Counting planar Eulerian orientations

<u>Claire Pennarun</u> Joint work with Nicolas Bonichon, Mireille Bousquet-Mélou and Paul Dorbec

LaBRI, Bordeaux, France

Séminaire de combinatoire, LaCIM, May 20th 2016

Counting planar Eulerian orientations

Counting planar maps for a long time... And we know them really well!

- recursive and bijective approaches
- algebraicity of generating functions
- fine asymptotics properties

• ...

Counting planar maps for a long time... And we know them really well!

- recursive and bijective approaches
- algebraicity of generating functions
- fine asymptotics properties

• ...

Statistical physics and combinatorics: maps + structure?

Maps equipped with a structure

In general: maps equipped with a specialisation of the Tutte polynomial

- proper *q*-colouring [Tutte 73-84]
- spanning tree [Mullin 67]
- Ising model [Kazakov 86]

• ...

Maps equipped with a structure

In general: maps equipped with a specialisation of the Tutte polynomial

- proper *q*-colouring [Tutte 73-84]
- spanning tree [Mullin 67]
- Ising model [Kazakov 86]

• ...

And if the structure does not come from the Tutte polynomial?

Maps equipped with a structure

In general: maps equipped with a specialisation of the Tutte polynomial

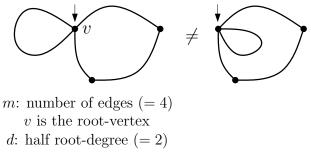
- proper *q*-colouring [Tutte 73-84]
- spanning tree [Mullin 67]
- Ising model [Kazakov 86]

• ...

And if the structure does not come from the Tutte polynomial? \rightarrow Eulerian orientations

Some definitions

- planar maps (rooted in a corner)
- with loops and multiple edges



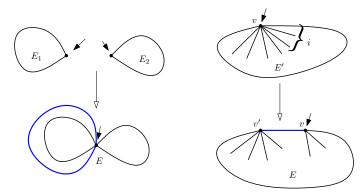
 Δ : root-degree (=4)

EULERIAN MAPS

A map *G* is called *Eulerian* if every vertex of *G* has an even degree.

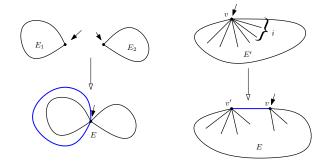
Possible operations:

- merge two maps and add a loop
- split the root-vertex at index *i* (*i* odd)



Generating function for Eulerian maps

 $E(t;x) = \sum_{d\geq 0} E_d(t)x^d$: generating function (g.f.) of Eulerian maps (*t* counts the number of edges, *x* the half root-degree)



 $E(x) = 1 + txE(x)^{2} + t\sum_{d\geq 0} E_{d}(x + x^{2} + \dots + x^{d})$ $E(x) = 1 + txE(x)^{2} + tx\frac{E(x) - E(1)}{x - 1}$ Polynomial equation with one catalytic variable, solved by Brown's quadratic method, has an algebraic equation

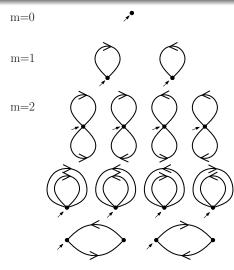
Counting planar Eulerian orientations

EULERIAN ORIENTATIONS (PEO)

A directed planar map *G* is a *planar Eulerian orientation (PEO)* if every vertex of *G* has in-degree and out-degree equal.

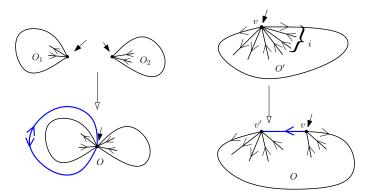
EULERIAN ORIENTATIONS (PEO)

A directed planar map *G* is a *planar Eulerian orientation (PEO)* if every vertex of *G* has in-degree and out-degree equal.



Counting planar Eulerian orientations

OPERATIONS ON PEO *©* is the set of PEO.

