy,...,x,}) where n = p(q),
- 1,€ C for each d € D.

With every such tuple of formulas A, we associate the total mapping
def,: #(R, C)— £(Q, D) such that, for every Sin (R, C), T = def,(S) is the structure
in &(Q, D) defined as follows:

D;:= {x e Dg| Sk d(x}},

dy = (14)s for each d e D,
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qr(x1,...,x,) holds if and only if x,...,x, € Dg and
SEMx A AdX)A Oh(x1,..0,%,)

(e, x1,...,x,€Drand Sk 0,(x,, ..., x,)).

The domain of T is the set of elements of Dy that satisfy J: this formula has been
taken of such a form that the elements (1,)s, d € D, that are needed as values of d in T,
are indeed in the domain of T. Each formula 0, specifies g in terms of the constants
and relations of S. A mapping: #(R, C) > Z(Q, D) is quantifier-free definable (qfd) if
and only if it is of the form def, for some A as above. The extension into a mapping:
S(R, C)— S(Q, D) also denoted by def, is straightforward. Note that these operations
are definable transductions of a special form.

A set of abstract (R, C)-structures is recognizable if and only if it is with respect to
the magma S with domains S(R,C) for all pairs (R,C) and equipped with the
operations || which map S(R, C) x S(R’, C")into S(R u R’, C u C’) and the gfd opera-
tions def,:S(R, C) - S(Q, D). (Let us recall that || is an overloaded symbol denoting
infinitely many operations.) A set of (R, C)-structures is recognizable if and only if the
set of its isomorphism classes is recognizable.

Now we consider the relation between MS(<)-definability and recognizability. It
was proved in [8] that every MS-definable set of (R, C)-structures is recognizable. We
extend this result to MS(<)-definable sets.

Theorem 4.1. Let R be a finite set of relation symbols, and C a finite set of constants.
Every MS(<)-definable set of (R, C)-structures is recognizable.

Proof. We shall denote by S_(R, C) (a subset of S(R u {<},C)) the set of abstract
ordered (R, C)-structures. We let uno:S . (R, C)— S(R, C) be the mapping that “for-
gets the order” (read “umorder”). The recognizability of a set L of abstract (R, C)-
structures is defined with respect to the parallel composition | and to the gfd
operations. For each of these operations, we define an “ordered” version, say
l<:S<(R,C)XS(R,C)=>S(RUR,CuC’) or def,.:S (R, C)—S(Q,D),
such that uno behaves homomorphically, namely such that:

uno(S || . S') = uno(S) || uno(S’), uno(def, _(S)) = def,(uno(S)).

We begin with def, . :S (R, C)—> S (Q, D) where 4 = {{,(0,)}re0,(Ta)sep ) We let
A ¢ consist of 4 augmented with the formula § . defined as x; < x,. Then def, . is
a qfd operation: S(R U {<},C)— S(Q v {<},D) which maps S (R, C)into S . (Q, D)
because, if T = def, _(S), then < is the restriction of the order <y to the domain
Dy. It is clear that uno(def, . (S)) = def,(uno(S)).

The definition of | . needs more notation. We let p and p’ be new unary relation
symbols. We let mk:S(R U {<},C)—> S(R v {<,p},C) (read “mark”) be the trans-
formation of a structure S = (Dg, (rsher> <s.(Cskecy 1nto the structure
T = {Dgs,(rs)er. <s,P1,(Cs)ecc » Where pr(x) holds if and only if x is not the value of
a constant in C. (This is indeed a gfd operation for each pair (R,C).) We let
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mk:S(Ru {<},C)—=S(Ru {<,p'}, (") be the qfd operation defined similarly with
respect to C'. We shall define later a qfd operation cone (for “concatenation™) and let

S| S = conc(mk(S) | mk'(S)). (1)

The idea is that S || . 8’ is ordered as follows: first all elements which are values of
constants, in a certain order fixed from the constants, then the elements of Dg which
are not values of constants, in the order of §, and finally the elements of Dg. which are
not values of constants in the order of S'. The gfd operation conc is defined by

= Oheror o< (Theee o) where:

¥ is the formula true,

7. 18 ¢ for every c e C u C,

6, 1s r(xy,...,x,) for re R U R’ of arity n,

6 1s the formula

(plxi) A p'(xz))

VAP(X ) AP} A Xy < X)) vIP (X)) AP (Xy) A Xy £ X3)
VTP ) AP (X)) A px2)) VT p(x b AP (xy ) A pY(X2))
V(Tp(x )ATIP (X)) ATIP(X) AP (X2) A 0 (X, X2)).

In this definition, 6'(x,,x;) is a quantifier-free formula that compares x; and
x; defined by constants as follows:

#'(x;,x3) holds if and only if x; = x, or ¢(x{) < ¢(x,)

where e(x) 1s the <-smallest constant ¢ in C U C' equal to x and < is some fixed
linear order on C u (.

Forevery Se€ ¥, (R,C) and §' € ¥ (R', (") the structure defined by (1) is linearly
ordered and, furthermore,

uno(S || < S') = uno(S) || uno(S").

Note that || ¢ is not commutative, even in the case where R = R’, C = (" although | 1s
commutative: S(R, C)*> - S(R, C).

Let L = S(R, C) be MS(<)-definable. This means that L = uno(L’) where L’ is the
set of structures in S _(R, C) satisfying an order-invariant MS-definable property. It
follows that L' is recognizable as a subset of S(R u { <}, C). It is thus recognizable
with respect to the operations of the form def, . (which are gfd) and | . which are
operations formed as finite combinations of | and gfd operations (see Proposi-
tion 1.3). Hence L' is a recognizable subset of S . (R, C) with respect to these “ordered”
operations, Since L’ = uno ~!(uno(L’)) by the order-invariance of its defining prop-
erty, its image under uno is recognizable (by Proposition 1.2). {J

Corollary 4.2. Every MS(<)-definable set of graphs is recognizable.
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Proof. This is an immediate consequence of Theorem 4.1 and Proposition 1.3 since
the operation of parallel composition of sourced graphs is nothing but the parallel
composition of the corresponding structures, as already observed, and since every
source renaming operation is a qfd operation on the representing structures. [

Corollary 4.3. For every set L of forests, the following properties are equivalent:
(1) L is CMS-definable,
(2) L is MS(<)-definable,
(3) L is recognizable.

The cases of a set L of discrete graphs or of trees are two special cases of this result.

Proof. Immediate consequence of Corollary 4.2 and the result form [6] that such
a set is recognizable if and only if it is CMS-definable. [

Proposition 4.4. The inverse image of an MS(< )-definable set of structures by a defin-
able transduction is MS(<)-definable.

We had in Proposition 1.1 similar statements for MS- and CMS-definable sets.

Proof. Let 7 be a definable transduction of structures, let L and L' be two sets such
that L = 7~ '(L’) and L’ is MS(< }-definable. One can “enrich” 7 in order to make it
into a transduction ¢’ that defines a linear order on the output structures from any
linear order on the input structure. The set L'(<) is MS-definable by the definition.
Hence the set ¢~ '(L'(<)) is MS-definable by Proposition 1.2.

Let us prove that L(<) = 7" !(L'(<)). Let (S, <) belong to L(<). Some image
(S", <') of (S, <) under " belongs to L'(<). Hence (S, <) belongs to ©' " 1(L'(<)). If,
conversely, (S, <) belongs to ' }(L'(<)), then S belongs to T~ !(L') = L, hence (S, <)
belongs to L(<). Hence, L(<) is MS-definable and L is MS(<)-definable.

Let us sketch the construction of t". Assuming that 7 is a transduction from & (R, C)
into #(Q,D) that defines the domain of an object structure 7 as
Dy x{1} uD;x{2} U--- U D, x{k} where D, D,, ..., DD, are MS-definable subsets of
the domain of the input structure S, we let < be a new binary symbol. In order to get
a definable transduction ' from ¥ ({R, <}, C)into ¥ ({Q, <}, D), we only add to the
definition scheme of  the formulas (6,,)..e; <\« (see Section 1), in such a way that they
define in T the linear order such that: (d,i) <;(d’,j)if and only if either i < j, or i = j
andd <gd'. O

A bidefinable coding is a transduction between two classes of abstract structures
which is bijective, definable and such that its inverse is also definable.

