Claire Pennarun

From joint work with David Auber, Nicolas Bonichon and Paul Dorbec

LaBRI, Bordeaux

Labyrinth Day April 3rd, 2015

Visualization of graphs

We want to draw large graphs representing **dynamic data** :

• addition/deletion of nodes

We want to draw large graphs representing **dynamic data** :

• addition/deletion of nodes

We want to draw large graphs representing **dynamic data** :

• addition/deletion of nodes

- addition/deletion of nodes
- a metanode = a group of nodes

- addition/deletion of nodes
- a metanode = a group of nodes

- addition/deletion of nodes
- a metanode = a group of nodes

- addition/deletion of nodes
- a metanode = a group of nodes
- preserve the relative positions of nodes

- addition/deletion of nodes
- a metanode = a group of nodes
- preserve the relative positions of nodes
- low complexity of algorithms (linear, if possible)

We want to draw **large** graphs representing dynamic data :

- addition/deletion of nodes
- a metanode = a group of nodes
- preserve the relative positions of nodes
- low complexity of algorithms (linear, if possible)

 \rightarrow new type of drawing with constraints : rook-drawing

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly

A rook-drawing of a graph of n vertices : \rightarrow two orders on the nodes

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly

Is there a **planar** rook-drawing for every planar graph?

Is there a **planar** rook-drawing for every planar graph?

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an (n − 2) × (n − 2) grid)

Is there a **planar** rook-drawing for every planar graph?

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an (n 2) × (n 2) grid)
- Idea : addition of constraints, but 2 more lines and columns !

Is there a **planar** rook-drawing for every planar graph?

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an (n − 2) × (n − 2) grid)
- Idea : addition of constraints, but 2 more lines and columns !

Is there a **planar** rook-drawing for every planar graph?

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an (n − 2) × (n − 2) grid)
- Idea : addition of constraints, but 2 more lines and columns !

Is there a planar rook-drawing for every planar graph? No!

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an (n − 2) × (n − 2) grid)
- Idea : addition of constraints, but 2 more lines and columns !

Three exterior nodes a, b and c. Inner nodes : inside the area delimited by (ab), (bc) and (ca).

Three exterior nodes a, b and c. Inner nodes : inside the area delimited by (ab), (bc) and (ca).

 $\alpha \geq$ 45°, $\beta \geq$ 45°. *Mbc* right-angled

Three exterior nodes a, b and c. Inner nodes : inside the area delimited by (ab), (bc) and (ca).

 $\alpha \ge 45^{\circ}, \ \beta \ge 45^{\circ}. \ Mbc \ right-angled$ $\alpha = \beta = 45^{\circ} \rightarrow x(b) = y(c).$

Three exterior nodes a, b and c. Inner nodes : inside the area delimited by (ab), (bc) and (ca).

 $\alpha \ge 45^{\circ}, \ \beta \ge 45^{\circ}. \ Mbc$ right-angled $\alpha = \beta = 45^{\circ} \rightarrow x(b) = y(c).$ (bc) prevents any node to fill the line under b or the column at the left of c.

Three exterior nodes a, b and c. Inner nodes : inside the area delimited by (ab), (bc) and (ca).

Three exterior nodes a, b and c. Inner nodes : inside the area delimited by (ab), (bc) and (ca).

 $\alpha \ge 45^{\circ}$, $\beta \ge 45^{\circ}$. *Mbc* right-angled $\alpha = \beta = 45^{\circ} \rightarrow x(b) = y(c)$. (*bc*) prevents any node to fill the line under *b* or the column at the left of *c*. Fill these line and column with *c* and *b*! Inner nodes : along a diagonal \rightarrow problem with the edges... A graph is outerplanar if it has a planar drawing such that all its vertices are on the outer face.

Result

Every outerplanar graph has a rook-drawing which can be computed in linear time.