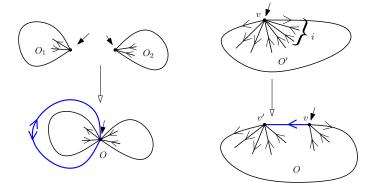


Possible operations:

- merge two maps and direct the new edge
- split the root-vertex at index *i* iff the resulting map is still a PEO = *legal* split (indices i = 1 and $i = \Delta 1$ always give legal splits)

GENERATING FUNCTION FOR PEO?

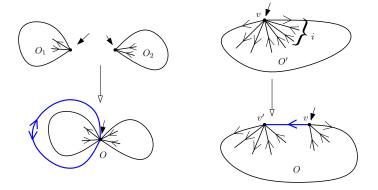
 $P(t;x) = \sum_{d \ge 0} P_d(t) x^d$: generating function of PEO (*t* counts the number of edges, *x* the half root-degree)



$$P(x) = 1 + 2txP(x)^{2} + t\sum_{d \ge 0} (P_{d}\sum_{legal \ i-split} x^{\frac{i+1}{2}})$$

GENERATING FUNCTION FOR PEO?

 $P(t;x) = \sum_{d \ge 0} P_d(t) x^d$: generating function of PEO (*t* counts the number of edges, *x* the half root-degree)



$$P(x) = 1 + 2txP(x)^{2} + t\sum_{d \ge 0} (P_{d}\sum_{legal \ i-split} x^{\frac{i+1}{2}})$$

We can not keep the set of legal splits as a parameter...

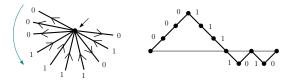
Counting planar Eulerian orientations

FROM ENCODING...

To generate a map: one only needs the orientation around the root-vertex

FROM ENCODING...

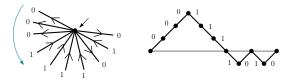
To generate a map: one only needs the orientation around the root-vertex = bilateral Dyck path



 \rightarrow root-word of a map *O*: $\mathbf{w}(O) = 0001111010$

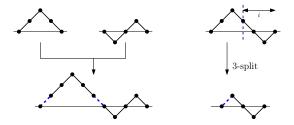
FROM ENCODING...

To generate a map: one only needs the orientation around the root-vertex = bilateral Dyck path



 \rightarrow root-word of a map *O*: **w**(*O*) = 0001111010

A legal split = height 1 or -1 on the path



Counting planar Eulerian orientations

Use this encoding to compute the first numbers of PEO ; o(m) is the number of PEO having *m* edges.

Use this encoding to compute the first numbers of PEO ; o(m) is the number of PEO having *m* edges.

Take the Dyck paths for all maps of size $1 \dots k-1$

Use this encoding to compute the first numbers of PEO ; o(m) is the number of PEO having *m* edges.

Take the Dyck paths for all maps of size $1 \dots k-1$ Map of size k: either a split on a map of size k-1, or a merge of two maps of sizes summing to k-1

Use this encoding to compute the first numbers of PEO ; o(m) is the number of PEO having *m* edges.

Take the Dyck paths for all maps of size $1 \dots k-1$ Map of size k: either a split on a map of size k-1, or a merge of two maps of sizes summing to k-1

т	<i>o(m)</i>	<i>m</i>	<i>o</i> (<i>m</i>)	m	<i>o</i> (<i>m</i>)
0	1	6	37.548	12	37.003.723.200
1	2	7	350.090	13	393.856.445.664
2	10	8	3.380.520	14	4.240.313.009.272
3	66	9	33.558.024	15	46.109.094.112.170
4	504	10	340.670.720		
5	4.216	11	3.522.993.656		

PRIME DECOMPOSITION OF MAPS

A map is *prime* if the root-vertex appears only once on the root-face.

PRIME DECOMPOSITION OF MAPS

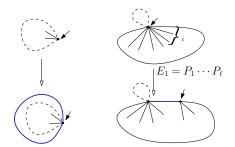
A map is *prime* if the root-vertex appears only once on the root-face.

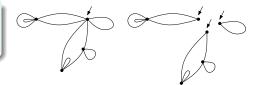
Planar map = concatenation of prime maps

PRIME DECOMPOSITION OF MAPS

A map is *prime* if the root-vertex appears only once on the root-face.