Corollary 4.5. Let € and 2 be two classes of graphs in bijection by a bidefinable
coding. If every CMS-definable subset of € is MS-definable, the same holds for every
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M S-definable subset of @. If every MS(<)-definable subset of € is CMS-definable, the
same holds for every MS(<)-definable subset of @.

Proof. Immediate consequence of Propositions 1.1 and 44. [

Remark 4.6. In the definition of an MS(<)-definable set, the condition that the
MS-property be order-invariant is essential if we want to have Theorem 4.1. Sets of
structures defined by a condition of the form: “there exists a linear order on S such
that (S, <) satisfies P” where P is an MS-property, are not always recognizable. As
a counterexample, one can take the sets with a unary predicate such that the number
of elements that satisfy this predicate is equal to the number of those that do not.

5. The reconstruction of a tree from its leaves

In this section, we consider whether and how it is possible to reconstruct a tree from
a ternary relation on its leaves derived from its internal structure, in a way that is
definable by MS- or by MS(< )-formulas. We shall give a construction using MS(<)-
formulas that works for proper trees and, for each integer d, another one using
MS-formulas only, that works for trees of degree at most d. This is an example of the
use of MS( < )-formulas and will be applied in the next section to the logical character-
ization of recognizable sets of cographs.

In this section and in the following one, the vertices of trees will be called nodes. This
is useful in complicated situations where we deal with trees representing graphs. The
set of nodes of a tree T'is denoted by Ny. A node that is not a leaf is internal. We shall
denote by Ly the set of leaves of T. We shall denote by <r(or < if the context makes
T clear) the partial order edg¥ on N. Every two nodes x and y have a greatest lower
bound for <y that we shall denote by x A y (or by x Ary if necessary). Finally, for
every triple of leaves of T, we let Ry(x,y,z)} hold if and only if x Ay < z. We let
A{T)={L+,Ry> (4 stands for “leaves”).

A tree T can be given either as the structure {(Ny,edgy> or as the structure
{Ny, 7. These two representations are equivalent for MS-logic because each of
edg; and < is MS-definable in terms of the other.

A tree is proper if it has at least two leaves and no node has exactly one successor.
The number of nodes of a proper tree is at most twice the number of its leaves.

Proposition 5.1. Given a finite set L of cardinality at least 2 and a ternary relation R on
L, there is at most one proper tree T such that A(T) = {L,R).

Proof. Assume that there exists a proper tree 7 with Ly = L and Ry = R. Let < be
the binary relation on L x L such that

(x,¥) <{z,1) if and only if R(x, y,z) and R(x. y,t). (1)
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It is clear that (x, y) <(z,t) if and only if x A7y < z Agt, hence that < is a quasi-
order. For any two leaves x and y, we have (x, x) < (y,y) if and only if x = y because
X ApXx =X, yAary =y Since T is proper, every internal node of 7 is of the form x A y
where x and y are distinct leaves. It follows that (Ny, <) is isomorphic to the
structure {Lx L/=,</=> where (x,y) =(z,t) if and only if (x,y)<(z,t) and
(2,t) < {x, y). In this isomorphism, the leaves x correspond to the pairs (x, x) (which are
singletons in their equivalence classes). This gives a definition of 7'in terms of L and R.

Hence T is the unique tree such that Ly = L and Ry = R.

Remarks. (1) If {L,R)> = A(T) where T is not proper but card(L) > 2, we obtain from
this construction a proper tree 7~ such that A(7") = (L, R).

(2) The class of structures (L, R} of the form A(T) for some tree is characterized by
a first-order formula. (To see this note that a structure {D, < is a tree if and only if
< is a partial order having a least element (the root) and such that every set of the
form {x|u < x < v} is linearly ordered; since we shall not use this fact, we omit the
details.)

Corollary 5.2. For every first-order formula ¢ € £({<},{X;,...,X,}) one can con-
struct a first-order formula ¢’ € #({R},{X, ..., X, }) such that, for every proper tree T,
for all sets L,...,L, < Ly:

(Lp,Rp, Ly, ... LioE @
if and only if

<NT’ <T!L15"',Lk>’= @.

Proof (sketch). The formula ¢ has no set quantification. Every object variable x of
¢ will be represented in ¢’ by a pair of variables (x', x"). We construct ¢’ by induction
on the structure of ¢. We begin with the atomic formulas:

x < y translates into 8(x’,x",y’,y") where 6(x;, x,, x1, x4) is the formula:

R(xy,%x3,%3) AR(x1,Xx3,X4),

x = y translates into 6(x’,x",y, y")A0(y,y", x',x"),

x € X; translates into x' = x"Ax € X|.

A formula of the form —1¢ or @ Ay translates into —1¢’ or @' Ay, respectively.
A formula of the form 3 x¢ translates into Ix’. x"¢". [

We would like to extend this corollary to MS-formulas. This could be possible if the
transduction i 71! (i.e., the reconstruction of 7 from {Ly,R;)>) would be a definable
transduction, which does not follow from the construction given in the proof of
Corollary 5.2 (and we conjecture that there is no alternative construction that would
make 4~ ! definable). However, we shall prove that 47! is indeed definable in two
special cases: when (Lr, Ry ) is equipped with a linear ordering and when the tree 7 to
be reconstructed has degree bounded by some fixed number.
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Theorem 5.3. The transduction of relational structures {({L,R,P),{N,suc))|P is
a linear order on L, {N,suc) is a proper tree T and {L,R> = A(T)} is definable. In other
words, the transduction 2" is definable provided the input structure (namely {L, R} is
ordered.

Proof. Let T be proper, let {L.R> = A(T),let P be a linear order on L. We derive from
P a strict linear order on the successors of the nodes of T:

if y. z are two successors of x, we let y <,z if and only if the P-smallest leaf below
v is strictly P-smaller than the P-smallest leaf below z.

Since P is proper, every internal node x has a first successor and a second successor
(with respect to the strict order <), denoted respectively by sucl(x) and suc2(x).
Every internal node x has a representative leaf, denoted by rep(x), that we define by:
rep(x) = suc2*(sucl{x)) where for every node y, suc2*(y) = such2"(y) and n is the
unique integer (n = 0) such that suc2”(y) is a leaf. The mapping rep is thus a bijection
of N; — L onto a subset of L.

Our next purpose is to find an MS-formula 6 € #({R, P}, {x,y,z}) such that, for
every x.y.zin L,

(LR, PyE O(x,y,z) if and only if z = rep(x A y).

By Corollary 5.2, one can construct first-order formulas ¢, ..., @4 such that, for all
u.v,u v’ e L

LLRYE @i(uv,u',v')if and only if unv <pu' A,

LRYE @ (u,v,u',v') if and only if u' A v’ 1s a successor of u A v,

{L,R.PYE @;i(u,v,u', v} if and only if u' A v’ is the first successor of u A v,

{L,R.PY>E @4(u,v,v',v") if and only if u' A v’ is the second successor of u A v.

We observe that for all x,y,ze L, z=rep(xAy) if and only if there exists
a nonempty sequence X, X;, ..., X, of leaves such that:

z A xy is the first successor of x A y,

z A x; is the second successor of zAax; ; 2< i< n), z=Xx,.

These conditions can also be written as follows:

z = rep(x A y}if and only if there exists a set of leaves X and a leaf x" € X such that:

(1) z A x’"1s the first successor of x Ay,

(1) the graph (X, —>) where u— v is defined by

“z A v is the second successor of z A u”
is a path with first element x’ and last element z.

From this latter formulation, the construction of an MS-formula 6(x, y, z) defining
the relation z = rep(x A y) follows immediately. We now construct from (L, R, P) the
following structure (N, suc>:

o N=Lx{1} UL x{2} where L' = {rep(x A y)|x #y, x,y € L}.
e ((z,i), (z',))) € suc if and only if.
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either j = 1 and i = 2 and there exist u.v with u # v, such that z’ is a successor or

unvand z = rep(u A v) (this can be expressed by ¢, (u,v,z',2') A B(u, v, 2))

or i =j=2 and there exist u,v,u’,v’ with u # v, v’ # v’ such that z = rep(u A v),

z' =rep(u' Av') and v A v’ is a successor of u A v (this can be expressed by the

formula @,(u,v,u’, ')A B(u, v,z A B, 1", 2')).

