Power domination in triangulations

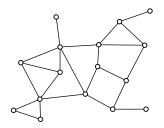
<u>Claire Pennarun</u> Joint work with Paul Dorbec and Antonio Gonzalez

LaBRI, Université de Bordeaux Universidad de Cadiz

GT Graphes et optimisation, LaBRI, 8 janvier 2016

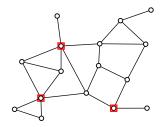
A variant of domination: we can "deduce" things

• Some vertices in a set of "captors" *S* and N[S] = M (domination)



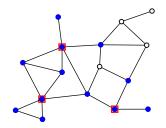
A variant of domination: we can "deduce" things

• Some vertices in a set of "captors" *S* and N[S] = M (domination)

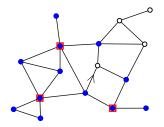


A variant of domination: we can "deduce" things

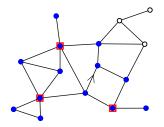
• Some vertices in a set of "captors" *S* and N[S] = M (domination)



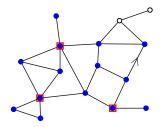
- Some vertices in a set of "captors" S and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$



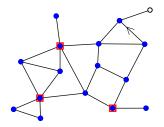
- Some vertices in a set of "captors" S and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$



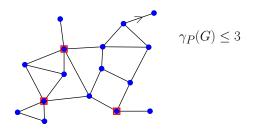
- Some vertices in a set of "captors" S and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$



- Some vertices in a set of "captors" S and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$



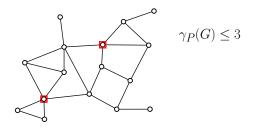
- Some vertices in a set of "captors" *S* and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$
- *S* is a **power dominating set** (PDS) if M = V(G) at the end.



A variant of domination: we can "deduce" things

- Some vertices in a set of "captors" S and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$
- *S* is a **power dominating set** (PDS) if M = V(G) at the end.

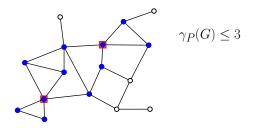
 $\gamma_P(G)$ (power domination number of *G*): minimum size of a PDS.



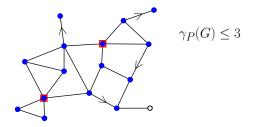
A variant of domination: we can "deduce" things

- Some vertices in a set of "captors" *S* and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$
- *S* is a **power dominating set** (PDS) if M = V(G) at the end.

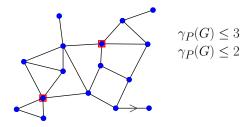
 $\gamma_P(G)$ (power domination number of *G*): minimum size of a PDS.



- Some vertices in a set of "captors" *S* and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$
- *S* is a **power dominating set** (PDS) if M = V(G) at the end.
- $\gamma_P(G)$ (power domination number of *G*): minimum size of a PDS.



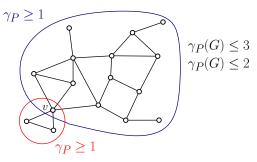
- Some vertices in a set of "captors" *S* and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$
- *S* is a **power dominating set** (PDS) if M = V(G) at the end.
- $\gamma_P(G)$ (power domination number of *G*): minimum size of a PDS.



A variant of domination: we can "deduce" things

- Some vertices in a set of "captors" S and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

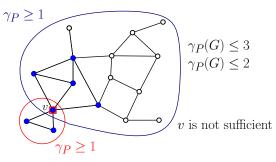
S is a **power dominating set** (PDS) if M = V(G) at the end. $\gamma_P(G)$ (**power domination number** of *G*): minimum size of a PDS.



A variant of domination: we can "deduce" things

- Some vertices in a set of "captors" S and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

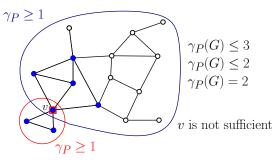
S is a **power dominating set** (PDS) if M = V(G) at the end. $\gamma_P(G)$ (**power domination number** of *G*): minimum size of a PDS.