Planar map = concatenation of prime maps





E(x) the g.f. for Eulerian maps, E'(x) for prime Eulerian maps:

$$\begin{cases} E(x) = 1/(1 - E'(x)) \\ E'(x) = txE(x) + tE(1)x \frac{E'(x) - E'(1)}{x - 1} \end{cases}$$

 μ = growth rate of PEO, o(m) the number of PEO with *m* edges

 μ = growth rate of PEO, o(m) the number of PEO with *m* edges

 $\{o(m)\}_{m \ge 0}$ is a *super-multiplicative* sequence, i.e. $o(n + n') \ge o(n)o(n') \forall n, n' \in \mathbb{N}^*$ (merging two PEO with *n* and *n'* edges gives a PEO with n + n' edges).

 μ = growth rate of PEO, o(m) the number of PEO with *m* edges

 $\{o(m)\}_{m \ge 0}$ is a *super-multiplicative* sequence, i.e. $o(n + n') \ge o(n)o(n') \forall n, n' \in \mathbb{N}^*$ (merging two PEO with *n* and *n'* edges gives a PEO with n + n' edges).

Variant of Fekete's Lemma (1923): $\mu = \lim_{n \to \infty} o(n)^{1/n} = \sup_{n \ge 1} o(n)^{1/n} \in \mathbb{R}^*_+ \cup \infty$ $\Rightarrow \mu \ge (o(15))^{1/15} \sim 8.145525470$

 μ = growth rate of PEO, o(m) the number of PEO with m edges

 $\{o(m)\}_{m \ge 0}$ is a *super-multiplicative* sequence, i.e. $o(n + n') \ge o(n)o(n') \forall n, n' \in \mathbb{N}^*$ (merging two PEO with *n* and *n'* edges gives a PEO with n + n' edges).

Variant of Fekete's Lemma (1923): $\mu = \lim_{n \to \infty} o(n)^{1/n} = \sup_{n \ge 1} o(n)^{1/n} \in \mathbb{R}^*_+ \cup \infty$ $\Rightarrow \mu \ge (o(15))^{1/15} \sim 8.145525470$

PEO \subset arbitrary orientations of Eulerian maps $\Rightarrow 8.14 < \mu < 16$

 μ = growth rate of PEO, o(m) the number of PEO with *m* edges

 $\{o(m)\}_{m \ge 0}$ is a *super-multiplicative* sequence, i.e. $o(n + n') \ge o(n)o(n') \forall n, n' \in \mathbb{N}^*$ (merging two PEO with *n* and *n'* edges gives a PEO with n + n' edges).

Variant of Fekete's Lemma (1923): $\mu = \lim_{n \to \infty} o(n)^{1/n} = \sup_{n \ge 1} o(n)^{1/n} \in \mathbb{R}^*_+ \cup \infty$ $\Rightarrow \mu \ge (o(15))^{1/15} \sim 8.145525470$

PEO ⊂ arbitrary orientations of Eulerian maps ⇒ 8.14 < μ < 16 $\frac{o(m+1)}{o(m)}$ as a function of 1/m → $\frac{0}{80}$

Counting planar Eulerian orientations

13

May 20th 2016 13 / 19

Two families of sets of orientations $\mathcal{O}^{(k)-}$ and $\mathcal{O}^{(k)+}$ such that $\mathcal{O}^{(k)-} \subset \mathcal{O}^{(k+1)-} \subset \mathcal{O} \subset \mathcal{O}^{(k+1)+} \subset \mathcal{O}^{(k)+}$

A map of $\mathcal{O}^{(k)-}$ is obtained by either:

Two families of sets of orientations $\mathcal{O}^{(k)-}$ and $\mathcal{O}^{(k)+}$ such that $\mathcal{O}^{(k)-} \subset \mathcal{O}^{(k+1)-} \subset \mathcal{O} \subset \mathcal{O}^{(k+1)+} \subset \mathcal{O}^{(k)+}$

A map of $\mathcal{O}^{(k)-}$ is obtained by either:

