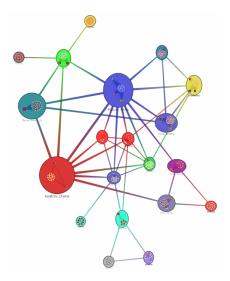
Claire Pennarun

#### From joint work with David Auber, Nicolas Bonichon and Paul Dorbec

LaBRI, Bordeaux

November 13<sup>th</sup>, 2014

# Drawing graphs



Claire Pennarun (LaBRI, Bordeaux)

Rook-drawing for planar graphs

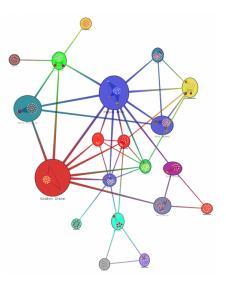
November 13<sup>th</sup>, 2014

< A

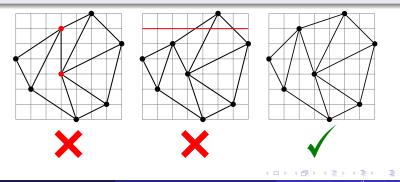
/ 13

э

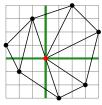
- Find a drawing such that the following operations on a graph are easy to implement and to visualize :
  - deletion/addition of nodes in the drawing
  - node "expansion", i.e. zoom in a hierarchical structure



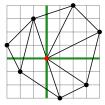
- Straight-lines
- Regular grid  $n \times n$
- One vertex per line and column exactly

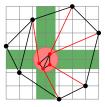


- Straight-lines
- Regular grid  $n \times n$
- One vertex per line and column exactly

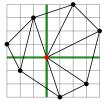


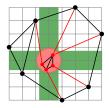
- Straight-lines
- Regular grid  $n \times n$
- One vertex per line and column exactly

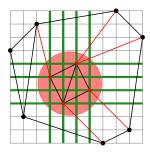




- Straight-lines
- Regular grid  $n \times n$
- One vertex per line and column exactly







What we already know :

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an *n* × *n* grid)

What we already know :

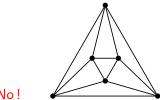
- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an *n* × *n* grid)

Is there a planar rook-drawing for every **planar** graph with *n* vertices on a  $n \times n$  grid ?

What we already know :

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an  $n \times n$  grid)

Is there a planar rook-drawing for every **planar** graph with n vertices on a  $n \times n$  grid?

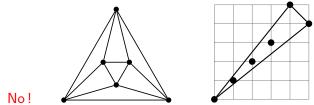


No!

What we already know :

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an  $n \times n$  grid)

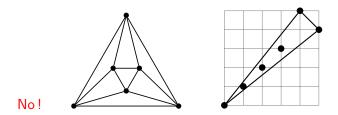
Is there a planar rook-drawing for every **planar** graph with n vertices on a  $n \times n$  grid?



What we already know :

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an *n* × *n* grid)

Is there a planar rook-drawing for every **planar** graph with *n* vertices on a  $n \times n$  grid ?



• Planar straight-lines rook-drawing for outerplanar graphs

• Planar polyline rook-drawing with a few bends for planar graphs

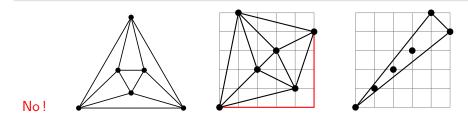
Claire Pennarun (LaBRI, Bordeaux)

Rook-drawing for planar graphs

What we already know :

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an *n* × *n* grid)

Is there a planar rook-drawing for every **planar** graph with *n* vertices on a  $n \times n$  grid ?



- Planar straight-lines rook-drawing for outerplanar graphs
- Planar polyline rook-drawing with a few bends for planar graphs

Claire Pennarun (LaBRI, Bordeaux)

Rook-drawing for planar graphs

A graph is outerplanar if it has a planar drawing such that all its vertices are on the outer face.



#### Result

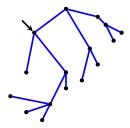
Every outerplanar graph with *n* vertices has a rook-drawing computed in linear time on a grid  $n \times n$ .

Claire Pennarun (LaBRI, Bordeaux)

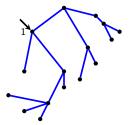
Rook-drawing for planar graphs

November 13<sup>th</sup>, 2014

- edges of  $G \rightarrow T_r$ ,  $T_b$
- edges of  $T_r$ : between u and its first non-descendant found after u in a clockwise pre-ordering of  $T_b$ .

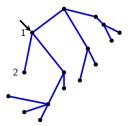


- edges of  $G \rightarrow T_r$ ,  $T_b$
- edges of  $T_r$ : between u and its first non-descendant found after u in a clockwise pre-ordering of  $T_b$ .



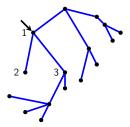
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of  $G \rightarrow T_r$ ,  $T_b$
- edges of  $T_r$ : between u and its first non-descendant found after u in a clockwise pre-ordering of  $T_b$ .