Claire Pennarun (LaBRI, Bordeaux)

Rook-drawing for planar graphs

Image: Image:

Labyrinth Day 7 / 21

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- x : ccw pre-order depth-first
- y : ccw post-order depth-first
- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of G outerplanar map \rightarrow T_r , T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of G outerplanar map \rightarrow T_r , T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and the first node below u, unrelated in T_b .

- x : ccw pre-order depth-first
- y : ccw post-order depth-first

Hypothesis : T_v of depth k (+ red edges) admits a planar rook-drawing in the grid $[x(v), x(v) + |T_v| - 1] \times [y(v) - |T_v| + 1, y(v)].$

Proof by induction on depth :

Hypothesis : T_v of depth k (+ red edges) admits a planar rook-drawing in the grid $[x(v), x(v) + |T_v| - 1] \times [y(v) - |T_v| + 1, y(v)].$

Proof by induction on depth : The children subtrees are placed in distinct areas and are "well" drawn.

Hypothesis : T_v of depth k (+ red edges) admits a planar rook-drawing in the grid $[x(v), x(v) + |T_v| - 1] \times [y(v) - |T_v| + 1, y(v)].$

Proof by induction on depth : The children subtrees are placed in distinct areas and are "well" drawn.

Edges from v to its children : no crossings !

Hypothesis : T_v of depth k (+ red edges) admits a planar rook-drawing in the grid $[x(v), x(v) + |T_v| - 1] \times [y(v) - |T_v| + 1, y(v)].$

Proof by induction on depth : The children subtrees are placed in distinct areas and are "well" drawn.

Edges from v to its children : no crossings !

Additional red edges are between children subtrees : no crossings !

Main result

Every planar graph with n nodes admits a planar polyline rook-drawing, with at most n-3 bends (at most one per edge). Such a drawing can be computed in linear time.

G a triangulation (else, make it triangulated and remove the edges at the end) with exterior nodes v_0 , v_1 and v_2

Proof : based on an algorithm of [Bonichon, Mosbah, Le Saëc, 2002] optimizing the area of a polyline drawing.

Schnyder woods

A Schnyder wood is a partition of the internal edges of a triangulation in three trees T_0 , T_1 and T_2 (directed toward the root) and with a particular configuration around each inner node :

Schnyder woods

A Schnyder wood is a partition of the internal edges of a triangulation in three trees T_0 , T_1 and T_2 (directed toward the root) and with a particular configuration around each inner node :

[Schnyder 1989]

Every plane triangulation admits at least one Schnyder wood, and it can be computed in linear time.

Claire Pennarun (LaBRI, Bordeaux)

Rook-drawing for planar graphs

Labyrinth Day 12 / 21

• (*T*₀, *T*₁, *T*₂) : Schnyder wood of *G*.

- (*T*₀, *T*₁, *T*₂) : Schnyder wood of *G*.
- $(v_1v_0), (v_2v_0), (v_2v_1)$

- (*T*₀, *T*₁, *T*₂) : Schnyder wood of *G*.
- (v_1v_0) , (v_2v_0) , (v_2v_1)
- x : clockwise preordering of T_0 = { $v_0v_2ABCGDEFHIv_1$ }.

- (*T*₀, *T*₁, *T*₂) : Schnyder wood of *G*.
- (v_1v_0) , (v_2v_0) , (v_2v_1)
- x : clockwise preordering of T_0 = { $v_0v_2ABCGDEFHIv_1$ }.
- y : clockwise postordering of T_1 = { $DEABFHIGCv_2v_1$ } ($v_0 = 0$).