• a concatenation of prime maps of $\mathcal{O}^{(k)-}$,

Two families of sets of orientations $\mathcal{O}^{(k)-}$ and $\mathcal{O}^{(k)+}$ such that $\mathcal{O}^{(k)-} \subset \mathcal{O}^{(k+1)-} \subset \mathcal{O} \subset \mathcal{O}^{(k+1)+} \subset \mathcal{O}^{(k)+}$

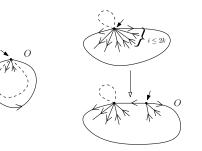
A map of $\mathcal{O}^{(k)-}$ is obtained by either:

- a concatenation of prime maps of $\mathcal{O}^{(k)-}$,
- adding an edge around a map $O \in \mathcal{O}^{(k)-}$ and directing it,

Two families of sets of orientations $\mathcal{O}^{(k)-}$ and $\mathcal{O}^{(k)+}$ such that $\mathcal{O}^{(k)-} \subset \mathcal{O}^{(k+1)-} \subset \mathcal{O} \subset \mathcal{O}^{(k+1)+} \subset \mathcal{O}^{(k)+}$

A map of $\mathcal{O}^{(k)-}$ is obtained by either:

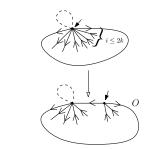
- a concatenation of prime maps of $\mathcal{O}^{(k)-}$,
- adding an edge around a map $O \in \mathcal{O}^{(k)-}$ and directing it,
- a legal split on the last prime component P_{ℓ} of a map $P_1 \dots P_{\ell} \in \mathcal{O}^{(k)-}$ at index $i \leq 2k$ or $i = \Delta(P_{\ell}) 1$



Two families of sets of orientations $\mathcal{O}^{(k)-}$ and $\mathcal{O}^{(k)+}$ such that $\mathcal{O}^{(k)-} \subset \mathcal{O}^{(k+1)-} \subset \mathcal{O} \subset \mathcal{O}^{(k+1)+} \subset \mathcal{O}^{(k)+}$

A map of $\mathcal{O}^{(k)-}$ is obtained by either:

- a concatenation of prime maps of $\mathcal{O}^{(k)-}$,
- adding an edge around a map $O \in \mathcal{O}^{(k)-}$ and directing it,
- a legal split on the last prime component P_{ℓ} of a map $P_1 \dots P_{\ell} \in \mathcal{O}^{(k)-}$ at index $i \leq 2k$ or $i = \Delta(P_{\ell}) 1$



A word *w* is balanced iff $|w|_0 - |w|_1 = 0$. It is quasi-balanced iff $|w|_0 - |w|_1 = \pm 1$.

Algebraic system for $\mathcal{O}^{(k)-} \equiv \mathcal{O}^{-}$

 $F_w(t)$: g.f. for the set $\{O \in \mathcal{O}^- | \mathbf{w}(O) = w\}$

 $L_w(t)$: g.f. for the set $\{O \in \mathcal{O}^- | \mathbf{w}(O) = uw \text{ for some } u\}$

 $F'_w(t)$: g.f. for the set $\{O \in \mathcal{O}^- | \mathbf{w}(O) = w, O \text{ is prime} \}$

 $L'_w(t)$: g.f. for the set { $O \in \mathcal{O}^- | \mathbf{w}(O) = uw$ for some u, O is prime}

Algebraic system for $\mathcal{O}^{(k)-} \equiv \mathcal{O}^{-}$

 $F_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = w\}$ $L_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = uw \text{ for some } u\}$ $F'_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = w, O \text{ is prime}\}$

 $L'_w(t)$: g.f. for the set $\{O \in \mathcal{O}^- | \mathbf{w}(O) = uw \text{ for some } u, O \text{ is prime} \}$

$$\begin{cases} F_w = \begin{cases} \sum_{w=uv} F_u F'_v, & |w| \le 2k - 2, w \ne \varepsilon \text{ balanced} \\ 1 & w = \varepsilon \end{cases} \end{cases}$$

Algebraic system for $\mathcal{O}^{(k)-} \equiv \mathcal{O}^{-}$

 $F_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = w\}$ $L_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = uw \text{ for some } u\}$ $F'_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = w, O \text{ is prime}\}$ $L'_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = uw \text{ for some } u, O \text{ is prime}\}$