By using the formulas ¢,, ..., @4, 0 one can construct a definition scheme and prove
thus that the transformation © = (L, R, P> — (N, suc) is definable.

If Pis alinear order on L and {L,R > = A(T) then (N, suc) is isomorphic to 7. Note
that {N,suc) = t({L,R, P>) may be well-defined, even if (L, R} is not of the form
A{T). An additional MS-formula ¥ can be written such that, for every (L, R, P, we
have (L,R,P>E=y if and only if P is a linear order on L and the structure
({L,R, P>) = {N,suc) is a tree, the leaves of which are the elements of N of the form
(x,1) and such that for every x,y,z in L we have:

(1) (x,x,z)e R if and only if x = z and

(2) if x # y, then (x, y, z) € R if and only if there exists u € L such that 6(x, y,u) holds,
and (u,2) is an ancestor of (z,1) in the tree (N, suc>.

The restriction of 7 to the structures that satisfy  is thus the desired transduc-
tion.

This representation of an internal node of a proper ordered tree by a leaf is also used
in [20] for proving that every MS-formula describing proper ordered trees of bounded
degree can be translated into an MS-formula where set quantifications are restricted
to sets of leaves.

Proposition 5.4. One can define by MS-formulas a linear ordering on every structure
AMT) such that T is a tree of outdegree atr most 2.

Proof. If {L,R> = A(T) where card(L) > 2 and T has outdegree at most 2, then there
exist by Proposition 5.1 and Corollary 5.2 a proper binary tree 7’ (all internal nodes
have outdegree 2) such that A(T') = (L, R)>. Hence we can restrict our attention to
proper binary trees. Let T= (N, sucy) be such a tree. We let y: Ny — {a,b,c} be
a node-coloring of 7 such that:

for every internal node x, if y and z are the successors of x then

7(xX) # 9(¥) #7(2) # y(x). (2)
There exists y satisfying these conditions; let us fix one and define

L,=Lrny Yw) forwe{ab,c}. (3)

Our objective is to MS-define in the structure (L, Ry, L,, L,, L. > the coloring y of
N7. From y it will be easy to obtain a linear order on Lt and to apply the construction
of Theorem 3.3.

We need some definitions. If x is an internal node of T we let B(x) be the smallest
{for inclusion) subset of N, that contains x and such that, for each ye B(x), if
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z € Sue(Suc(y)) and y(z) = p(y) then z € B(x). (There are either 2, 1, or 0 such nodes
z associated in this way with any node y.) We let B'(x) be the set of leaves that are
successors of nodes in B(x). We let B”(x) = B(x) n Ly.

Claim 1. (1) y(y) = y(x) for every y € B(x).
(2) y(y) # y(x) for every y € B'(x).
(3) B(x) is closed under A.

Proof. (1) 1s clear from the definition of B(x).

(2) follows from (1) since if y € Sue(z) then y(y) # y(2).

(3) Let us construct B(x) by starting from x and adding nodes as required by the
definition; whenever one adds z, and z, (or just z;) from y with z,, z, € Suc(Suc(y)),
then

ZIANZy =Y, ZIAY =Y, Z3AV=Y, Z1AWS=YAW=Z3AW

for any already existing node w other than y,z,,z,. Hence, the closure under A is
preserved at each step of the construction of B(x). [J

For every node x € T we let pred(x) be its predecessor (i.e., its father). If X < Nz, we
let Pred(X) = {pred(x)|x € X }. For X, Y & L, we define

N(X,Y)={xAy|x,ye X U Pred(Y)}.

Note that X U Pred(Y) = N(X, Y} since z Az = z for every node z.
Claim 2. B(x) = N(B"(x), B'{x)) for every internal node x of T

Proof. We prove that every x’ € B(x) belongs to N(B”(x), B'(x)). We let £(x") be the
largest distance of x’ to a leaf below it. We use an induction on £(x’)

If /(x’) =0, then x' is a leaf, hence x" € B"(x), so x" € N(B"(x), B'(x)).

If £(x’) = 1, then the two successors of x’ are leaves, hence they belong to B'(x) and
x" € N(B"(x), B'(x)) since Pred(B'(x)) € N(B"(x), B'(x)).

If £/(x") = 2, then we distinguish two cases.

Case 1: Sue(x') = {y,,¥,}, y, is a leaf and y, is not. Then y, € B'(x) and
x" € N(B"(x), B'(x)) since Pred(B'(x)) = N(B"(x), B'(x)).

Case 2: Suc(Suc(x')) = {¥1,¥2.V3.V4)- TWo of them, say y; and y,, are in B(x) (by
the way T is colored and the set B(x) is defined) and x' = y; A y,. By the induction
hypothesis y, and y, belong to N(B"(x), B'(x)). Hence we have y, =z, Az, and
V. =z3A 24 fOr z9,2;,25,24 € B"(x) U Pred(B'(x)). Since x" = y; A y,, we have also
X' =2z, Az3, hence x" € N(B"(x), B'(x)).

We also have N(B"(x), B'(x))  B(x) since B(x) is closed under A, B"(x) & B(x) and
Pred(B'(x)) < B(x). O

We make a break for an example.
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Fig. 5.

Example. Fig. 5 shows a tree, with the coloring v of a node x and of its descendents
{x has color a). The elements of B(x) — B”(x) are circled, the unique element in B”(x) is
circled in bold, those of B'(x) are boxed. Note that not all nodes colored by a are in
B(x).

We now continue the proof. If x,y e L, if X, Y = L, we say that (X, Y) is a good
pair for (x, y) if:

M XnY=0and xAye N(X,Y),

(2) for every ze N(X, Y) and t € Suc(z) we have t ¢ N(X, Y),

(3) for every z € N(X, Y), either z has two successors in Y, or z has one successor in
Y and another one, t, such that Sue(t) N N(X, Y) is singleton, or z has two successors
t,t' such that Suc(t) n N(X, Y) and Suc(t’) n N(X, Y) are both singletons.

Claim 3. For every internal node x of T, if v,z are leaves such that x = y A z, then
(B"(x), B'(x)} is good for (y, z).

Proof. Easy verification from the definitions of B'(x) and B"(x). [

Claim 4. For every two distinct leaves y,z of T, y(y A z) = a if and only if there exists
a good pair (X, Y) for (y,z) suchthar X € L,and YC L, U L,.

Proof. The “only if” part follows from Claims 1-3: one takes X = B"(ynz) and
Y= B'(yaz) Then (X, Y)is good for (y,z) by Claim 3; X € L,and Y < L, u L. by
Claim 1; X and Y are disjoint because of the colors.

Let, conversely, (X, ¥) be a good pair for (y,z)such that X € L,and Y= L, U L,.
We let x = yaz. It is enough to prove that every w e N(X, Y} has color a since
yaze N(X,Y) by the definition of a good pair. We prove this by induction on #(w)
(see Claim 2 for ¢). If £(w) = O then w is a leaf and w e X. Since X < L,, we get the
result. If £(w) = 1 then w has two successors w, and w, which are leaves, hence must
be in Y since (X, Y) is good. Hence they have colors b or ¢, and not both the same.
Hence w has color a by the coloring rule of 7. If #(w) = 2 then there are two cases.
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Case 1: Suc(Suc(w)) = {y1,¥2,V3, V4. By the definition of a good pair, two of these
nodes, say y; and y,, belong to N(X, Y). They have both color a by the induction
hypothesis. Let y; be the brother of y; and y, be that of y,. Then y; has color b or c.
Say b. Then y, cannot have colors a (as brother of y, with color a) or color b (because
then y; A y; and y; A y4 would be two brothers with the same color ¢). Hence y, has
color ¢, y; A ys and y, A v, have color ¢ and b, respectively, and w has color a.

Case 2: Suc(w) = {y,,y.2}, v, is a leaf, Suc(y,) = {y3,y4}. Then because (X, Y) is
good, one of y3, ¥4, say vs, Is in N(X, Y), hence has color a by induction hypothesis.