Claire Pennarun (LaBRI, Bordeaux)

Rook-drawing for planar graphs

Labyrinth Day 14 / 21

 The edges (u, P₀(u)) are bent at (x(u), y(P₀(u)) + 1)

- The edges (u, P₀(u)) are bent at (x(u), y(P₀(u)) + 1)
- First blue child : directly right to its father \rightarrow straighten

- The edges (u, P₀(u)) are bent at (x(u), y(P₀(u)) + 1)
- First blue child : directly right to its father \rightarrow straighten
- The edges (u, P₁(u)) are bent at (x(last descendant₀(u)), y(u)) (no bend if u is a leaf of T₀)

- The edges (u, P₀(u)) are bent at (x(u), y(P₀(u)) + 1)
- First blue child : directly right to its father \rightarrow straighten
- The edges (u, P₁(u)) are bent at (x(last descendant₀(u)), y(u)) (no bend if u is a leaf of T₀)
- Edges of T₂ : not bent

- The edges (*u*, *P*₀(*u*)) are bent at (*x*(*u*), *y*(*P*₀(*u*)) + 1)
- First blue child : directly right to its father \rightarrow straighten
- The edges (u, P₁(u)) are bent at (x(last descendant₀(u)), y(u)) (no bend if u is a leaf of T₀)
- Edges of T₂ : not bent
 - $k = \text{number of leaves in } T_0$ $T_0 = n 1 \text{ edges}$ $T_1 = n 2 \text{ edges}$ $T_2 = n 3 \text{ edges}$

- The edges (*u*, *P*₀(*u*)) are bent at (*x*(*u*), *y*(*P*₀(*u*)) + 1)
- First blue child : directly right to its father \rightarrow straighten
- The edges (u, P₁(u)) are bent at (x(last descendant₀(u)), y(u)) (no bend if u is a leaf of T₀)
- Edges of T₂ : not bent
 - $k = \text{number of leaves in } T_0$ $T_0 = n 1 \text{ edges}$ $T_1 = n 2 \text{ edges}$ $T_2 = n 3 \text{ edges}$

$$T_0 = n - 1 - (n - k)$$
 bends.

- The edges (*u*, *P*₀(*u*)) are bent at (*x*(*u*), *y*(*P*₀(*u*)) + 1)
- First blue child : directly right to its father \rightarrow straighten
- The edges (u, P₁(u)) are bent at (x(last descendant₀(u)), y(u)) (no bend if u is a leaf of T₀)
- Edges of T₂ : not bent
 - $k = \text{number of leaves in } T_0$ $T_0 = n 1 \text{ edges}$ $T_1 = n 2 \text{ edges}$ $T_2 = n 3 \text{ edges}$

 $T_0 = n - 1 - (n - k)$ bends. $T_1 = n - 2 - k$ bends.

- The edges (*u*, *P*₀(*u*)) are bent at (*x*(*u*), *y*(*P*₀(*u*)) + 1)
- First blue child : directly right to its father \rightarrow straighten
- The edges (u, P₁(u)) are bent at (x(last descendant₀(u)), y(u)) (no bend if u is a leaf of T₀)
- Edges of T₂ : not bent
 - k = number of leaves in T_0 $T_0 = n - 1$ edges $T_1 = n - 2$ edges $T_2 = n - 3$ edges

 $T_0 = n - 1 - (n - k)$ bends. $T_1 = n - 2 - k$ bends. $T_2 = 0$ bends.

- The edges (*u*, *P*₀(*u*)) are bent at (*x*(*u*), *y*(*P*₀(*u*)) + 1)
- First blue child : directly right to its father \rightarrow straighten
- The edges (u, P₁(u)) are bent at (x(last descendant₀(u)), y(u)) (no bend if u is a leaf of T₀)
- Edges of T₂ : not bent
 - k = number of leaves in T_0 $T_0 = n - 1$ edges $T_1 = n - 2$ edges $T_2 = n - 3$ edges

 $T_0 = n - 1 - (n - k)$ bends. $T_1 = n - 2 - k$ bends. $T_2 = 0$ bends.

 \rightarrow *n* – 3 bends in the drawing of *G*.

- 4 @ > - 4 @ > - 4 @ >

Proof of planarity (some ideas)

Labyrinth Day 15 / 21

Edges direction

For each inner node v :

- $P_0(v)$ is left and below v.
- $P_1(v)$ is right and above v.
- $P_2(v)$ is left and above v.

