Rook-drawing for plane graphs

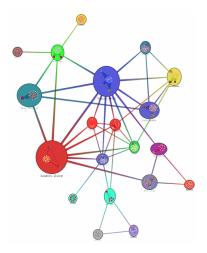
Claire Pennarun David Auber, Nicolas Bonichon and Paul Dorbec

LaBRI, Bordeaux

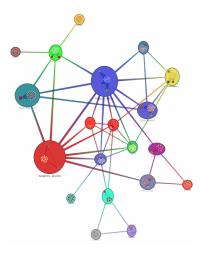
Graph Drawing September 25th, 2015

MAYBE YOU KNOW THEM?

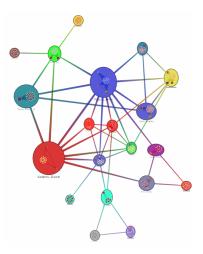
We want to draw **large** graphs with hierarchical view: a vertex in the drawing = a group of vertices in the graph



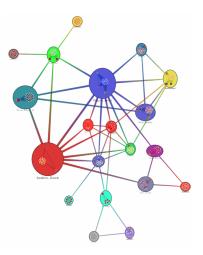
- We want to draw **large** graphs with hierarchical view: a vertex in the drawing = a group of vertices in the graph
 - preserve the relative positions of vertices → mental map



- We want to draw **large** graphs with hierarchical view: a vertex in the drawing = a group of vertices in the graph
 - preserve the relative positions of vertices → mental map
 - low complexity of algorithms (linear, if possible)

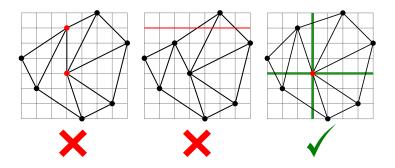


- We want to draw **large** graphs with hierarchical view: a vertex in the drawing = a group of vertices in the graph
 - preserve the relative positions of vertices → mental map
 - low complexity of algorithms (linear, if possible)

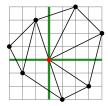


 \rightarrow new type of drawing with constraints: rook-drawing

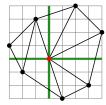
- Straight-line edges
- Regular grid (*n* columns and rows)
- Exactly one vertex per row and column

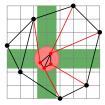


- Straight-line edges
- Regular grid (*n* columns and rows)
- Exactly one vertex per row and column

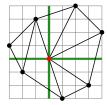


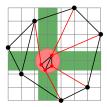
- Straight-line edges
- Regular grid (*n* columns and rows)
- Exactly one vertex per row and column

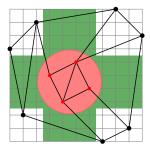




- Straight-line edges
- Regular grid (*n* columns and rows)
- Exactly one vertex per row and column







Planar rook-drawing

Is there a **planar** rook-drawing for every plane graph?

Is there a **planar** rook-drawing for every plane graph?

A plane graph = a planar graph + an embedding in the plane

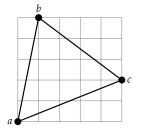
Is there a planar rook-drawing for every plane graph?

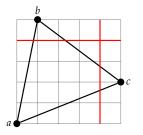
A plane graph = a planar graph + an embedding in the plane

What we already know:

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every plane graph on an $(n-2) \times (n-2)$ grid)

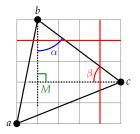
Three exterior vertices a, b and c, n vertices (here n = 6).





Three exterior vertices a, b and c, n vertices (here n = 6).

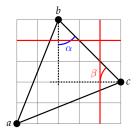
We must place interior vertices on the red row and column



Three exterior vertices a, b and c, n vertices (here n = 6).

We must place interior vertices on the red row and column

 $\alpha \ge 45^{\circ}$, $\beta \ge 45^{\circ} + Mbc$ right-angled

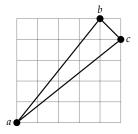


Three exterior vertices a, b and c, n vertices (here n = 6).

We must place interior vertices on the red row and column

$$\alpha \geq 45^{\circ}$$
, $\beta \geq 45^{\circ}$ + *Mbc* right-angled

$$\alpha = \beta = 45^{\circ}$$



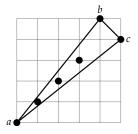
Three exterior vertices a, b and c, n vertices (here n = 6).

We must place interior vertices on the red row and column

$$\alpha \geq 45^{\circ}, \beta \geq 45^{\circ} + Mbc$$
 right-angled

$$\alpha=\beta=45^\circ$$

Fill these row and column with *c* and *b*!



Three exterior vertices a, b and c, n vertices (here n = 6).

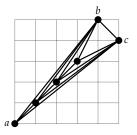
We must place interior vertices on the red row and column

$$\alpha \ge 45^{\circ}$$
, $\beta \ge 45^{\circ} + Mbc$ right-angled

$$\alpha = \beta = 45^{\circ}$$

Fill these row and column with *c* and *b*!

Inner nodes: along a diagonal



Three exterior vertices a, b and c, n vertices (here n = 6).