Subcase 1: y, € Y. Then y, has color b or ¢, say b. Then y, cannot have color
a (because of y3) or b (as brother of y; with color b). Hence it has color ¢. Hence w has
color a.

Subcase 2: y, € N(X, Y. this contradicts the definition of a good pair (Clause 2).

Hence we have proved that w has color a as desired. []

Claim 5. One can construct MS-formulas 0 and o¢,, in Z({R},{x,y, W,, W,, W.}) for
every w € {a,b,c} (where W,, W,, W, are set variables) such that, for every proper binary
tree T, for every z,t € L we have:

1) AT)E @izt L, Ly, L) if and only if y(z A t) = w, where 7 is a node-coloring and
L,, Ly, L are sets of leaves that satisfy (2) and (3), and

(1) the binary relation < such that

z<tifand only if A(TYE= 0z, L,, Ly, L)

is a linear order on L.

Proof. (i} The construction of ¢, is based on Claim 4. The property that a pair of sets
of leaves (X, Y) is good for a pair of leaves (x,y) is first-order in the structure
(Nyz,<y) (see the definition; note that x; A;x, = x5 is first-order definable from
< 7). Hence, it is first-order in (L, R;> by Corollary 5.2. In order to express that
7(z At) = a, 1t is enough to write:

there exist X, Y suchthat X = L,, Y= L, u L. and (X, Y) is good for (z,1).

This is MS-expressible in {Ly,R;)> with the help of L, L,. L, and gives ¢,. By
permuting the letters a, b, ¢ one obtains ¢, and o,.

{i)) We now define for z,z € L1: z < 1 if and only if there exist z’,t' € Ly such that
Sucr(zat)={zaztat'}, y(zAz') <gey(tAt’) (where <, is the order on colors:
a <gpo b <gec). This relation is MS-expressible with the help of the formulas
Dus Pp- @ ]

We can now finish the proof the proposition. We let W,, W, W, be set variables. For
all sets L,,L,,L. < Ly, the formula 6(x,y, W,, W,, W.) defines a binary relation
S(Lg. Ly, L) on Ly, where W, takes value L), for p = a, b, c. (If the sets L, L}, L, are
not associated with a coloring v satisfying (2) and (3), S(L,, L, L.) may not be a linear
order.) One can construct an MS-formula 6 € Z({R}. {W,, W,, W.}) such that for all
L, L, L. <Ly

(Lr,Ry, Ly, Ly, L) =0 if and only if (L;, Ly, L.) is a partition of Ly and the binary

relation S(L;, L}, L) is a linear order on Ly.
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The pair of formulas (, 8) specifies a linear order on every structure (L, R) which is
of the form A(T) for some proper binary tree 7, because, if (L,R> = A(T), the sets
L,,L,, L. associated with a coloring of T (according to (2) and (3)) satisfy J, and
S(L,, Ly, L.),defined by 0, is a linear order. (Of course é and 6 may also specify a linear
order on structures {L, R) not of the form A(T) but we need not care.) 0O

Proposition 5.5. Let d € N, d > 2. One can MS-define a linear ordering of every struc-
ture A(T) where T is a tree of outdegree at most d.

Proof. The proof will develop the tools introduced for the proof of Proposition 5.4. As
in Proposition 5.4 we need only consider proper trees.

Let T be a proper tree of outdegree at most d. We shall say that two nodes are at
distance n if the undirected path (where edges can be traversed in either direction)
linking them has n edges. Let D =(d + 1)*. For every x € N, there are at most
(d + 1)d® +d*> + d + 1) nodes y # x at distance at most 4 of x. The number is less
than D. We define A= {a,b,c} x {1,...,D}. Each subset {a,b,c} x {i} of A is called
a color class. An A-coloring of Tis a mapping y: N; — A. We define an A-coloring vy of
T by the following algorithm, using an arbitrary linear ordering a of Ny:

1. Define y(rootr) = (a, 1).
2. Until all nodes are colored repeat:
2.1. Let x be the < ,-smallest colored node having uncolored successors (where
<, is the lexicographic ordering associated with «, see Section 2) and let
(w,1) = y(x).
2.2. Lety{,vs,..., ¥, be the successors of x enumerated by increasing order for «;
{fact: none of them is colored}.
23. Define y(y;):= W' i), y(y2):= (w",i), where {w,w"} = {a,b,¢} — {w} and
W < gpeW'.
24, For each j=3,...,ndo:
define y(y;):= (w,i’), where i’ is the smallest element of {1,...,D} that is
not the second component of the color of any colored node at distance at
most 4 of y;; {fact: i’ does exist because D is large enough}.

See Fig. 6 for an example.

We shall write ¢ & ¢’ to indicate that two colors ¢ and ¢’ are in the same color class,
and x — y to indicate an edge from x to y.

Claim 1. (0) No two adjacent vertices have the same color.
Let x,y,z,t,u be nodes of T.
(1) If y « x - z and y(y) = (2) then y(x) = y(y) and y(y) # 7(z).
(2) If x> y >z and y(x) x y(2) then y(y) = 7(x).
(3) If yex—ozotand y(y) = y(1) then y(x) = y(z) = ().
(@) If yo 2z x— t—uand 7(y) = y(u) then () = 7(x) = (1) = 7(¥).
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Proof. (0) That no two adjacent vertices have the same color is clear from the
definition of y.

(1) The algorithm above defines simultaneously y(y) and y(z): from Clauses 2.3 and
2.4, the result follows.

(2) Consider the step where y(z) is defined. This cannot be by Clause 2.4 because
then y(z) would not be in the same class as y{(x) which has been defined earlier and z is
at distance 2 of x. This must be by Clause 2.3 which gives y(z} = y(y).

(3) The last of nodes x, y, z, 1, the color of which is defined, must be ¢. If y(¢) is defined
by Clause 2.3 then y(t) = y(z) and the result follows from (2). It cannot be by Clause 2.4
because ¢ is at distance 3 of y and we assumed that y(t) = y(y). (This would contradict
Clause 24)

(4) The last node, the color of which is defined, is either y or u. Say y, without loss of
generality. If y(y) 1s defined by Clause 2.3 then y(y) x y(z) and we conclude by (3). It
cannot be by Clause 2.4 since y and u are at distance 4. (This would contradict
Clause 24.) [

For pe A we let L,= {x € L;|y(x) = p}. As in Claim 4, we shall prove that for
x,y € Ly, y(x A y) can be determined from the sets L,. We redefine a few notions from
the proof of Proposition 5.4. For x € Ny — Ly we let B(x) and B"(x) be as in this proof.
We let B’(x) be the set of leaves z such that z € Sue(y) for some y € B(x) and y(z) and
y(y) are in the same color class. Claim 1 holds, but, in addition, y(y) and y(x) are in the
same color class for every y € B’(x). For X, Y © L, we define N(X, Y)exactly as in the
proof of Proposition 5.4 and Claim 2 holds. (The proof is essentially the same, we omit
details.) The notion of a good pair is as in the proof of Proposition 5.4. With these
definitions, if y and z are distinct leaves then (B"(y a z), B'(y A z)) is good for (y,2) (i.e.,
Claim 3 holds). The verification is straightforward.
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Claim 2. If (X, Y) is a good pair for (y,z), if X € L, ; and Y S Ly ;U L. ;, then
Yy nz)=(ai).

Proof. We prove by induction on #(w) that y(w) = (a,i) for every w € N(X, Y), where
X, Y is good for (y,z). If £(w) = O then w is a leaf, w € X and y(w) = (a,i). If £(w) = 1,
the successors of w are leaves. Two of them must be in Y, hence have colors (b,i) or
{c,i). From the way v is defined, it follows that y(w) cannot be anything else than (a,i)
by Claim 1. ff/(w) > 2 we may have several cases, arising from the definition of a good
pair.

Case 1: w has two successors in Y and we get y(w) = (a,i) as above.

Case 2: w has one successor ¢t in Y and one successor t' with t” € Suc(t’) n N(X, Y).
Hence y(z) is (b, i) or (c,i). Say y{t) = (b, i). And y(t") = (a, i) by induction. It follows
from Claim 1(3) that y(¢') = y(t). Hence y(t') = (c,i) (it cannot be {(a,i) because of
y(t") = (a,i), and it cannot be (b, i) either because of y(t) = (b, i)). Hence y(w) = (a,i).

