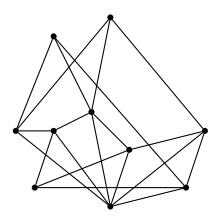
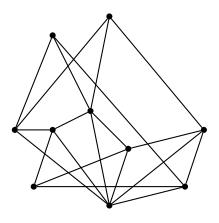
Claire Pennarun

From joint work with David Auber, Nicolas Bonichon and Paul Dorbec

LaBRI, Bordeaux

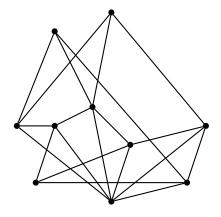
January 16th, 2015





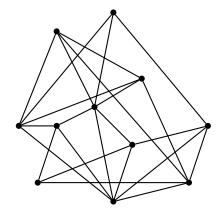
How can we draw graphs without too much effort when the graph **changes**?

addition of nodes

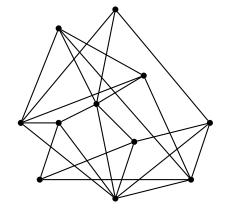


How can we draw graphs without too much effort when the graph **changes**?

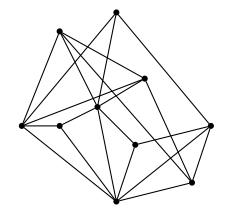
addition of nodes



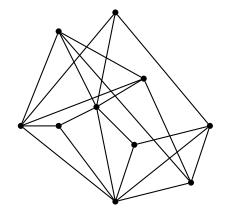
- addition of nodes
- deletion of nodes



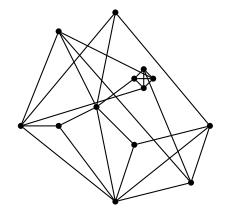
- addition of nodes
- deletion of nodes



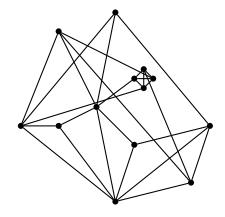
- addition of nodes
- deletion of nodes
- node "expansion"



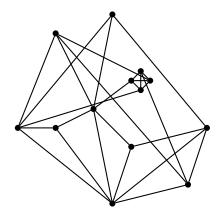
- addition of nodes
- deletion of nodes
- node "expansion"



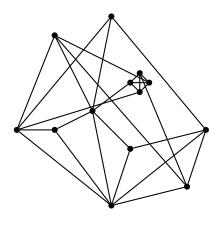
- addition of nodes
- deletion of nodes
- node "expansion"



- addition of nodes
- deletion of nodes
- node "expansion"
- Looking for linear algorithms, easy to implement



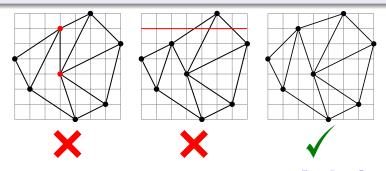
- addition of nodes
- deletion of nodes
- node "expansion"
- Looking for linear algorithms, easy to implement
- Preservation of the global "image" of the graph



Definition

A rook-drawing of a graph of n vertices:

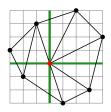
- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly



Definition

A rook-drawing of a graph of n vertices:

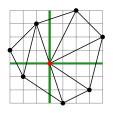
- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly

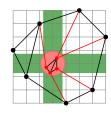


Definition

A rook-drawing of a graph of n vertices:

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly

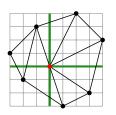


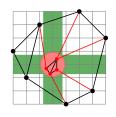


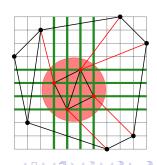
Definition

A rook-drawing of a graph of n vertices :

- Straight-lines
- Regular grid $n \times n$
- One vertex per line and column exactly







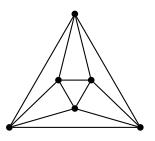
Is there a planar rook-drawing for every planar graph?

Is there a planar rook-drawing for every planar graph?

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an $(n-2) \times (n-2)$ grid)

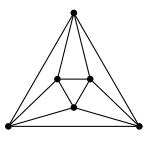
Is there a planar rook-drawing for every planar graph?

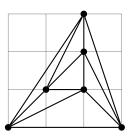
- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an $(n-2) \times (n-2)$ grid)



Is there a planar rook-drawing for every planar graph?

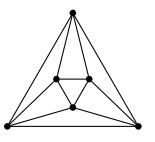
- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an $(n-2) \times (n-2)$ grid)

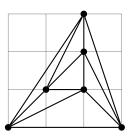


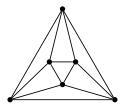


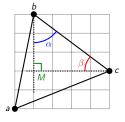
Is there a planar rook-drawing for every planar graph? No!

