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WHY COUNT PLANAR MAPS?

Counting planar maps for a long time... And we know them really
well!

e recursive and bijective approaches
e algebraicity of generating functions
e fine asymptotics properties
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WHY COUNT PLANAR MAPS?

Counting planar maps for a long time... And we know them really
well!

e recursive and bijective approaches
e algebraicity of generating functions
e fine asymptotics properties

Statistical physics and combinatorics: maps + structure?
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MAPS EQUIPPED WITH A STRUCTURE

In general: maps equipped with a specialisation of the Tutte
polynomial

e proper g-colouring [Tutte 73-84]
@ spanning tree [Mullin 67]
e Ising model [Kazakov 86]
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SOME DEFINITIONS

@ planar maps (rooted in a corner)
e with loops and multiple edges

v v

m: number of edges (= 4)
v is the root-vertex

d: half root-degree (= 2)
A: root-degree (=4)
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EULERIAN MAPS

A map G is called Eulerian if every vertex of G has an even degree. )

Possible operations:
e merge two maps and add a loop
e split the root-vertex at index i (i odd)

o &
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(GENERATING FUNCTION FOR EULERIAN MAPS
E(t;%) = ¥ g0 E4(Hx%: generating function (g.f.) of Eulerian maps (¢
counts the number of edges, x the half root-degree)

2
Co ot

E() =1+txE@)2 +tY g0 Eg(x +x2 + - +x%)

() =1+ tE@? + tx L ED

X -
Polynomial equation with one catalytic variable, solved by Brown’s
quadratic method, has an algebraic equation
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EuLERrIAN ORIENTATIONS (PEO)

A directed planar map G is a planar Eulerian orientation (PEO) if every
vertex of G has in-degree and out-degree equal. J
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EuLERrIAN ORIENTATIONS (PEO)

vertex of G has in-degree and out-degree equal.

v
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A directed planar map G is a planar Eulerian orientation (PEO) if every J

m=0 -

m=1



OrEeraTIiONS ON PEO
O is the set of PEO.

> < @;

e merge two maps and direct the new edge

Possible operations:

e split the root-vertex at index i iff the resulting map is still a PEO =
legal split (indices i =1 and i = A—1 always give legal splits)
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(GENERATING FUNCTION FOR PEQO?

P(t;x) = ¥ 450 Py () x%: generating function of PEO (t counts the number
of edges, x the half root-degree)

¥
Iy
v
o
P =1+2P@*+t Y. Py Y x7)
d=0  legal i—split
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(GENERATING FUNCTION FOR PEQO?

P(t;x) = ¥ 450 Py () x%: generating function of PEO (t counts the number
of edges, x the half root-degree)

ey D

| |,
RGP

P =1+2P@*+t Y. Py Y x7)
d=0 legal i—split

We can not keep the set of legal splits as a parameter...
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FrOM ENCODING...

To generate a map: one only needs the orientation around the
root-vertex
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FrOM ENCODING...

To generate a map: one only needs the orientation around the
root-vertex = bilateral Dyck path

— root-word of a map O: w(O) = 0001111010
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FrOM ENCODING...

To generate a map: one only needs the orientation around the
root-vertex = bilateral Dyck path

2
[ 0 0
\ ! 1 : \ 0 ]

— root-word of a map O: w(O) = 0001111010
A legal split = height 1 or -1 on the path

. . é %
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... TO THE FIRST TERMS

Use this encoding to compute the first numbers of PEO ; o(m) is the
number of PEO having m edges.
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Take the Dyck paths for all maps of size 1 ... k-1

Counting planar Eulerian orientations May 20t 2016 11/ 19



... TO THE FIRST TERMS

Use this encoding to compute the first numbers of PEO ; o(m) is the
number of PEO having m edges.

Take the Dyck paths for all maps of size 1 ... k-1
Map of size k: either a split on a map of size k —1, or a merge of two
maps of sizes summing to k-1

Counting planar Eulerian orientations May 20t 2016 11/ 19



... TO THE FIRST TERMS

Use this encoding to compute the first numbers of PEO ; o(m) is the
number of PEO having m edges.

Take the Dyck paths for all maps of size 1 ... k-1
Map of size k: either a split on a map of size k —1, or a merge of two
maps of sizes summing to k-1

m | o(m) m o(m) m o(m)

0 1 6 37.548 12 37.003.723.200

1 2 7 350.090 13 393.856.445.664
2 10 8 3.380.520 14 | 4.240.313.009.272
3 66 9 33.558.024 15 | 46.109.094.112.170
4 | 504 10 | 340.670.720

5 14216 || 11 | 3.522.993.656
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PRIME DECOMPOSITION OF MAPS

A map is prime if the
root-vertex appears only once
on the root-face.
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PRIME DECOMPOSITION OF MAPS

/ /oy

@‘Q’/Q

A map is prime if the
root-vertex appears only once
on the root-face.

