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DRAWING GRAPHS

We want to draw large graphs with
hierarchical view: a vertex in the
drawing = a group of vertices in the
graph

e preserve the relative positions of
vertices — mental map

e low complexity of algorithms
(linear, if possible)

— new type of drawing with constraints: rook-drawing



ROOK-DRAWING

A rook-drawing of a graph of n vertices:
o Straight-line edges
@ Regular grid (n columns and rows)

e Exactly one vertex per row and column
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PLANAR ROOK-DRAWING

Is there a planar rook-drawing for every plane graph?

A plane graph = a planar graph + an embedding in the plane

What we already know:

o Straight-lines drawing ([Fary, 1948] : every planar graph)

o Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every plane
graph on an (n — 2) x (n — 2) grid)
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OUTER FACE OF DEGREE 3

Three exterior vertices a, b and ¢, n vertices
(here n = 6).

We must place interior vertices on the red
c row and column

4 a > 45°, B > 45° + Mbc right-angled
a= [ =45°

Fill these row and column with ¢ and b!

Inner nodes: along a diagonal

Graph with a degree 3 outer face with planar rook-drawing =
subgraph of the tower graph J
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vertices are on the outer face.
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Only look to Ty:

@ x: ccw pre-order depth-first
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Hyp: G[T,] of depth k admits a planar
rook-drawing in the grid [x(v), x(v) +
Tol = 1] x [y(v) = |To| + 1, y(0)].
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Hyp: G[T,] of depth k admits a planar
rook-drawing in the grid [x(v), x(v) +
Tol = 1] x [y(v) = |To| + 1, y(0)].

By induction on depth:
Children subtrees: in distinct areas
and well drawn.

Edges from v to its children: no
crossings!

Red edges: between u and the first
vertex below u unrelated to it.

— between v;,1 and vertices on the left
of the subtree of v;: no crossings!



POLYLINE ROOK-DRAWING FOR PLANAR GRAPHS

Main result

Every planar graph with n vertices admits a planar polyline
rook-drawing, with at most n — 3 bends (at most one per edge). Such a
drawing can be computed in linear time.

G a triangulation (else, make it triangulated) with exterior vertices vy,
v1 and vy
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A Schnyder wood is a partition of the internal edges of a triangulation
in three trees Ty, T and T (directed toward the root) and with a
particular configuration around each inner vertex:
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A Schnyder wood is a partition of the internal edges of a triangulation
in three trees Ty, T and T (directed toward the root) and with a
particular configuration around each inner vertex:

PQ(U)

PQ(U)

[Schnyder 1989]

Every plane triangulation admits at least one Schnyder wood, and it
can be computed in linear time.
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e (To, T, Ts): Schnyder wood of G.
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e x: clockwise preordering of Ty =
{UoUzABCGDEFHIUl}.
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e (To, T, Ts): Schnyder wood of G.

o (v100), (v200), (v201)

e x: clockwise preordering of Ty =
{UoUzABCGDEFHIUl}.

o y: clockwise postordering of T; =
{DEABFHIGCuv,v; }
(vo = 0).

)
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@ The edges (1, Py(u)) are bent at
(x(u),y(Po(u)) + 1) (except for the

first child in Ty)
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@ The edges (1, Py(u)) are bent at
(x(u),y(Po(u)) + 1) (except for the
first child in Ty)

o The edges (i, P1(1)) are bent at

(x(last descendanty(u)),y(u)) (no
bend if u is a leaf of Tj)
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@ The edges (1, Py(u)) are bent at
(x(u),y(Po(u)) + 1) (except for the
first child in Ty)

o The edges (i, P1(1)) are bent at
(x(last descendanty(u)),y(u)) (no
bend if u is a leaf of Tj)

e Edges of T5: not bent
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CoNCLUSION

Open questions:
e Is a sublinear number of bends sufficient to draw any plane graph
planarly?
e If G is a graph with no triangle outer face, what are the conditions
to draw G planarly?

o What is the minimum grid size requested to draw a planar
straight-lines rook-drawing for a given plane graph? Is this
minimum a constant?



Thank you for your attention!