- Straight-lines drawing ([Fáry, 1948] : every planar graph)
- Grid drawing ([de Fraysseix, 1988], [Schnyder, 1990] : every planar graph on an $(n-2)\times(n-2)$ grid)



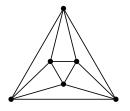


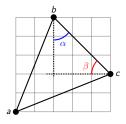




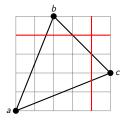
Three exterior nodes a, b and c. Inner nodes: inside the area (ab), (bc) and (ca).

 $\alpha \geq$ 45°, $\beta \geq$ 45°. $\it Mab$ right-angled

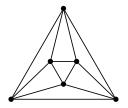


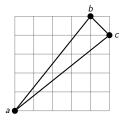


$$\alpha \geq$$
 45°, $\beta \geq$ 45°. *Mab* right-angled $\alpha = \beta =$ 45° $\rightarrow x(b) = y(c)$.

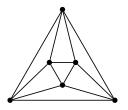


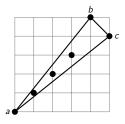
$$\alpha \geq 45^{\circ}$$
, $\beta \geq 45^{\circ}$. Mab right-angled $\alpha = \beta = 45^{\circ} \rightarrow x(b) = y(c)$. (bc) prevents any node to fill the line under b or the column at the left of c .





$$\alpha \geq$$
 45°, $\beta \geq$ 45°. Mab right-angled $\alpha = \beta =$ 45° $\rightarrow x(b) = y(c)$. (bc) prevents any node to fill the line under b or the column at the left of c . Fill these line and column with c and b ! $x(b) = y(c) = n - 1$.





Three exterior nodes a, b and c. Inner nodes: inside the area (ab), (bc) and (ca).

$$\alpha \geq$$
 45°, $\beta \geq$ 45°. Mab right-angled $\alpha = \beta =$ 45° $\rightarrow x(b) = y(c)$. (bc) prevents any node to fill the line under b or the column at the left of c . Fill these line and column with c and b ! $x(b) = y(c) = n - 1$.

Inner nodes: along a diagonal.

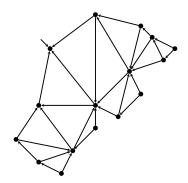
A graph is outerplanar if it has a planar drawing such that all its vertices are on the outer face.

Result

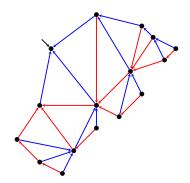
Every outerplanar graph has a rook-drawing which can be computed in linear time.

- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

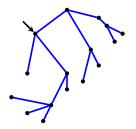
- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .



- edges of G outerplanar map $\rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .

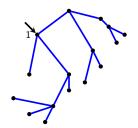


- edges of $G \rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .



[Bonichon, Gavoille, Hanusse, 2005]

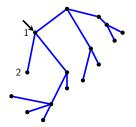
- edges of $G \rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .



x : ccw pre-order depth-first

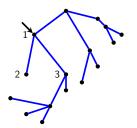
• y : ccw post-order depth-first

- edges of $G \rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .



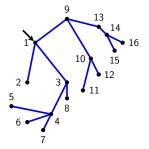
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of $G \rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .



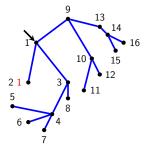
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of $G \rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .



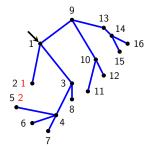
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of $G \rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .



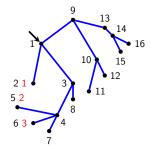
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of $G \rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .



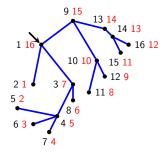
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

- edges of $G \rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .



- x : ccw pre-order depth-first
- y : ccw post-order depth-first

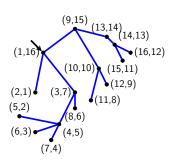
- edges of $G \rightarrow T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_b .



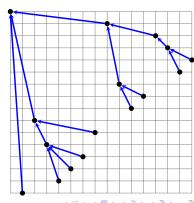
- x : ccw pre-order depth-first
- y : ccw post-order depth-first

[Bonichon, Gavoille, Hanusse, 2005]

- edges of $G \to T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_h .

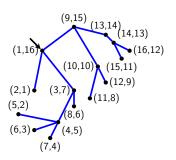


• x : ccw pre-order depth-first • y : ccw post-order depth-first

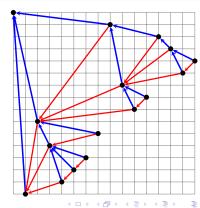


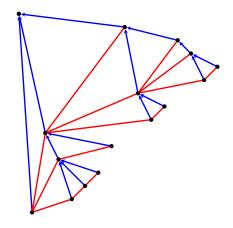
[Bonichon, Gavoille, Hanusse, 2005]

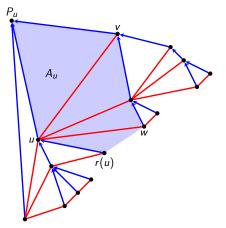
- edges of $G \to T_r$, T_b
- edges of T_r : between u and its first non-descendant found after u in a clockwise pre-ordering of T_h .