Planar map = concatenation of
prime maps
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PRIME DECOMPOSITION OF MAPS

A map is prime if the /
root-vertex appears only once @
on the root-face. %

Planar map = concatenation of
prime maps

E(x) the g.f. for Eulerian maps,

; ¥
E'(x) for prime Eulerian maps:

E1 PP
Ex)=1/1-E'(x)

/ /
@ {El(x) =B+ tE(l)xE () — E M
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APPROXIMATION OF THE GROWTH RATE
p = growth rate of PEO, o(m) the number of PEO with m edges
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APPROXIMATION OF THE GROWTH RATE
p = growth rate of PEO, o(m) the number of PEO with m edges

{o(m)} =0 is a super-multiplicative sequence, i.e.
o(n+n")=omon)vn,n" e N* (merging two PEO with n and n’ edges
gives a PEO with n +n’ edges).
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APPROXIMATION OF THE GROWTH RATE
p = growth rate of PEO, o(m) the number of PEO with m edges

{o(m)}m=0 is a super-multiplicative sequence, i.e.
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APPROXIMATION OF THE GROWTH RATE
p = growth rate of PEO, o(m) the number of PEO with m edges

{o(m)}m=0 is a super-multiplicative sequence, i.e.
o(n+n")=omon)vn,n" e N* (merging two PEO with n and n’ edges
gives a PEO with n +n’ edges).

Variant of Fekete’s Lemma (1923):
p=lim, oo™ =sup, _, o' e RY Uoo

= p=(0(15))/1° ~ 8.145525470

PEO c arbitrary orientations of
Eulerian maps
=>8l4<pu<l16 "

1
ol +1) as a function of 1/m —
o(m) 8

0 0.1 0.2 0.3
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BETTER APPROXIMATION OF THE GROWTH RATE

Two families of sets of orientations @%~ and 6%+ such that
@(k)— c @(k+l)— cOc @(k+1)+ c @(k)+

A map of 6%~ is obtained by either:
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BETTER APPROXIMATION OF THE GROWTH RATE
Two families of sets of orientations @®~ and @®* such that

@v(k)— c @(k+l)— cOc @(k+1)+ c @(k)+
A map of 6%~ is obtained by either:
@ a concatenation of prime maps of G-,

o adding an edge around a map O € %~ and directing it,
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BETTER APPROXIMATION OF THE GROWTH RATE

Two families of sets of orientations @®~ and @®* such that
@(k)— c @v(k+1)— cOc @(k+1)+ c @(k)+

A map of 6%~ is obtained by either:
@ a concatenation of prime maps of G-,

o adding an edge around a map O € %~ and directing it,

o a legal split on the last prime component P, of a map
Pi..Pye0®™~ atindexi<2kori=AP,) -1

A word w is balanced iff
< 0

lwlo —|wl = 0.
l It is quasi-balanced iff
- V

,‘ f‘ 0 lwlo —|wlp = +1.
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ALGEBRAIC SYSTEM FOR 0P~ =@~

Fuw(B): gf. for the set {O e 6~ |w(O) = w}

Ly(8): g.f. for the set {O € 0~ |w(O) = uw for some u}

F},(B): g.f. for the set {O e 67w (0O) =w, O is prime}

L, 0): g.f. for the set {O € 6~ |w(O) = uw for some 1,0 is prime}
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Fuw(B): gf. for the set {O e 6~ |w(O) = w}

Ly(8): g.f. for the set {O € 0~ |w(O) = uw for some u}

F},(B): g.f. for the set {O e 67w (0O) =w, O is prime}

L, 0): g.f. for the set {O € 6~ |w(O) = uw for some 1,0 is prime}

{ Y F.F), |w| <2k —2,w # € balanced
Fyy =< w=uv
1

w=e
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ALGEBRAIC SYSTEM FOR OF~ =@~
Fuw(B): gf. for the set {O e 6~ |w(O) = w}