A variant of domination: we can "deduce" things

- Some vertices in a set of "captors" S and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

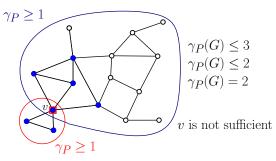
S is a **power dominating set** (PDS) if M = V(G) at the end. $\gamma_P(G)$ (**power domination number** of *G*): minimum size of a PDS.



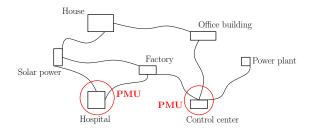
A variant of domination: we can "deduce" things

- Some vertices in a set of "captors" S and N[S] = M (domination)
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

S is a **power dominating set** (PDS) if M = V(G) at the end. $\gamma_P(G)$ (**power domination number** of *G*): minimum size of a PDS.

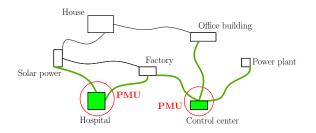


Initially: control an electrical system with a minimal number of captors [Baldwin et al. '91, '93]

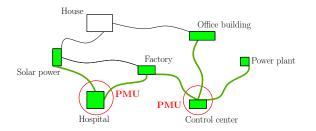


Placing a minimal number of measurement units (PMUs) to monitor an electrical system (devices and cables):

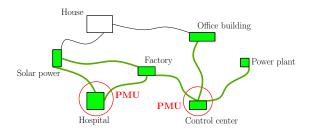
• Each PMU monitors a device and adjacent cables



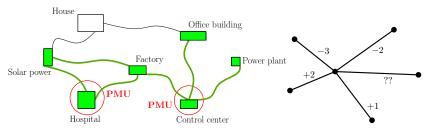
- Each PMU monitors a device and adjacent cables
- A device is monitored if one cable around it is monitored



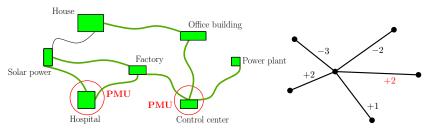
- Each PMU monitors a device and adjacent cables
- A device is monitored if one cable around it is monitored
- A cable is monitored if its two ends are monitored



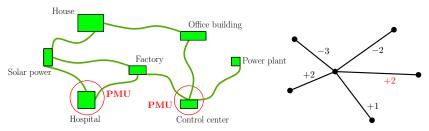
- Each PMU monitors a device and adjacent cables
- A device is monitored if one cable around it is monitored
- A cable is monitored if its two ends are monitored
- We can deduce parameters for some cables using Kirschoff's and Ohm's laws



- Each PMU monitors a device and adjacent cables
- A device is monitored if one cable around it is monitored
- A cable is monitored if its two ends are monitored
- We can deduce parameters for some cables using Kirschoff's and Ohm's laws

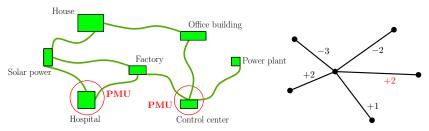


- Each PMU monitors a device and adjacent cables
- A device is monitored if one cable around it is monitored
- A cable is monitored if its two ends are monitored
- We can deduce parameters for some cables using Kirschoff's and Ohm's laws



Placing a minimal number of measurement units (PMUs) to monitor an electrical system (devices and cables):

- Each PMU monitors a device and adjacent cables
- A device is monitored if one cable around it is monitored
- A cable is monitored if its two ends are monitored
- We can deduce parameters for some cables using Kirschoff's and Ohm's laws



[Haynes et al. '02] Equivalent to monitoring only vertices of a graph (power domination)

Power-dominating set

Input: A (undirected) graph G = (V, E), an integer $k \ge 0$. **Question**: Is there a power-dominating set $S \subseteq V$ with $|S| \le k$?