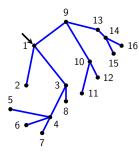
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of  $G \rightarrow T_r$ ,  $T_b$
- edges of  $T_r$ : between u and its first non-descendant found after u in a clockwise pre-ordering of  $T_b$ .



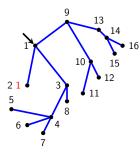
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of  $G \rightarrow T_r$ ,  $T_b$
- edges of  $T_r$ : between u and its first non-descendant found after u in a clockwise pre-ordering of  $T_b$ .



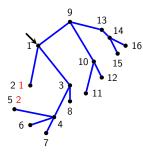
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of  $G \rightarrow T_r$ ,  $T_b$
- edges of  $T_r$ : between u and its first non-descendant found after u in a clockwise pre-ordering of  $T_b$ .



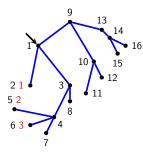
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of  $G \rightarrow T_r$ ,  $T_b$
- edges of  $T_r$ : between u and its first non-descendant found after u in a clockwise pre-ordering of  $T_b$ .



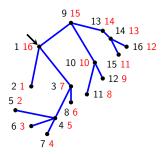
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of  $G \rightarrow T_r$ ,  $T_b$
- edges of  $T_r$ : between u and its first non-descendant found after u in a clockwise pre-ordering of  $T_b$ .



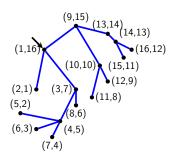
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of  $G \rightarrow T_r$ ,  $T_b$
- edges of  $T_r$ : between u and its first non-descendant found after u in a clockwise pre-ordering of  $T_b$ .

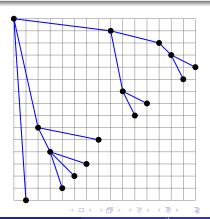


- x : ccw pre-order depth-first
- y : ccw post-order depth-first

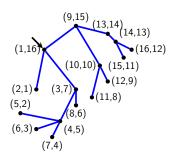
- edges of  $G \rightarrow T_r$ ,  $T_b$
- edges of  $T_r$ : between u and its first non-descendant found after u in a clockwise pre-ordering of  $T_b$ .



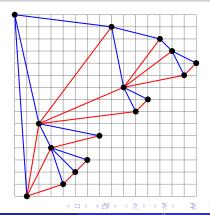
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

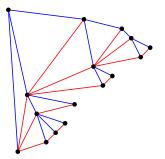


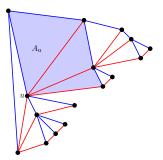
- edges of  $G \rightarrow T_r$ ,  $T_b$
- edges of  $T_r$ : between u and its first non-descendant found after u in a clockwise pre-ordering of  $T_b$ .



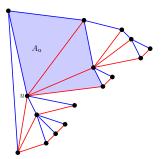
- x : ccw pre-order depth-first
- y : ccw post-order depth-first







For each vertex u not a leaf of  $T_r$ : define an area  $A_u$  with only red edges leading to u (the areas  $A_i$  are disjoint).

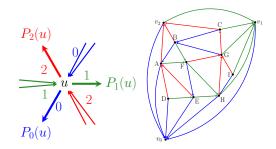


For each vertex u not a leaf of  $T_r$ : define an area  $A_u$  with only red edges leading to u (the areas  $A_i$  are disjoint).

The drawing is planar within  $A_u$  and blue and red edges can not cross.

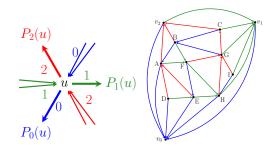
### Schnyder woods

A Schnyder wood is a partition of the interior edges of G in three trees  $T_0$ ,  $T_1$  and  $T_2$  (directed toward the root) and with a particular configuration around each node :



### Schnyder woods

A Schnyder wood is a partition of the interior edges of G in three trees  $T_0$ ,  $T_1$  and  $T_2$  (directed toward the root) and with a particular configuration around each node :



#### [Schnyder 1989]

Every plane triangulation admits at least one Schnyder wood, and it can be computed in linear time.

Claire Pennarun (LaBRI, Bordeaux)

Rook-drawing for planar graphs

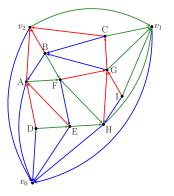
We consider G a plane triangulation (with exterior nodes  $v_0$ ,  $v_1$  and  $v_2$ ).

#### Main result

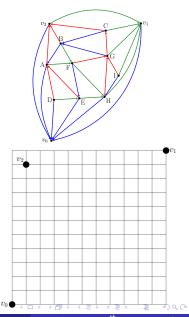
Every planar graph with n nodes admits a planar polyline rook drawing on a  $n \times n$  grid, with at most n - 2 bends (at most one per edge). Such a drawing is computed in linear time.