Ly(8): g.f. for the set {O € 0~ |w(O) = uw for some u}

F},(B): g.f. for the set {O e 67w (0O) =w, O is prime}

L, 0): g.f. for the set {O € 6~ |w(O) = uw for some 1,0 is prime}

{ Y FuF),
Fyy =< w=uv

1

L.L,+ Y L,F,
Lw = W=UV,U£E

1+LcL,
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|w| <=2k —2,w # € balanced
w=¢
|lw| <2k-2

w=e
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Fuw(B): gf. for the set {O e 6~ |w(O) = w}

Ly(8): g.f. for the set {O € 0~ |w(O) = uw for some u}
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L, 0): g.f. for the set {O € 6~ |w(O) = uw for some 1,0 is prime}

{ Y FuF),
Fyy =< w=uv

1
L.L,+ Y L,F,
Lw = W=UV,U£E
1+LcL.
Lp - {tFwZ +tLeL!,,
0
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|w| <=2k —2,w # € balanced

w=e¢
|lw| <2k-2
w=e¢

|w| < 2k, w # € balanced

w = € or w non-balanced
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ALGEBRAIC SYSTEM FOR O
Fuw(t): g.f. for the set {O e G~ |w(O)

Fl,(B): g.£f. for the set {O e 0~ |w(O)

{za'
Fu W=uUv

L.L,+ L,F},

wW=uv, u;ée
1+L.L,
H—"w2 +tLL! -~
0

|th1 +tFw2 +tLeL! +

w
u qua51-ba1

|u|<2k

L +L’
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=0~

= w}
Ly (8): gf. for the set {O e 0~ |lw(O) =

uw for some u}

=w,0 is prime}
L, t: g.f. for the set {00~ |w(O) =

uw for some u, O is prime}

|w| <=2k —2,w # € balanced
w=¢

|lw| <2k-2

w=e¢

|w| < 2k, w # € balanced

w = € or w non-balanced

(Li,—FL) +tLe(Ll, ~Fy),  |w|<2k-2
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SOME DETAILS
w=wia=auwra=aw'
U = au with au balanced
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SOME DETAILS
w=wia=auwra=aw'
U = au with au balanced

L], = tLy, +tFy,+

lw| < A(O) lw| = A(0)
N0

IR

wy is a suffix of w(0') w(0') = wsy
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SOME DETAILS
w=wia=auwra=aw'
U = au with au balanced
L;U = tLy, +tEy,+
oLl +tLe Y (L, —F)+tLo(L!
u=ow u

, .

w — Fo), if lwl <2k -2
u quasi-bal.

lu|<2k

w is a suffix of w(FP)

(P) has a suffix u ending with w

~ ! iq q 9

;7 w'is asuffix of w(P)
\
\\'

\ \
¥

J?w|<i<2k—l z*\w\fl
RN o

\

Chov oy
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SOLVING OUR SYSTEMS

We want to compute L, (root-word ending with anything = all maps)
for a given value of k
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SOLVING OUR SYSTEMS

We want to compute L, (root-word ending with anything = all maps)
for a given value of k

Method: write all equations for a system, then give it to Maple

nature | k | degree of the final equation | growth rate
inf |1 3 10.60
inf |2 6 10.97
inf |3 20 11.22
inf |4 - 11.44®)
inf |5 - 11.56™)

(%): not proven, use of quadratic approximants method
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SOLVING OUR SYSTEMS

We want to compute L, (root-word ending with anything = all maps)
for a given value of k

Method: write all equations for a system, then give it to Maple

nature | k | degree of the final equation | growth rate
inf |1 3 10.60
inf |2 6 10.97
inf |3 20 11.22
inf |4 - 11.44®)
inf |5 - 11.56™)

(%): not proven, use of quadratic approximants method

Theorem

Let @y, be the number of Eulerian orientations with m edges. Then GL/™ —
with 11.22 < p < 13.06.
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SOME OTHER RESULTS...

For each k >0, let C(k,n) be the counting sequence of the set @®~. Then
C(k,n) ~yn=3"2p™" (p and y depend on k).
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C(k,n) ~yn=3"2p™" (p and y depend on k).
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Let u®~ be the growth rate of the series for the set @®~. Then
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SOME OTHER RESULTS...

For each k >0, let C(k,n) be the counting sequence of the set @®~. Then
C(k,n) ~yn=3"2p™" (p and y depend on k).

v

Let 4™~ be the growth rate of the series for the set @®~. Then

The functional equations for the sets @+ have one catalytic variable
(counting the half root-degree) and the series relative to these sets are
algebraic.
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OPEN QUESTIONS

e What is the type of the generating function for PEO ?
e What if we restrict the vertices degrees of the map ?

e Find another grammar for the PEO taking the orientation into
account ?

Thank you!
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