Counting planar Eulerian orientations

<u>Claire Pennarun</u> Joint work with Nicolas Bonichon, Mireille Bousquet-Mélou and Paul Dorbec

LaBRI, Bordeaux, France

Kranjska Gora, June 25th 2015

Some definitions

- connected planar rooted maps (in a corner)
- with loops and multiple edges

A map *G* is called *Eulerian* if every vertex of *G* has an even degree.

Some definitions

- connected planar rooted maps (in a corner)
- with loops and multiple edges

A map *G* is called *Eulerian* if every vertex of *G* has an even degree.

A directed planar map *G* is called a *planar Eulerian orientation (PEO)* if every vertex of *G* has in-degree and out-degree equal.

Given an integer *m*, how many PEOs are there with *m* edges?

FIRST PLANAR EULERIAN ORIENTATIONS

Given an integer *m* and the PEOs with m - 1 edges, how many are there with *m* edges ?

Given an integer *m* and the PEOs with m - 1 edges, how many are there with *m* edges ?

Given an integer *m* and the PEOs with m - 1 edges, how many are there with *m* edges ?

Each step: add an edge at the root • loop - can be oriented in two ways

Given an integer *m* and the PEOs with m - 1 edges, how many are there with *m* edges ?

Each step: add an edge at the root • loop - can be oriented in two ways

Given an integer *m* and the PEOs with m - 1 edges, how many are there with *m* edges ?

- loop can be oriented in two ways
- split: legal ⇔ the new edge can be oriented

Given an integer *m* and the PEOs with m - 1 edges, how many are there with *m* edges ?

- loop can be oriented in two ways
- split: legal ⇔ the new edge can be oriented

Given an integer *m* and the PEOs with m - 1 edges, how many are there with *m* edges ?

- loop can be oriented in two ways
- split: legal ⇔ the new edge can be oriented

Given an integer *m* and the PEOs with m - 1 edges, how many are there with *m* edges ?

Each step: add an edge at the root

- loop can be oriented in two ways
- split: legal ⇔ the new edge can be oriented

Each PEO has a unique parent \rightarrow each PEO is generated exactly once.

Given an integer *m* and the PEOs with m - 1 edges, how many are there with *m* edges ?

Each step: add an edge at the root

- loop can be oriented in two ways
- split: legal ⇔ the new edge can be oriented

Each PEO has a unique parent \rightarrow each PEO is generated exactly once. In fact, just look at the root and forget the rest of the map!

Encoding

Required information: incidence of the root with the outer face + orientation around the root = *state* of the root

Encoding

Required information: incidence of the root with the outer face + orientation around the root = *state* of the root

Encode with decorated bilateral Dyck words

Properties:

- up step: out-going edge
- down step: in-going edge
- squared points: incidence of the root with the outer face
- 1/-1 points: legal splits

CHILDREN AFTER LOOP ADDITION

CHILDREN AFTER SPLITS

Computing the first terms

<i>m</i> edges	Eulerian maps	PEO	oriented Eul. maps
0	1	1	1
1	1	2	2
2	3	10	12
3	12	66	96
4	56	504	896
5	288	4 216	9 216
6	1 584	37 548	101 376
7	9 152	350 090	1 171 456
8	54 912	3 380 520	14 057 472
9	339 456	33 558 024	173 801 472
10	2 149 888	340 670 720	2 201 485 312
11	13 891 584	3 522 993 656	28 449 964 032
growth rate	8^m	?	16 ^m

Generating function for PEO ?

Useful tool to find a general formula: the generating function

Integer parameters (number of edges/nodes, degree of the root...)

Generating function for PEO ?

Useful tool to find a general formula: the generating function

Integer parameters (number of edges/nodes, degree of the root...)

State of the root as parameter: too complex ! - the word can be arbitrary long...

Generating function for PEO ?

Useful tool to find a general formula: the generating function

Integer parameters (number of edges/nodes, degree of the root...)

State of the root as parameter: too complex ! - the word can be arbitrary long...

We want to allow exactly the legal splits ! \rightarrow Generate upper/lower classes of PEO

Upper and lower bounds

Natural lower/upper bound: forbid/allow all odd points for splits (except 1 and Δ – 1)

Upper and lower bounds

Natural lower/upper bound: forbid/allow all odd points for splits (except 1 and Δ – 1)

More precise lower/upper bounds: the last *k* odd points are exact

Upper and lower bounds

Natural lower/upper bound: forbid/allow all odd points for splits (except 1 and Δ – 1)

More precise lower/upper bounds: the last *k* odd points are exact

Keep a structure of bounded length \rightarrow algebraic system of generating functions (one for each configuration)

GLOBAL RESULTS

	growth	1	2	3	4	5	6
Eulerian maps	8^m	1	3	12	56	288	1 584
$\inf: k = 1$	9.68 ^m	2	10	66	466	3 458	26 650
$\inf: k = 2$	10.16^{m}	2	10	66	504	4008	32 834
$\inf: k = 3$	10.51^{m}	2	10	66	504	4 216	36 316
$\inf: k = 4$	$\sim 10.69^{m}$	2	10	66	504	4 216	37 548
PEO	?	2	10	66	504	4 216	37 548
$\sup: k = 2$	$\sim 12.95^{m}$	2	10	66	504	4 2 3 4	37 998
$\sup : k = 1$	13.06^{m}	2	10	66	506	4 266	38 418
Oriented Eulerian maps	16 ^m	2	12	96	896	9 216	101 376

To have the number of PEO with *l* edges: either use the generating tree or compute the lower bound with k = l - 2.

OPEN QUESTIONS

- What is the type of the generating function for PEO ?
- What if we restrict the vertices degree of the map ?
- Find another decomposition for PEO taking the orientation into account ?

Thank you for your attention !