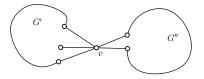
is NP-complete for planar graphs [Guo et al. '05]

Power-dominating set

Input: A (undirected) graph G = (V, E), an integer $k \ge 0$. **Question**: Is there a power-dominating set $S \subseteq V$ with $|S| \le k$?

is NP-complete for planar graphs [Guo et al. '05]

"Problem" with planar graphs: vertex *v* separating *G* in two connected components *G'* and *G''* with $\delta_{G'}(v) \ge 2$ and $\delta_{G''}(v) \ge 2$.

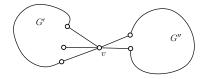


Power-dominating set

Input: A (undirected) graph G = (V, E), an integer $k \ge 0$. **Question**: Is there a power-dominating set $S \subseteq V$ with $|S| \le k$?

is NP-complete for planar graphs [Guo et al. '05]

"Problem" with planar graphs: vertex v separating G in two connected components G' and G'' with $\delta_{G'}(v) \ge 2$ and $\delta_{G''}(v) \ge 2$.



 \rightarrow restrict to triangulations: no cut-vertex!

[Matheson & Tarjan '96]

$\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order *n* (conjecture: $\frac{n}{4}$)

[Matheson & Tarjan '96]

 $\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order *n* (conjecture: $\frac{n}{4}$)

Tight graphs with $\gamma(G) = \frac{n}{4}$: each induced K_4 needs a vertex in *S*.

[Matheson & Tarjan '96]

 $\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order *n* (conjecture: $\frac{n}{4}$)

Tight graphs with $\gamma(G) = \frac{n}{4}$: each induced K_4 needs a vertex in *S*.

Power domination: propagation stops when every vertex of *M* "on the boundary" has ≥ 2 neighbors in \overline{M} .

[Matheson & Tarjan '96]

 $\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order *n* (conjecture: $\frac{n}{4}$)

Tight graphs with $\gamma(G) = \frac{n}{4}$: each induced K_4 needs a vertex in *S*.

Power domination: propagation stops when every vertex of *M* "on the boundary" has ≥ 2 neighbors in \overline{M} .

Tight graphs with $\gamma_P(G) = \frac{n}{6}$: each induced octahedron needs a captor.

[Matheson & Tarjan '96]

 $\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order *n* (conjecture: $\frac{n}{4}$)

Tight graphs with $\gamma(G) = \frac{n}{4}$: each induced K_4 needs a vertex in *S*.

Power domination: propagation stops when every vertex of M "on the boundary" has ≥ 2 neighbors in \overline{M} .

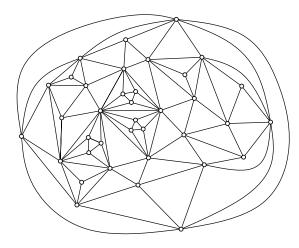
Tight graphs with $\gamma_P(G) = \frac{n}{6}$: each induced octahedron needs a captor.

Main Theorem

$$\gamma_P(G) \le \frac{n-2}{4}$$
 if *G* is a triangulation with $n \ge 6$ vertices.

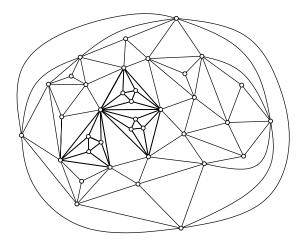
OUR ALGORITHM

 Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.



OUR ALGORITHM

 Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.



OUR ALGORITHM

 Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.

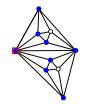


2 octahedra sharing a vertex: Select it in ${\color{black} S}$

 Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.

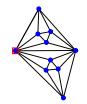
2 octahedra sharing a vertex: Select it in ${\cal S}$

 Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.



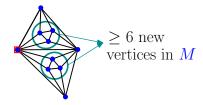
2 octahedra sharing a vertex: Select it in ${\cal S}$

 Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.



2 octahedra sharing a vertex: Select it in ${\cal S}$

 Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.



2 octahedra sharing a vertex: Select it in ${\color{black} S}$

 Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.

Isolated octahedron: select a vertex of the outer face in S

 Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.