Proof : based on an algorithm of [Bonichon, Mosbah, Le Saëc, 2002] optimizing the area of a polyline drawing.

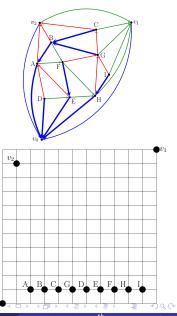
• Compute a realizer (*T*<sub>0</sub>, *T*<sub>1</sub>, *T*<sub>2</sub>) of the graph *G*.



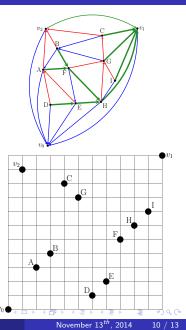
- Compute a realizer (*T*<sub>0</sub>, *T*<sub>1</sub>, *T*<sub>2</sub>) of the graph *G*.
- Place  $v_0$  at (0,0), place  $v_2$  at (1, n-2), place  $v_1$  at (n-1, n-1).



- Compute a realizer (*T*<sub>0</sub>, *T*<sub>1</sub>, *T*<sub>2</sub>) of the graph *G*.
- Place  $v_0$  at (0,0), place  $v_2$  at (1, n-2), place  $v_1$  at (n-1, n-1).
- Column order : clockwise preordering of T<sub>0</sub> = {ABCGDEFHI}.

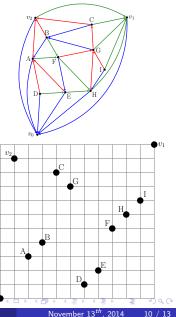


- Compute a realizer (*T*<sub>0</sub>, *T*<sub>1</sub>, *T*<sub>2</sub>) of the graph *G*.
- Place  $v_0$  at (0,0), place  $v_2$  at (1, n-2), place  $v_1$  at (n-1, n-1).
- Column order : clockwise preordering of T<sub>0</sub> = {ABCGDEFHI}.
- Line order : clockwise postordering of  $T_1 = \{DEABFHIGC\}.$



- Compute a realizer  $(T_0, T_1, T_2)$ of the graph G.
- Place  $v_0$  at (0,0), place  $v_2$  at (1, n-2), place  $v_1$  at (n-1, n-1).
- Column order : clockwise preordering of  $T_0 = \{ABCGDEFHI\}.$
- Line order : clockwise postordering of  $T_1 = \{ DEABFHIGC \}$ .

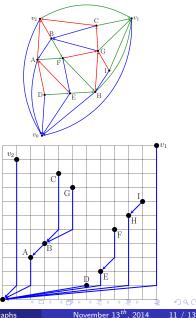
Column order + Line order = 1 vertex for each line and column!



## Edges bends

If we bend all edges :

- The edges (*u*, *P*<sub>0</sub>(*u*)) are bent at (*x*(*u*), *y*(*P*<sub>0</sub>(*u*)) + 1)
- The edges  $(u, P_1(u))$  are bent at  $(x(P_1(u)) 1, y(u))$
- The edges  $(u, P_2(u))$  are bent at  $(x(P_2(u)) + 1, y(u))$

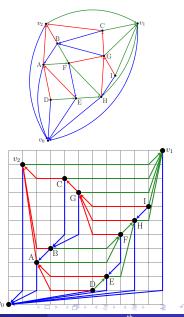


### Edges bends

If we bend all edges :

- The edges (*u*, *P*<sub>0</sub>(*u*)) are bent at (*x*(*u*), *y*(*P*<sub>0</sub>(*u*)) + 1)
- The edges  $(u, P_1(u))$  are bent at  $(x(P_1(u)) 1, y(u))$
- The edges  $(u, P_2(u))$  are bent at  $(x(P_2(u)) + 1, y(u))$

In fact, we can straighten many of them! (All red edges, left-most blue edges and green ones from blue leafs)



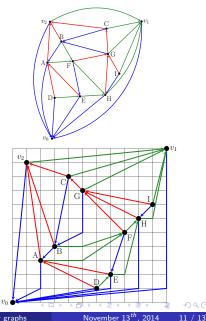
### Edges bends

If we bend all edges :

- The edges  $(u, P_0(u))$  are bent at  $(x(u), y(P_0(u)) + 1)$
- The edges  $(u, P_1(u))$  are bent at  $(x(P_1(u)) - 1, y(u))$
- The edges  $(u, P_2(u))$  are bent at  $(x(P_2(u)) + 1, y(u))$

In fact, we can straighten many of them! (All red edges, left-most blue edges and green ones from blue leafs)

Around a node : #bends = #{blue children}  $\rightarrow n-2$  bends in the drawing



Open questions :

- Reduce the number of bends necessary to draw a given planar graph?
- Caracterization of planar graphs for which a straight-lines rook-drawing is not possible / is possible
- What is the minimum grid size requested to draw a straight-lines rook-drawing?

#### Thank you for your attention !

æ