We must place interior vertices on the red row and column

$$\alpha \geq 45^{\circ}$$
, $\beta \geq 45^{\circ}$ + *Mbc* right-angled

$$\alpha = \beta = 45^{\circ}$$

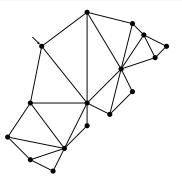
Fill these row and column with *c* and *b*! Inner nodes: along a diagonal

Graph with a degree 3 outer face with planar rook-drawing = subgraph of the tower graph

Rook-drawing for outerplanar graphs

A graph is **outerplanar** if it has a planar drawing such that all its vertices are on the outer face.

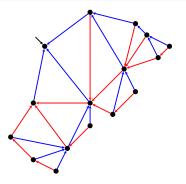
A graph is **outerplanar** if it has a planar drawing such that all its vertices are on the outer face.



[Bonichon, Gavoille, Hanusse, 2005]

• edges of *G* maximal rooted outerplane graph $\rightarrow T_b$, T_r

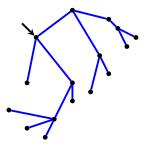
A graph is **outerplanar** if it has a planar drawing such that all its vertices are on the outer face.

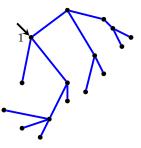


[Bonichon, Gavoille, Hanusse, 2005]

• edges of *G* maximal rooted outerplane graph $\rightarrow T_b$, T_r

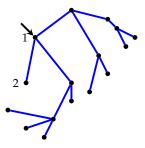
Rook-drawing for outerplanar graphs





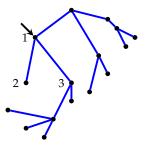
- *x*: ccw pre-order depth-first
- *y*: ccw post-order depth-first

Rook-drawing for outerplanar graphs

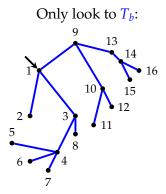


- *x*: ccw pre-order depth-first
- *y*: ccw post-order depth-first

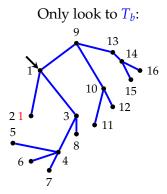
Rook-drawing for outerplanar graphs



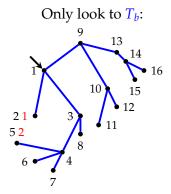
- *x*: ccw pre-order depth-first
- *y*: ccw post-order depth-first



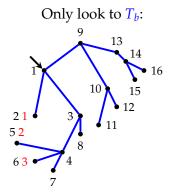
- *x*: ccw pre-order depth-first
- *y*: ccw post-order depth-first



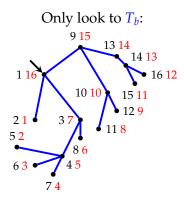
- *x*: ccw pre-order depth-first
- *y*: ccw post-order depth-first



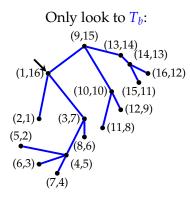
- *x*: ccw pre-order depth-first
- *y*: ccw post-order depth-first



- *x*: ccw pre-order depth-first
- *y*: ccw post-order depth-first

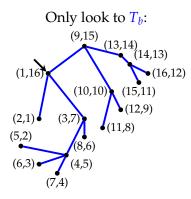


- *x*: ccw pre-order depth-first
- *y*: ccw post-order depth-first

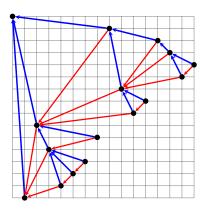


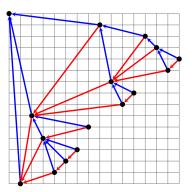
- *x*: ccw pre-order depth-first
- *y*: ccw post-order depth-first



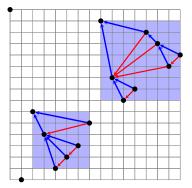


- *x*: ccw pre-order depth-first
- *y*: ccw post-order depth-first





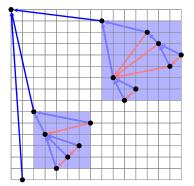
Hyp: $G[T_v]$ of depth k admits a planar rook-drawing in the grid $[x(v), x(v) + |T_v| - 1] \times [y(v) - |T_v| + 1, y(v)].$



Hyp: $G[T_v]$ of depth k admits a planar rook-drawing in the grid $[x(v), x(v) + |T_v| - 1] \times [y(v) - |T_v| + 1, y(v)].$

By induction on depth: Children subtrees: in distinct areas and well drawn.

ROOK-DRAWING FOR OUTERPLANAR GRAPHS

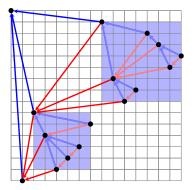


Hyp: $G[T_v]$ of depth k admits a planar rook-drawing in the grid $[x(v), x(v) + |T_v| - 1] \times [y(v) - |T_v| + 1, y(v)].$

By induction on depth: Children subtrees: in distinct areas and well drawn.