Case 3: w has two successors t,t’ such that there exist y € Sue{t) » N(X, Y) and
y €8uc(t') n N(X,Y). By induction y(y) = y(y’) = (a,i). Assertion (4) of Claim 1
gives y(w) = y(t) = y(t'). As in the proof of Claim 4 of the proof of Proposition 5.4, we
obtain y(w) = (a,i). [

We obtain thus, as in Claim 4 of the proof of Proposition 5.4, that y(y A z) = (a,i)if
and only if there exists a good pair (X,Y) for (y,z) such that X = L, , and
Y< Ly, v L. Then one finishes the proof as for Proposition 5.4. [

Theorem 5.6. Let ne N, n = 2. The transduction

{(CL,RY,{N,sucy)|{L,R) = AT), T = {N,suc) and
T is a proper tree of outdegree at most n} is definable.

Proof. The case n = 2 follows from Theorem 5.3 and Proposition 5.4 because, given
{L,R) (of tR® appropriate form), one can MS-define a linear order on L (by Proposi-
tion 5.4) and from this order, one can define 7= A~ '((L,R)) by Theorem 5.3. The
case n > 2 follows similarly from Theorem 5.3 and Proposition 5.5. [

We now recall the definitions of some fragments of MS-logic on trees. A chain
variable is a set variable, the interpretation of which is restricted to chains, i.e., to sets
of nodes linearly ordered by the order of descendence. An antichain variable is,
similarly, a set variable, the interpretation of which is restricted to antichains, i.e., to
sets of pairwise incomparable nodes. We shall consider definability by formulas such
as:VX*3yevze? @ ..., where X* Z? are antichain variables and Y* is a chain variable.
It is easy to translate such a formula into an ordinary one where the set variables have
no restricted range. (One replaces typically a formula 3Z* ¢ by the formula 3Z [“Z is
an antichain” A '] where ¢’ translates inductively ¢.) An antichain formula
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(a chain-antichain formula) is a formula where all set variables are antichain
variables (resp. are chain or antichain variables). We get thus the notions of
antichain (chain-antichain) definability, which are restricted forms of MS-
definability.

If Tis a tree, locally ordered by «, we let A({T,a>) = (L.r,Ry, <,) where <, is the
lexicographical order on leaves associated with «. If K is a set of trees, either locally
ordered or not, we let A(K) be the set of structures A(T) for 7 in K.

Corollary 5.7. Let K be a class of proper trees. Then
(1) K is MS-definable
if and only if
(2) A(K) is MS(< )-definable.
The following conditions are equivalent:
(3) K is chain—antichain definable,
(4) K is antichain definable,
(5) A(K) is MS-definable.
If K is a class of locally ordered proper trees or of proper trees of bounded degree, then
these five assertions are all equivalent.

Proof. (1) = (2) follows from Theorem 5.3 and Proposition 1.1.

(2) = (1) follows from Proposition 1.1 and the remark that / is definable.

(3) = (5). Let T be a proper tree. We first show that its chains can be represented by
leaves and sets of leaves.

For every x € Ly and X < Ly, the set C(x,X)= {xAy|ye X} is a chain. Every
chain is of this form (because T is proper). Hence a chain variable on T can be replaced
by a pair (x, X ) of an object variable x and a set variable X ranging, respectively, on
leaves and sets of leaves. The membership y A z € C(x, X)) for y,z € Ly is definable in
terms of x, y,z, X.

We now represent antichains similarly. If X < Ly we let A(X) be the set of
<p-maximal (closest to leaves) elements of {x A y|x # y,x,y € X }. It is an antichain
of internal nodes of 7. Conversely, every antichain of internal nodes is of this form. An
arbitrary antichain Z of T can be described as Z = Y U A(X) for some subsets Y and
X of Lz. It follows that antichain variables on T can be replaced by pairs of set
variables ranging over subsets of L. This gives (3) = (5), and (5) = (4) is clear because
L is an MS-definable antichain of 7.

(4) = (3) 1s tnvial.

Let us finally assume that 7 is locally ordered or of degree at most d for d fixed.
Then a linear order of A(T) is either given in this structure in the first case, or
MS-definable by Proposition 5.5 in the second. Thus, we get (2) = (5). Since (5) =(2)
holds in all cases, we obtain the final assertion. [

Remarks 5.8. The hypothesis that trees are proper is essential in Corollary 5.7. For
arbitrary trees of bounded degree it is known from Thomas [23] that antichain
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definability is weaker than MS-definability. It follows of Theorem 5.6 that antichain
definability and MS-definability are equivalent for proper trees that are either locally
ordered or of bounded degree. This result is proved in [20] for proper trees that are
locally ordered and of bounded degree.

6. Modular decompositions

Every directed or undirected graph can be represented in a unique hierarchical way
by means of its modular decomposition. The modular decomposition can be seen as an
algebraic expression evaluating to the considered graph, but based on other opera-
tions than those of Section 1.

By using the results of Section 5, we prove that the transduction from an ordered
graph to its modular decomposition is definable. The resulting modular decomposi-
tion does nor depend on the linear order on the given graph. We obtain thus that every
recognizable set of graphs, the modular decomposition of which uses finitely many
prime graphs, is MS( < )-definable. We shall first consider the special case of cographs.

An undirected graph is a directed graph such that every edge (x, y) has an opposite
edge (y,x). We let U be the set of finite simple undirected loop-free graphs and U be
the set of isomorphism classes of graphs in U. We define two graph operations. The
(concrete) disjoint union @ transforms a pair of disjoint graphs G,. G, from U into the
graph G, ® G, which is simply their union. The (concrete) product of two disjoint
graphs G, and G, in U is the graph G, ® G, obtained from G, @ G, by the addition
of an edge between any vertex of G, and any vertex of G,. The (abstract) disjoint union
@ transforms a pair of (abstract) graphs G,, G, from U into the isomorphism class of
K, ® K, where K, and K, are disjoint concrete graphs respectively isomorphic to G,
and G,. The abstract version of the product is defined similarly. The operations
@ and ® are total on U. The graphs with a unique vertex form an isomorphism class
denoted by 1.

The set of (concrete) cographs is the least subset of U containing the single vertex
graphs and closed under @ and ®. (Equivalent definitions of cographs are given in
[4].) An abstract cograph is thus the value of a term built with @, ® and the nullary
symbol 1. The operations @ and ® are associative and commutative and two terms
define the same abstract cograph if and only if they can be transformed into each other
by using these algebraic laws. The operations @ and ® will be handled as operations
of variable arity, without any relevant order on their arguments. Every abstract
cograph is the value of a canonical expression called its cotree and that we now define.

We need the notion of module, to be used also later. Let G be a directed graph (not
necessarily in U). A module in G is a subset X of V such that every vertex y € V5-X
“sees all vertices of X in the same way”. Formally, X is a module if and only if for every
vev; — X

either (x, v) € edgg for all x in X

or (x,y) € edg; for no x in X
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and
either (y,x) € edg,; for all x e X
or (y,x) € edg; for no x e X.
We say that X is a prime module if for every module Y:
either XS YorYS Xor XnY=0.
It follows that @, V;; and all singletons are prime modules. The modular tree of G is
the tree mt(G) = (N, suc) defined as follows:
o its set of nodes N is the set of nonempty prime modules,
e Y is a successor of X if and only if ¥ < X and there is no prime module Z with

YeZcX and Y#Z #X.

This tree will be used below to construct the modular decomposition of a general
graph G. For the moment, we go back to cographs. If G is a concrete cograph, if X is

a prime module of G and if Yi,..., ¥ are it successors in mt(G) then there are two
cases:
either G[X]=G[}]® - ® G[X] (1
or G[X]=6G[N"]® - ®G[X] 2

(At most one of these cases holds: condition (1) implies that G{ X ] is not connected
and condition (2) that it is. If G[X] is not connected, each of its connected compo-
nents is a prime module of G[X ] and of G. We get equality (1). If it is not, one replaces
G by its edge complement: it remains a cograph because the operations @ and ® are
exchanged but modules are not changed. One then uses case (1).)