Properties of green/red edges

Every node v with $x(u) < x(v) < x(P_1(u))$ has y(v) < y(u) if v is not a descendant of u in T_0 .

v: between u and $P_1(u)$.

Properties of green/red edges

Every node v with $x(u) < x(v) < x(P_1(u))$ has y(v) < y(u) if v is not a descendant of u in T_0 .

v: between u and $P_1(u)$. $\rightarrow v$ in area (v_0, u) , $(u, P_1(u))$, $(P_1(u), v_0)$.

Properties of green/red edges

Every node v with $x(u) < x(v) < x(P_1(u))$ has y(v) < y(u) if v is not a descendant of u in T_0 .

v: between u and $P_1(u)$. $\rightarrow v$ in area (v_0, u) , $(u, P_1(u))$, $(P_1(u), v_0)$.

Path $v \rightarrow v_2$ has to "leave" the area !
Properties of green/red edges

Every node v with $x(u) < x(v) < x(P_1(u))$ has y(v) < y(u) if v is not a descendant of u in T_0 .

v: between u and $P_1(u)$. $\rightarrow v$ in area (v_0, u) , $(u, P_1(u))$, $(P_1(u), v_0)$.

Path $v \rightarrow v_2$ has to "leave" the area ! Intersection t on path (v_0, u) .

Paths $v \rightarrow t$ and $u \rightarrow t$.

Properties of green/red edges

Every node v with $x(u) < x(v) < x(P_1(u))$ has y(v) < y(u) if v is not a descendant of u in T_0 .

v: between u and $P_1(u)$. $\rightarrow v$ in area (v_0, u) , $(u, P_1(u))$, $(P_1(u), v_0)$.

Path $v \rightarrow v_2$ has to "leave" the area ! Intersection t on path (v_0, u) .

Paths $v \rightarrow t$ and $u \rightarrow t$.

 \rightarrow path from v to u is going upwards = y(v) < y(u).

Properties of green/red edges

Every node v with $x(u) < x(v) < x(P_1(u))$ has y(v) < y(u) if v is not a descendant of u in T_0 .

v: between u and $P_1(u)$. $\rightarrow v$ in area (v_0, u) , $(u, P_1(u))$, $(P_1(u), v_0)$.

Path $v \rightarrow v_2$ has to "leave" the area ! Intersection t on path (v_0, u) .

Paths $v \rightarrow t$ and $u \rightarrow t$.

 \rightarrow path from v to u is going upwards = y(v) < y(u).

Every node v with $x(P_2(u)) < x(v) < x(u)$ has y(v) < y(u) if v is not a descendant of $P_2(u)$ in T_0 .

The edges of T_0 do not cross each other.

The edges of T_0 do not cross each other.

э

The edges of T_0 do not cross each other.

3

The edges of T_0 do not cross each other.

The subtrees of children "live" in different areas of width $(x(l(v_i)) - x(v_i))$.

The edges of T_0 do not cross each other.

The subtrees of children "live" in different areas of width $(x(l(v_i)) - x(v_i))$.

The edges to the children can not cross each other.

Subtrees live in different areas (by construction). The bends : *y*-decreasing (by construction); *x*-increasing :

 u_{i+1} descendant of u_i in T_0

Subtrees live in different areas (by construction). The bends : *y*-decreasing (by construction); *x*-increasing :

The last descendant of u_i in T_0 is on the right to the one of u_{i+1} .

Subtrees live in different areas (by construction). The bends : *y*-decreasing (by construction); *x*-increasing :

 u_{i+1} not descendant of u_i in T_0

$$x(u_{i+1}) > x(u_i)$$

The last descendant of u_i in T_0 is on the right to the one of u_{i+1} .

Open questions :

- Reduce the number of bends necessary to draw a given planar graph?
- Caracterization of planar graphs for which a straight-lines rook-drawing is (not) possible
- What is the minimum grid size requested to draw a planar straight-lines rook-drawing for a given planar graph?

Thank you for your attention !