Edges from v to its children: no crossings!

ROOK-DRAWING FOR OUTERPLANAR GRAPHS



Hyp: $G[T_v]$ of depth k admits a planar rook-drawing in the grid $[x(v), x(v) + |T_v| - 1] \times [y(v) - |T_v| + 1, y(v)].$

By induction on depth: Children subtrees: in distinct areas and well drawn.

Edges from v to its children: no crossings!

Red edges: between *u* and the first vertex below *u* unrelated to it.

 \rightarrow between v_{i+1} and vertices on the left of the subtree of v_i : no crossings!

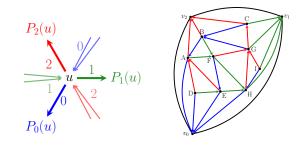
Main result

Every planar graph with n vertices admits a planar polyline rook-drawing, with at most n - 3 bends (at most one per edge). Such a drawing can be computed in linear time.

G a triangulation (else, make it triangulated) with exterior vertices v_0 , v_1 and v_2

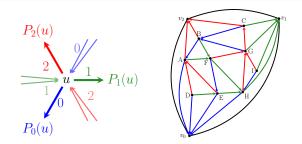
Schnyder woods

A Schnyder wood is a partition of the internal edges of a triangulation in three trees T_0 , T_1 and T_2 (directed toward the root) and with a particular configuration around each inner vertex:



Schnyder woods

A Schnyder wood is a partition of the internal edges of a triangulation in three trees T_0 , T_1 and T_2 (directed toward the root) and with a particular configuration around each inner vertex:

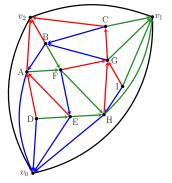


[Schnyder 1989]

Every plane triangulation admits at least one Schnyder wood, and it can be computed in linear time.

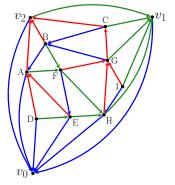
Planar Polyline Rook-drawing - Vertices

• (T_0, T_1, T_2) : Schnyder wood of *G*.



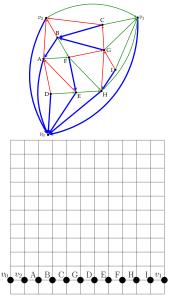
Planar polyline rook-drawing - Vertices

- (T_0, T_1, T_2) : Schnyder wood of *G*.
- $(v_1v_0), (v_2v_0), (v_2v_1)$



Planar polyline rook-drawing - Vertices

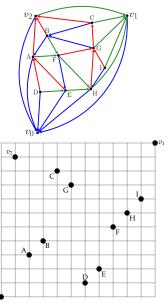
- (T_0, T_1, T_2) : Schnyder wood of *G*.
- $(v_1v_0), (v_2v_0), (v_2v_1)$
- x: clockwise preordering of $T_0 = \{v_0v_2ABCGDEFHIv_1\}.$



Planar Polyline Rook-drawing - Vertices

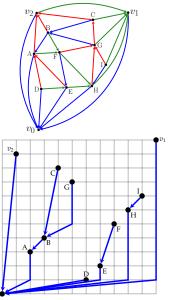
- (T_0, T_1, T_2) : Schnyder wood of *G*.
- $(v_1v_0), (v_2v_0), (v_2v_1)$
- x: clockwise preordering of $T_0 = \{v_0v_2ABCGDEFHIv_1\}.$
- *y*: clockwise postordering of $T_1 = {DEABFHIGCv_2v_1}$ ($v_0 = 0$).



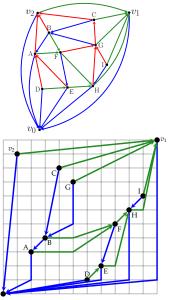


υn

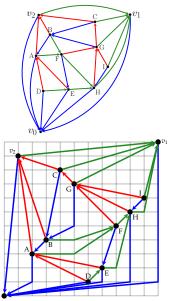
• The edges $(u, P_0(u))$ are bent at $(x(u), y(P_0(u)) + 1)$ (except for the first child in T_0)



- The edges $(u, P_0(u))$ are bent at $(x(u), y(P_0(u)) + 1)$ (except for the first child in T_0)
- The edges $(u, P_1(u))$ are bent at $(x(\text{last descendant}_0(u)), y(u))$ (no bend if u is a leaf of T_0)



- The edges $(u, P_0(u))$ are bent at $(x(u), y(P_0(u)) + 1)$ (except for the first child in T_0)
- The edges $(u, P_1(u))$ are bent at $(x(\text{last descendant}_0(u)), y(u))$ (no bend if u is a leaf of T_0)
- Edges of *T*₂: not bent



Conclusion

Open questions:

- Is a sublinear number of bends sufficient to draw any plane graph planarly?
- If *G* is a graph with no triangle outer face, what are the conditions to draw *G* planarly?
- What is the minimum grid size requested to draw a planar straight-lines rook-drawing for a given plane graph? Is this minimum a constant?

Thank you for your attention!