Isolated octahedron: select a vertex of the outer face in S

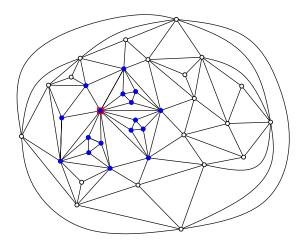
 Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.

Isolated octahedron: select a vertex of the outer face in S

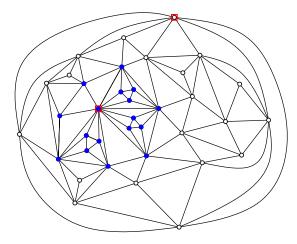
 Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.

Isolated octahedron: select a vertex of the outer face in ${\cal S}$

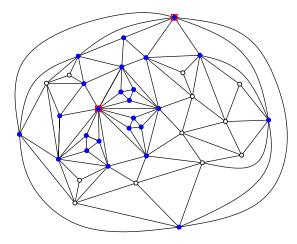
 Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.



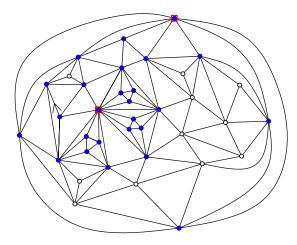
- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.



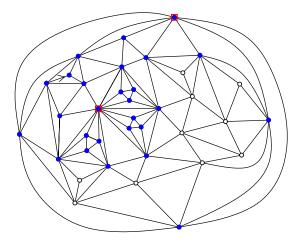
- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.



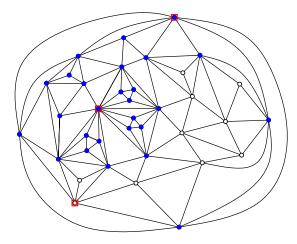
- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.



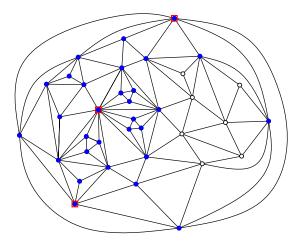
- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.



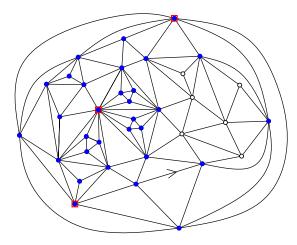
- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.



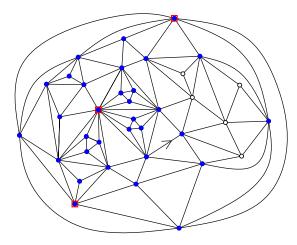
- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.



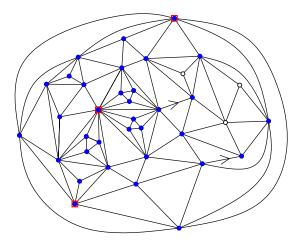
- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.



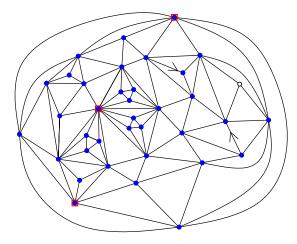
- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.



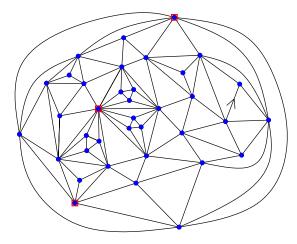
- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.



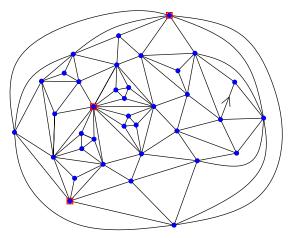
- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.



- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.

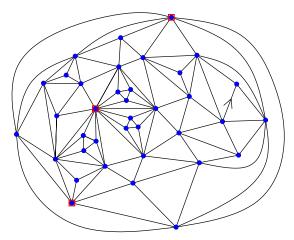


- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.



Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

- Monitor the octahedrons with *l* ≤ *n*′/6 captors, and propagate.
- While we can: For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.



Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor. Suppose the graph is not entirely monitored at the end: $G[\overline{M}] \neq \emptyset$ AFTER THE MAIN ALGORITHM...