 $\begin{cases} F_{w} = \begin{cases} \sum_{w=uv} F_{u}F'_{v}, & |w| \leq 2k-2, w \neq \varepsilon \text{ balanced} \\ 1 & w = \varepsilon \\ L_{w} = \begin{cases} L_{\varepsilon}L'_{w} + \sum_{w=uv, u \neq \varepsilon} L_{u}F'_{v}, & |w| \leq 2k-2 \\ 1 + L_{\varepsilon}L'_{\varepsilon} & w = \varepsilon \end{cases} \end{cases}$

Algebraic system for $\mathcal{O}^{(k)-} \equiv \mathcal{O}^{-}$

 $F_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = w\}$ $L_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = uw \text{ for some } u\}$ $F'_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = w, O \text{ is prime}\}$ $L'_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = uw \text{ for some } u, O \text{ is prime}\}$

 $\begin{cases} F_{w} = \begin{cases} \sum_{w=uv} F_{u}F'_{v}, \\ 1 \\ L_{w} = \begin{cases} L_{\varepsilon}L'_{w} + \sum_{w=uv, u \neq \varepsilon} L_{u}F'_{v}, \\ 1 + L_{\varepsilon}L'_{\varepsilon} \\ F'_{w} = \begin{cases} tF_{w_{2}} + tL_{\varepsilon}L'_{w'}, \\ 0 \end{cases} \end{cases}$ $|w| \le 2k - 2, w \ne \varepsilon$ balanced $w = \varepsilon$ $|w| \leq 2k-2$ $w = \varepsilon$ $|w| \le 2k, w \ne \varepsilon$ balanced $w = \varepsilon$ or w non-balanced

Algebraic system for $\mathcal{O}^{(k)-} \equiv \mathcal{O}^-$

 $F_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = w\}$ $L_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = uw \text{ for some } u\}$ $F'_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = w, O \text{ is prime}\}$ $L'_{w}(t): \text{ g.f. for the set } \{O \in \mathcal{O}^{-} | \mathbf{w}(O) = uw \text{ for some } u, O \text{ is prime}\}$

 $\begin{cases} F_{w} = \begin{cases} \sum_{w=uv} F_{u}F'_{v}, & |w| \leq 2k-2, w \\ 1 & w = \varepsilon \\ L_{w} = \begin{cases} L_{\varepsilon}L'_{w} + \sum_{w=uv, u \neq \varepsilon} L_{u}F'_{v}, & |w| \leq 2k-2 \\ 1 + L_{\varepsilon}L'_{\varepsilon} & w = \varepsilon \\ 1 + L_{\varepsilon}L'_{\varepsilon} & w = \varepsilon \end{cases}$ $F'_{w} = \begin{cases} tF_{w_{2}} + tL_{\varepsilon}L'_{w'}, & |w| \leq 2k, w \neq \varepsilon \\ 0 & w = \varepsilon \text{ or } w \text{ nor } \\ 0 & w = \varepsilon \text{ or } w \text{ nor } \end{cases}$ $L'_{w} = \begin{cases} tL_{w_{1}} + tF_{w_{2}} + tL_{\varepsilon}L'_{w} + \\ tL_{\varepsilon} \sum_{u=vw} (L'_{u} - F'_{\overline{u}}) + tL_{\varepsilon}(L'_{w'} - F'_{w}), & |w| \leq 2k-2 \\ u \text{ quasi-bal.} \\ |u| < 2k \\ L'_{0} + L'_{1} & w = \varepsilon \end{cases}$ $|w| \leq 2k - 2, w \neq \varepsilon$ balanced $|w| \leq 2k, w \neq \varepsilon$ balanced $w = \varepsilon$ or w non-balanced $w = \varepsilon$