We use here the concrete versions of @ and ®. We obtain the cotree of G by
equipping mt(G) with the following labelling: the label of a prime module X of G is 1 if
X is a leaf of mt(G) (equivalently: is a singleton), it is @ if X satisfies (1) and it is ® if
X satisfies (2). We obtain in this way the cotree of G denoted by cotree(G). It can be
seen as the tree representation of a term that evaluates to G.

Example 6.1. A cograph G is shown in Fig. 7. Its vertices are a,b,...,g. The boxes
represent the prime modules that are not singletons, and they are numbered from 1 to
4. Its modular tree is shown in Fig. 8 with its labelling. The corresponding expression

slele)eedel)el
Proposition 6.2. The transduction from an ordered cograph to its cotree is definable.

Proof. Let G be a cograph. Letting apart the speciai case where G has a single vertex,
its cotree T'is proper. By Theorem 5.3 we need only define in G, by an MS-formula, the
ternary relation Rr. It is clear that for any two leaves {x} and {y} of 7' (x and y are
vertices of G) the node {x} A {y} of T is the <-minimal prime module containing
x and y. It follows that Rp({x}, { ¥}, {z}) (which is equivalent to {x} A {y} < {z})can
be expressed as:

every prime module containing x and y also contains z. 3)
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Since the notion of a prime module is expressible by an MS-formula, the property
Rr({x},{y},{z}) is MS-expressible. By using Theorem 5.3, we obtain (N, suc) from
(Vg,edgg, P> by an MS-definable transduction, where P is an arbitrary linear order
on V;. It remains to MS-define the labelling of the nodes of the tree (N, suc). A leaf is
labelled by 1. An internal node X of the tree (N, suc) is labelled @ if and only if X has
two distinct successors Y and Z and there are two vertices y and z such that ¥ <r{y},
Z <r{z} and y and z are not linked in G. It is labelled ® otherwise. Provided G is
a cograph, the preliminary results on cotrees recalled previously ensure that
(N, suc,lab) is the cotree of G where lab is the above defined labelling. Since an
undirected graph is a cograph if and only if it has no induced P,, i.e., no induced path
with 4 vertices, the condition that G is a cograph is MS-definable. This completes the
proof. [

It follows from this result that a set of cographs K is {@®, ® }-recognizable if and
only if it is MS(<)-definable. This consequence will be proved later as a corollary of
a more general result.

We now consider modular decompositions of graphs. We shall only consider the
case of directed graphs. Since an undirected graph is a directed graph having the edge
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(y, x) whenever it has an edge (x, y), the case of undirected graphs is just a special case
of that of directed graphs. The modular decomposition is based on the substitution of
graphs for vertices of graphs. We recall this notion (called the X-join in [22]). As in
Section 1, we distinguish the set G of (concrete) directed graphs from the set G of their
isomorphism classes (all of them without sources).

Let H be a graph with Vi = {v,, ..., 0, }. For pairwise disjoint graphs G, ..., G,, we
let H{G,...,G, > be obtained in the following way. One takes the union of G, ..., G,
and one adds an edge (x, y) whenever x € V5, y € Vg, i # j, and (v;, ;) is an edge of H.
Hence, we get a partial k-ary operation on G. It yields a total operation on G (as the
other operations considered previously). We shall use in particular the operations

G, ®G,=H{G,G,> where H= {*v, *r,},
G, ®G,=H{(G,G,> where H= {vy* _ *v,3},
G, ®G, = H{(G,,G,> where H= {v;* — 1, ).

The first two (that we have already defined for undirected graphs) are associative and
commutative, the last one is only associative.

A graph G is prime if it cannot be written as H (G, ..., G,) except in a trivial way
with H = G and G, has a unique vertex for each i. This is equivalent to the condition
that all modules are empty, singletons or equal to the set of all vertices. (The above
three operations are associated with the three graphs with two vertices, which are all
prime.)

The modular decomposition of G is the labelled tree mdec(G) = {mt(G), lab> where
we define lab as follows. (The nodes of mt(G) are the nonempty prime modules of G.)
For every prime module X that is not a singleton we have exactly one of the following
4 cases, where Y1, ..., Y, are the successors of X in mt(G) (they are prime modules and
can be singletons):

Case I: G[X]=G[Y,]1® - ®G[Y,].

Case 2: GIX]=G[]® - ®GCG[ Y]

Case 3: G[X]=G[¥,]® - ® G[ Y] (for some appropriate numbering of the
successors of X, let us recall that the operation ® is not commutative).

Case 4 G[X] = H{(G[Y,],....G[%;])> for some prime graph H with at least
3 vertices; this graph H is obtained from G[X ] by the fusion of any two vertices in
a same set Y;, the deletion of the resulting loops and the fusion of the resulting
multiple edges having the same direction.

(We use here operations on concrete graphs.) The label of X is defined by:
lab(X):= @ in Case 1, lab(X )= ® in Case 2, lab(X):= @ in Case 3, and lab(X)= H
in Case 4.

The modular decomposition of a graph G can be seen as the tree representing
a term denoting G and constructed with substitution operations. See [14] for a linear
algorithm computing the modular decomposition of a directed or undirected graph.
Here is an example showing that mdec(G) can be considered as a certain expression
evaluating to G.



B. Courcelle | Theoretical Computer Science 160 (1996) 87143 133

Y

Fig. 9.

® ® 3

NN
/«\\
VANNA

Fig. 10.

a

Example 6.3. Fig. 9 shows a directed graph, with vertices a, b, ..., k; the boxes show its
prime modules. Fig. 10 shows its modular decomposition. The operation labelling
node 4 of the modular decomposition is the substitution associated with the graph
H defined as v,° « v, « v3* — *v,. Note the relevant ordering of the vertices of H.

Modular decompositions defined in this way can be considered as terms, built over
an infinite set of operations because each prime graph is turned into a graph operation
and there are infinitely many prime graphs. This is not convenient for our purposes
since we want to consider all modular decompositions as relational structures using
a same finite set of relation symbols. We shall redefine them as graphs by means of the
notion of graph expansion already used in [13].

An e-graph is a directed graph K, some edges of which (called the e-edges) are
labelled by ¢ (the other being unlabelled), and such that the subgraph of K consisting
of the g-edges is acyclic. An e-graph K will be represented by the relational structure
{Vg,edgy,edgi > where edgi represents the ¢-edges and edgy the other ones. A graph
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G called the expansion of K can be associated with an e-graph K. We let Vi be the set
of vertices of K that are not the source of any e-edge. We let (x, y) be an edge of G if and
onlyif x # y and there exists an edge (x’, y’') in K such that there is an ¢-path in K from
x’' to x and one from y’ to y. (An &-path is a directed path consisting of e-edges.) We
denote G by exp(K).

For every graph G, we let gdec(G) (read “the graph representation of the modular

decomposition of G”) be the e-graph K defined as follows from the modular tree mt(G):

V¢ is the set of nodes of mt(G).

Its ¢-edges are the edges of mt(G).

For every node X of mt(G), i.e., every prime module of G, we put edges between the
successors Y7, ..., ¥, of X in mt(G) according to the four cases considered in the
definition of mdec(G):

in Case 1, we put no edge (X is a @-node);

in Case 2, we put an edge from Y, to Y] for every i,j # i (X is a ®-node);

in Case 3 we put an edge from ¥, to Y] for every i, j with 1 < i < j < k (we assume
that the successors Y;,..., Y are labelled in such a way that G[X]=
G["1® - ®G[LK]; X is a ®@-node);

in Case 4 we have G[X] = H{G[Y;],...,G[Y]) where H is prime with at least
3 vertices, and we put an edge from ¥, to ¥, if and only if there is an edge in G from
a vertex of Y, to one of ¥; and i #/ (X is an H-node).

Example (continuation of Example 6.3). The ¢-graph gdec(G), where G is the graph of
Example 6.3, is shown in Fig. 11. The e-edges are light and oblique; the others are bold
and horizontal.

Proposition 6.5. For every graph G, gdec(G) is an e-graph and G = exp(gdec(G)).

Proof. Easy verification by induction on the structure of the tree mt(G). O

/1\

/\ /\
ZA\
7\

Fig. 11.
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Proposition 6.6. The transduction that associates with an ordered graph G its modular
decomposition gdee(G) is definable.