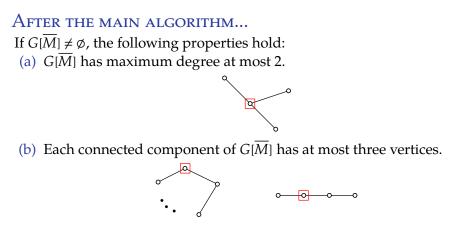
If $G[\overline{M}] \neq \emptyset$, the following properties hold: (a) $G[\overline{M}]$ has maximum degree at most 2.

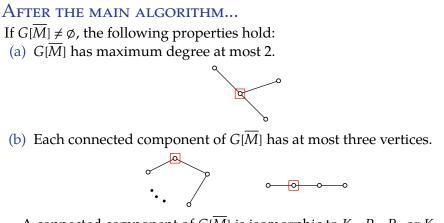
(b) Each connected component of $G[\overline{M}]$ has at most three vertices.

AFTER THE MAIN ALGORITHM... If $G[\overline{M}] \neq \emptyset$, the following properties hold: (a) $G[\overline{M}]$ has maximum degree at most 2.

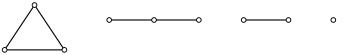
(b) Each connected component of $G[\overline{M}]$ has at most three vertices.

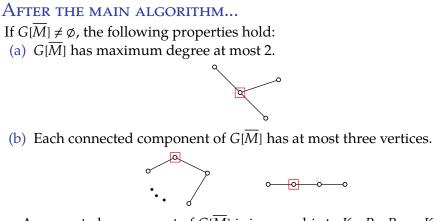
ð



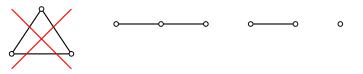


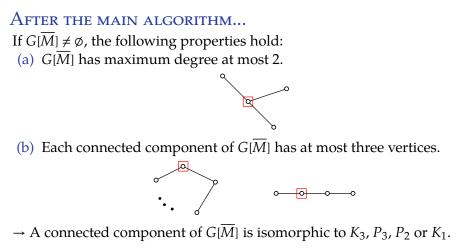
→ A connected component of $G[\overline{M}]$ is isomorphic to K_3 , P_3 , P_2 or K_1 .

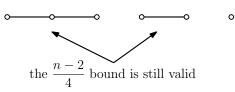




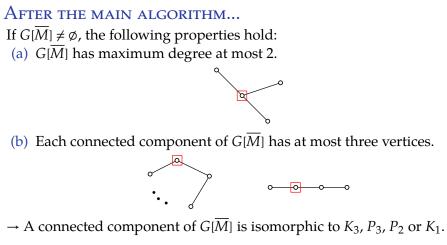
 \rightarrow A connected component of $G[\overline{M}]$ is isomorphic to K_3 , P_3 , P_2 or K_1 .

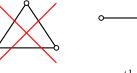


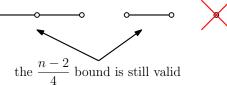




Power domination in triangulations







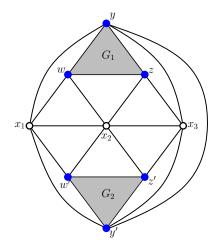
Power domination in triangulations

Global technique used for all cases: try to build *G* around the hypothetical connected component.

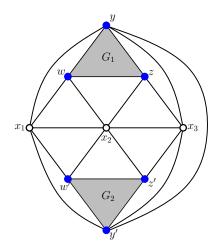
(Some) Tools used in this (long) proof:

- planarity (contradiction with Euler's formula)
- contradiction with the conditions to choose a vertex in *S* : maximal degree or contribution of each vertex
- induction reasoning

If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:

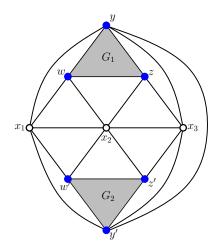


If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:



 G_1 and G_2 have ≥ 6 vertices (oth. contradiction with the degree condition)