Counting planar Eulerian orientations

May 20th 2016 15 / 19

 $w = w_1 \alpha = \alpha w_2 \overline{\alpha} = \alpha w'$ $\overline{u} = \alpha u$ with αu balanced

$$w = w_1 \alpha = \alpha w_2 \overline{\alpha} = \alpha w'$$

 $\overleftarrow{u} = \alpha u$ with αu balanced

 $L'_w =$

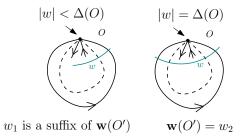
Counting planar Eulerian orientations

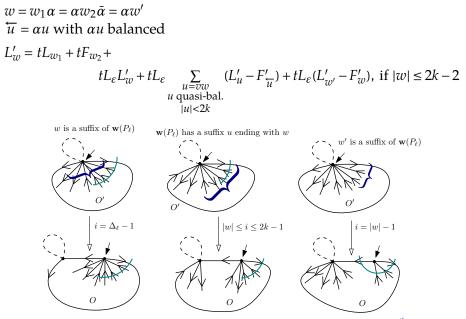
May 20th 2016 16 / 19

$$w = w_1 \alpha = \alpha w_2 \overline{\alpha} = \alpha w'$$

 $\overline{u} = \alpha u$ with αu balanced

$$L'_w = tL_{w_1} + tF_{w_2} +$$





Counting planar Eulerian orientations

May 20th 2016 16 / 19

We want to compute L_{ε} (root-word ending with anything = all maps) for a given value of *k*

We want to compute L_{ε} (root-word ending with anything = all maps) for a given value of *k*

Method: write all equations for a system, then give it to Maple

We want to compute L_{ε} (root-word ending with anything = all maps) for a given value of *k*

Method: write all equations for a system, then give it to Maple

nature	k	degree of the final equation	growth rate	
inf	1	3	10.60	
inf	2	6	10.97	
inf	3	20	11.22	
inf	4	_	$11.44^{(*)}$	
inf	5	_	$11.56^{(*)}$	
(*): not proven, use of quadratic approximants method				

We want to compute L_{ε} (root-word ending with anything = all maps) for a given value of *k*

Method: write all equations for a system, then give it to Maple

nature	k	degree of the final equation	growth rate		
inf	1	3	10.60		
inf	2	6	10.97		
inf	3	20	11.22		
inf	4	_	$11.44^{(*)}$		
inf	5	_	$11.56^{(*)}$		
(*): not proven, use of quadratic approximants method					

Theorem

Let \mathcal{O}_m *be the number of Eulerian orientations with m edges. Then* $\mathcal{O}_m^{1/m} \rightarrow \mu$ *with* $11.22 \leq \mu \leq 13.06$.

Some other results...

For each k > 0, let C(k, n) be the counting sequence of the set $\mathcal{O}^{(k)-}$. Then $C(k, n) \sim \gamma n^{-3/2} \rho^{-n}$ (ρ and γ depend on k).

Some other results...

For each k > 0, let C(k, n) be the counting sequence of the set $\mathcal{O}^{(k)-}$. Then $C(k, n) \sim \gamma n^{-3/2} \rho^{-n}$ (ρ and γ depend on k).

Let $\mu^{(k)-}$ be the growth rate of the series for the set $\mathcal{O}^{(k)-}$. Then $\mu^{(1)-} < \mu^{(2)-} < \cdots < \mu^{(k)-} < \mu$ and $\mu^{(k)-} \rightsquigarrow_{k \to \infty} \mu$.

Some other results...

For each k > 0, let C(k, n) be the counting sequence of the set $\mathcal{O}^{(k)-}$. Then $C(k, n) \sim \gamma n^{-3/2} \rho^{-n}$ (ρ and γ depend on k).

Let $\mu^{(k)-}$ be the growth rate of the series for the set $\mathcal{O}^{(k)-}$. Then $\mu^{(1)-} < \mu^{(2)-} < \cdots < \mu^{(k)-} < \mu$ and $\mu^{(k)-} \rightsquigarrow_{k \to \infty} \mu$.

The functional equations for the sets $\mathcal{O}^{(k)+}$ have one catalytic variable (counting the half root-degree) and the series relative to these sets are algebraic.

OPEN QUESTIONS

- What is the type of the generating function for PEO ?
- What if we restrict the vertices degrees of the map?
- Find another grammar for the PEO taking the orientation into account ?

Thank you!