Proof. The proof is a straightforward extension of the one given for cographs
(Proposition 6.2). As in this proof, we can construct the tree T = mt(G) by a definable
transduction. More precisely, we can obtain the structure (N;,sucy,edg;> from
(Vg;,edgg, P>, where P is a linear order on V;;, by a definable transduction. (Since the
leaves of T are the vertices of G, the relation edgg is a binary relation on Ny.) The
relation sucy gives the e-edges of the graph gdec(G). By the definition of gdec(G) its
other edges can be defined as follows by an MS-formula over {Ny,suey, edg; ) (or
a first-order formula over (N, <, edgg D).
for x,y # x in N, there is in gdec(G) an edge from x to y if and only if:
{1) x and y are both successors of some node z of 7, and
(2) there are leaves u, v of T with u below x and ¢ below y such that (u,v) is an
edge of G.

This completes the proof. [

Corollary 6.7. (1) Every graph property that is expressible as an MS-property of the
modular decomposition gdec(G) of the considered graph G is MS(< )-expressible.

(2) Every graph property that is expressible as a first-order property of the modular
decomposition gdec{G) of the considered graph G is MS-expressible.

Proof. (1) is an immediate consequence of Propositions 6.6 and 1.1.
(2) follows from Corollary 5.2, the remark that gdec(G) is first-order definable from
{Nr, <,edg;> and the fact that R; is MS-definable from G. [

Let us define the modular width of a graph G as the maximal number of vertices of
a prime graph H appearing in an H-node in the modular decomposition of G. We
shall denote it by mwd(G). If G is prime then mwd(G) = card(V;). The modular width
of a cograph is 0. The modular width of an undirected graph is either 0 or at least
4 because the smallest prime undirected graph with at least 3 vertices is Py (the
undirected path with 4 vertices). The modular width of a directed graph is either 0 or
at least 3 (the directed graph: « « « « . is prime).

Proposition 6.8. For every ne N, it can be expressed in MS-logic that the modular
width of a graph is at most n.

Proof. We check that the property mwd(G) < n is expressible as a first-order property
of the ¢-graph gdec(G). We need only express that the integer k appearing in Case 4 of
the definition of edges linking the successors of any node of mt(G) is at most n. This
means that we can separate the nodes of type 1,2,3 that may have more than
n successors from those of type 4. Nodes of type 1 are those such that there is no edge
between any two distinct successors. Nodes of type 2 are those for which there is an
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edge between any two successors. The only remaining case concerns the identification
of nodes of type 3 by a first-order formula. Let us first remark that a graph is linear
{see Section 1) if and only if:

— it is transitive (i.e., (x, y) is an edge if (x, z) and (z, y) are edges),

— it has no pair of opposite edges,

— any two vertices are linked by an edge.

These conditions are expressible in first-order logic. And a node x of mt(G)
is of type 3 if and only if the induced subgraph gdec(G)[ X ] of gdee(G), where X is the
set of successors of x in mt(G), is linear. This can be checked by a first-order
formula. 0O

For cach n € N we let PR, be the set of prime graphs with at most n vertices and at
least 3 vertices. For each H € PR, given with a fixed enumeration v, ...,y of its
vertices (k < n), we define a function symbol suby intended to represent the operation
that associates H{G, ..., G;> with graphs G,,....G,. We let %, = 1@,@,@),1]} V]
isuby |H e PR,} and #, = | ) {#,|n > 0}. The finite terms built over &, (we denote
their set by T(%,)) define the graphs of modular width at most n.

For manipulating graphs of bounded modular width, such terms handled as trees
are convenient. However, the definition of mdec as a labelled tree must be refined: the
order of the successors of the ®-nodes and of the H-nodes must be specified because
the corresponding operations, namely ® and suby,, are not commutative. We shall do
that by means of an integer that marks the position of a node among its brothers in
these two cases. Furthermore, the operation ® being associative, we can forbid that
a ®-node be a first successor of a ®-node. It follows that ®-nodes will always have
two successors. The operations @ and &® will be handled as associative and com-
mutative operations and @- and ®-nodes will have an unordered set of at least two
successors (all marked by 0 to indicate that there is no relevant order among these
SUCCessors).

We now define mdec’(G) from the labelled tree mdec(G). We fixn € N, n = 3, and we
let A =%,x{0,1,...,n}: this set will be used to label the nodes of mdec’(G).

First step: we create new ®-nodes. Let X be a node of mt(G), i.e., a prime module of
G. If G[X]1=G[1,]® - ®G[Y] and k >3 (this corresponds to Case 3 of the
definition of the labelling of mdec(G}), we introduce new ®-nodes z,,z3, ..., 24— and
we link them as follows: Y] is the first successor of X, and z; the second one; for
i=1,...,k — 3, Y;,, is the first successor of ¥ and z,,, is the second one; ¥, is the
first successor of z, _; and Y, the second one.

Second step: For every node X of mdec(G) labelled by fin #,. we relabel it into ( £, 1)
according to the following rules:

If X is the root or a successor of a @- or a ®-node, we let i = 0.

If X is the jth successor of a ®-node,j =1or2 weleti=j.

If X is the jth successor of an H-node, j € {1,...,n}, we let i = j. This corresponds to
Case 4 of the definition of the labelling of the father Z of X in mdec (G), where
G[Z] = H{G[1],...,G[ K], H is a prime graph with at least 3 verticesand X = Y.
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Example. Fig. 12 shows a tree mdec(G) and Fig. 13 shows the corresponding labelled
tree mdec’(G). In order to have a more readable drawing, the “0” 's 1s labels ( f,0) are
omitted.

I1 is easy to see that for each n, there is a bidefinable coding (see the end of Section 4
for the definition) between the structures gdec(G) and mdec'(G), for every G of
modular width at most n.

Corollary 6.9. For ecvery n € N, one can construct definable transductions thar associate
with every ordered graph (G, <) of modular width at most n the labelled tree mdec'(G)
and a term t(G, <) in T(%,) denoting G. The same holds for graphs G with a modular tree
mt(G) of degree at most n, without any order on G.
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Proof. For mdec’(G) the result follows from Propositions 6.6 and 6.8.

In order to get a term in T(%,) denoting G from mdec’(G), one need only replace the
®- and ®-nodes having at least 3 successors by sequences of, respectively, @- and
®-nodes having 2 successors, exactly as we did for the ®-nodes in the first step of the
construction of mdec'(G). From a given ordering of the vertices of G, one gets a linear
order on the successors of any node in the tree (cf, <p in the proof of Theorem 5.3).
This ordering makes it possible to transform the set of successors of a node into
a sequence, as needed. The obtained term is denoted by t(G, <). It depends on the
linear order <, but any two such terms associated with different linear orders define
the same graph, namely G. These transformations of mdec’'(G) into t(G, <) can be
done by a definable transduction; hence, the transduction t is definable, as composi-
tion of two definable transductions (Proposition 1.1).

If G has a modular tree mt(G) of degree at most n, then Theorem 5.6 and the proof
of Proposition 6.2 show that one can MS-define a linear order on the leaves of this
tree, 1.e,, on the vertices of G. Then, one applies the first statement. [

A set of abstract graphs L is &, -recognizable if it is recognizable with respect to the
F.-magma G. Since every abstract graph is expressible as a finite combination of
operations in %, and since whenever H = K{H,,...,H,> we have suby =
suby °(suby, ..., suby,), it follows from Proposition 1.3 that L is %, -recognizable if
and only if it is with respect to the operations suby associated with all not necessarily
prime graphs H. Equivalently, this means that L is saturated for an equivalence
relation ~ on G having finitely many classes and such that, for all graphs H,
Gi,....Gy, G, ..., Gy (where H has k vertices),

G, ~ Gy, ..., Gy~ Gy = H{G.....G,> ~ H(GY,...,G).
Proposition 6.10. Every MS(<)-definable subset of G is #,-recognizable.