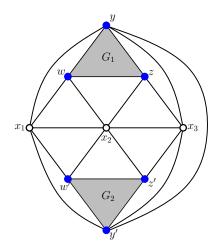
If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:



 G_1 and G_2 have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction on the size:

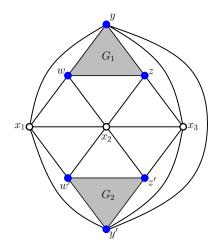
If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:



 G_1 and G_2 have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction on the size: $\gamma_P(G_1) \leq \frac{n_1 - 2}{4}$

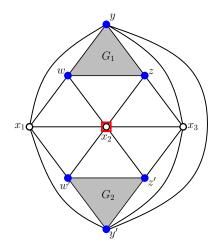
If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:



 G_1 and G_2 have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction on the size: $\gamma_P(G_1) \le \frac{n_1 - 2}{4}$ $\gamma_P(G_2) \le \frac{n_2 - 2}{4}$

If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:

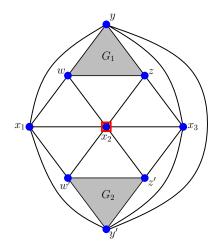


 G_1 and G_2 have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction on the size: $\gamma_P(G_1) \le \frac{n_1 - 2}{4}$ $\gamma_P(G_2) \le \frac{n_2 - 2}{4}$

Adding
$$x_2$$
 to S:
 $\gamma_P(G) \le \frac{n_1 + n_2 - 4}{4} + 1 = \frac{n_1 + n_2}{4}$
and $\frac{n_1 + n_2}{4} < \frac{n - 2}{4}$

If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:



 G_1 and G_2 have ≥ 6 vertices (oth. contradiction with the degree condition)

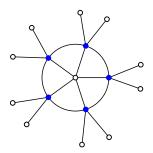
Induction on the size: $\gamma_P(G_1) \le \frac{n_1 - 2}{4}$ $\gamma_P(G_2) \le \frac{n_2 - 2}{4}$

Adding
$$x_2$$
 to *S*:
 $\gamma_P(G) \le \frac{n_1 + n_2 - 4}{4} + 1 = \frac{n_1 + n_2}{4}$
and $\frac{n_1 + n_2}{4} < \frac{n - 2}{4}$

Planarity contradiction: K_1

No connected component of $G[\overline{M}]$ is isomorphic to K_1 .

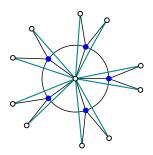
[Some cases... (no details here)] The last case: each vertex x in \overline{M} has the following neighborhood:



Planarity contradiction: K_1

No connected component of $G[\overline{M}]$ is isomorphic to K_1 .

[Some cases... (no details here)] The last case: each vertex x in \overline{M} has the following neighborhood:



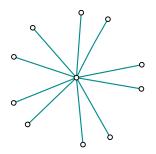
Create an edge between two vertices $u, v \in \overline{M}$ at distance 2

Planarity contradiction: K_1

No connected component of $G[\overline{M}]$ is isomorphic to K_1 .

[Some cases... (no details here)]

The last case: each vertex *x* in \overline{M} has the following neighborhood:



Create an edge between two vertices $u, v \in \overline{M}$ at distance 2 The new graph is planar and every vertex has degree at least 6 (each vertex has deg ≥ 3 in *G*): contradiction!

AND NOW?

Future work:

- Prove that our algorithm has a linear complexity
- Find (a family of) graphs for which our algorithm reaches the $\frac{n-2}{4}$ bound

Open questions:

- Can we "change the constant factor" in $\frac{n-2}{4}$?
- Is the decision problem NP-Complete for triangulations?

AND NOW?

Future work:

- Prove that our algorithm has a linear complexity
- Find (a family of) graphs for which our algorithm reaches the $\frac{n-2}{4}$ bound

Open questions:

- Can we "change the constant factor" in $\frac{n-2}{4}$?
- Is the decision problem NP-Complete for triangulations?

Thank you!