Proof, This follows from Proposition 1.3 and Theorem 4.1 because the operations of
Z. can be built as combinations of the parallel composition || and of gfd operations
on the structures representing graphs. We omit details. (This extends the result of [5]
saying that the CMS-definable subsets of G are &, -recognizable.) [J

The converse does not hold because every set L of prime graphs is &, -recognizable
(take the equivalence relation H ~ H' if and only if H and H' are both in L or both not
in L). Hence there are uncountably many %, -recognizable sets of graphs so that they
cannot be characterized by the countably many formulas of any logical language
using finite formulas and countably many symbols. We are thus obliged to restrict our
attention to special classes of graphs (as we did in [7]) for the notion of recognizability
recalled in Section 1 in order to get logical characterizations of recognizability.

If L is a set of graphs, we denote by Gdec(L) the set of graphs gdee(G) for G in L and
we denote by Mdec'(L) the set of trees mdee’(G) for G in L.
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Theorem 6.11. Let n = 0 and L be a set of graphs of modular width < n. The following
are equivalent:

(1) L is MS(<)-definable,

(2) L is #_-recognizable,

(3) L is #,-recognizable,

(4) Gdec(L) is CMS-definable,

(5) Mdec'(L) is CMS-definable.

Proof. (1) = (2) follows from Proposition 6.10.

(2)=(3) is trivial.

(3)=(1): Let G be a graph. By Proposition 6.8, an MS-formula 8 can verify that
G has modular width at most n. Assume this is the case and let < be any linear order
on G. By Corollary 6.9 one can MS-define t(G, <) from (G, < ). Since L is assumed
Z,-recognizable, the set L’ of terms in T(&£,) that denote elements of L is recognizable
(Proposition 1.3) and hence MS-definable by Doner’s Theorem (which says that a set
of terms over a finite alphabet is recognizable if and only if the set of labelled trees
representing its elements is MS-definable; see [24]). Finally, we get by Proposition 1.1
an MS-formula y expressing in (G, <) that t(G, <) belongs to L, i.e., that G is in L.
Hence, the conjunction of 8 and ¥ expresses that (G, <) belongs to L(<). Hence, L is
MS(<)-definable.

(1)=(5): The transduction mapping mdec’(G) to G 1is definable as the
composition of the bidefinable coding of mdec’'(G) onto gdec(G) and the definable
transduction exp. Let L be MS(<)-definable; then, by Proposition 4.4, Mdec'(L)
is MS(<)-definable. Hence, it is CMS-definable by Corollary 4.3, since its elements
are trees.

(5)=(4) because mdec’'(G) and gdec(G) are related by a bidefinable coding and by
Proposition 1.1.

(4)=(1): Let L be such that L' = Gdec(L) is CMS-definable. Then L(<) is the
inverse image of the CMS-definable set L’ by a definable transduction (Corollary 6.6).
Hence, it is CMS-definable by Proposition 1.1. But the structures in L(< ) are ordered,
hence a CMS-formula on them can be replaced by an MS-formula. Hence, L(<) is
MS-definable, and L is MS(<)-definable. [0

Corollary 6.12. Let L be a set of graphs with modular trees of degree at most some
integer n. One can MS-define a linear order on these graphs. The statements of
Theorem 6.11 holds with MS instead of MS(<) and CMS.

Proof. The definability of a linear order follows from the proofs of Propositions 6.2
and 6.6 with the help of Theorem 5.6. The remaining follows from the fact that CMS
and MS are equivalent for trees of bounded degree (see [6]), and that MS(<) and MS
are equivalent on linearly orderable structures. [
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If L is a set of cographs, we denote by Cotree(L) the set of cotrees of the cographs in
G in L and we recall that each cotree is a labelled tree, hence a graph, and also
a member of T({®, ®})/= where = is the congruence generated by the equational
axioms expressing that @ and ® are associative and commutative. Note that
cotree(G) = mdec'(G) for every cograph G. The following result is just a special case of
Theorem 6.11 and Corollary 6.12.

Coraollary 6.13. Ler L be a set of cographs. The following are equivalent:

(1) L is MS(<)-definable,

(2) L is #,-recognizable,

(3) L is {®, ®}-recognizable,

(4) Cotree(L) is CMS-definable.
If L is a set of cographs with cotrees of degree at most some integer n, then these
statements hold with MS instead of MS(<) and CMS.

7. Summary and open questions

In Table 1 we review some answers to Question 1 of the introduction: these results
concern the possibility of defining linear orders on graphs by MS-formulas.

Table 1
Class of graphs Linear order Topological Topological Minimal
sorting sorting from topological
a local ordering  ordering
Directed and connected No Irrelevant Irrelevant Irrelevant

Directed, connected and of
bounded degree

Cographs with cotree of

bounded degree
Dags

Trees of bounded degree.
dags in o,

Dags in &7, traces

(Stars; see the
remarks before
Lemma 2.8)

Yes
(remarks after

Open question 2.7)

Yes
by Corollary 6.12

No
(Stars)

Yes
by Corollary 2.2

Yes
by Corolary 2.2

(in general)

Irrelevant
{in general)

Irrelevant

No
(Stars)

Yes
by Corollary 2.2

Yes
by Corollary 2.2

(in general)

Irrelevant
(in general)

Irrelevant

Yes
by Theorem 2.1

Yes
by Corollary 2.2

Yes
by Corollary 2.2

(in general)

Irrelevant
(in general)

Irrelevant

?

see Open
question 2.3
?

see Open
question 2.3
Yes

by

Theorem 2.4
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By “traces” we mean “dependency graphs of traces” in order to simplify. In each
box we give the reference to the proof, to a counterexample or to a discussion. Stars
are trees with all leaves at distance one of the root. Stars are in bijection by
a bidefinable coding with the nonempty discrete graphs. Hence they cannot be linearly
ordered by CMS-formulas (by the proof of Corollary 4.3).

Table 2 reviews the relationships between the classes of MS-, CMS-, MS(<)-
definable and recognizable sets of graphs. These results give some answers to Ques-
tion 2 of the introduction. By REC we mean the class of recognizable sets of graphs as
defined in Section 1. By #,,-REC we mean the class of #, -recognizable sets as defined
in Section 6. The stars and the discrete graphs establish the strictness of the inclusions
MS < CMS of this table. The equality CMS = REC is conjectured in [7] for graphs
of bounded tree-width, and proved for those of tree-width at most 2. For connected
directed graphs of bounded degree and for dags in ., the equalities
MS = CMS = MS(x) follow from the MS-definability of a linear order (see Table 1).

We now review some open questions that we state as conjectures:

Conjecture 7.1. It is not possible to reconstruct a proper tree T from A(T) by a definable
transduction.

Conjecture 7.2. Antichain definability is strictly weaker than MS-definability for proper
trees.

Conjecture 7.3. CMS-definability is strictly weaker than MS(<)-definability for gen-
eral graphs.

Table 2

Class of graphs

All graphs MS « CMS € MS(<) < REC
=7

Graphs of bounded tree-width MS < CMS € MS(<) € REC
=1 =7

Cographs. graphs of bounded modular width MS = CMS € MS(<) = #,-REC

=7
by Corollaries 6.13 and 6.12

Discrete graphs, trees, graphs of tree-width at MS = CMS = MS(<) = REC
most 2 by Corollary 4.3 and [7]

Connected directed graphs of bounded degree, MS = CMS = MS(<) < REC
dags in o,

Words, trees of bounded degree, traces. dags MS = CMS = MS(<) = REC by Biichi and Doner
in €, (see [24]), Proposition 3.4 and Lemma 2.8
Cographs with cotrees of bounded degree MS = CMS = MS(<) = #,-REC

Corollary 6.13
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We suggest an example for proving it. Let E(G) be the graph property saying: “G
has an even number of prime modules” or, equivalently, “the modular tree mt(G) has
an even number of nodes”. It follows from Theorem 5.3 that property E is MS(<)-
expressible.

Corollary 7.4. The property that a cograph has an even number of prime modules is not
CMS-definable.

We have the following implications:

Conjecture 7.4 = Conjecture 7.3,

Conjecture 7.2 = Conjecture 7.1 (see 5.10),

Conjecture 7.4 = Conjecture 7.1 (because the property E(G) is a CMS-property of
mt(G)).

Finally if CMS-definability is weaker than MS(<)-definability for cographs, then
Conjecture 7.1 also holds.
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