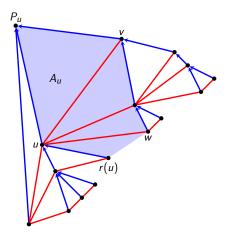
x : ccw pre-order depth-first • y : ccw post-order depth-first







For each vertex u not a leaf of T_r : define an area A_u with only red edges leading to u (the areas A_i are disjoint).

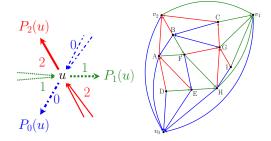


For each vertex u not a leaf of T_r : define an area A_{μ} with only red edges leading to u (the areas A_i are disjoint).

The drawing is planar within A_{μ} and blue and red edges can not cross.

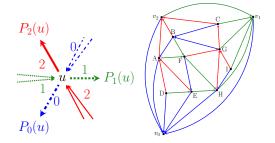
Schnyder woods

A Schnyder wood is a partition of the edges of a triangulation in three trees T_0 , T_1 and T_2 (directed toward the root) and with a particular configuration around each node :



Schnyder woods

A Schnyder wood is a partition of the edges of a triangulation in three trees T_0 , T_1 and T_2 (directed toward the root) and with a particular configuration around each node :



[Schnyder 1989]

Every plane triangulation admits at least one Schnyder wood, and it can be computed in linear time.

Polyline rook-drawing for planar graphs

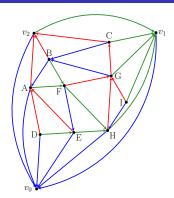
We consider G a maximal plane graph (with exterior nodes v_0 , v_1 and v_2).

Main result

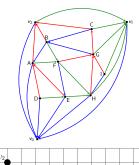
Every planar graph with n nodes admits a planar polyline rook-drawing, with at most n-2 bends (at most one per edge). Such a drawing can be computed in linear time.

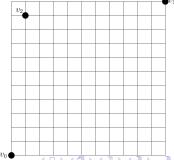
Proof : based on an algorithm of [Bonichon, Mosbah, Le Saëc, 2002] optimizing the area of a polyline drawing.

• (T_0, T_1, T_2) : Schnyder wood of G.

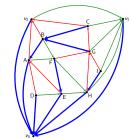


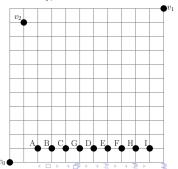
- (T_0, T_1, T_2) : Schnyder wood of G.
- $v_0 = (0,0), v_1 = (n-1, n-1), v_2 = (1, n-2).$



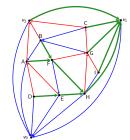


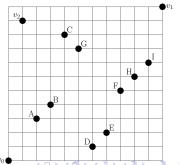
- (T_0, T_1, T_2) : Schnyder wood of G.
- $v_0 = (0,0), v_1 = (n-1, n-1), v_2 = (1, n-2).$
- x : clockwise preordering of T_0 = {ABCGDEFHI}.



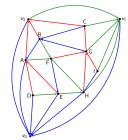


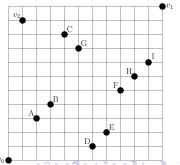
- (T_0, T_1, T_2) : Schnyder wood of G.
- $v_0 = (0,0), v_1 = (n-1, n-1), v_2 = (1, n-2).$
- x : clockwise preordering of T_0 = {ABCGDEFHI}.
- y : clockwise postordering of T₁ = {DEABFHIGC}.



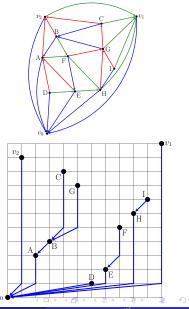


- (T_0, T_1, T_2) : Schnyder wood of G.
- $v_0 = (0,0), v_1 = (n-1, n-1), v_2 = (1, n-2).$
- x : clockwise preordering of T_0 = {ABCGDEFHI}.
- y : clockwise postordering of T₁ = {DEABFHIGC}.

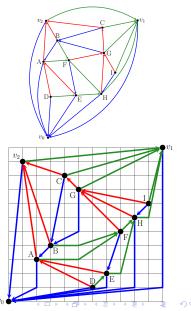




• The edges $(u, P_0(u))$ are bent at $(x(u), y(P_0(u)) + 1)$

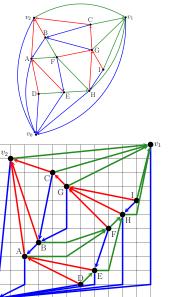


- The edges $(u, P_0(u))$ are bent at $(x(u), y(P_0(u)) + 1)$
- The edges $(u, P_1(u))$ are bent at (x(last descendant(u)), y(u))
- The edges $(u, P_2(u))$ are not bent.

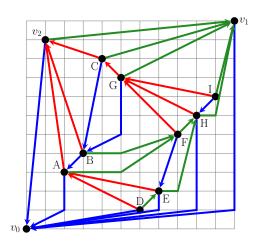


- The edges $(u, P_0(u))$ are bent at $(x(u), y(P_0(u)) + 1)$
- The edges $(u, P_1(u))$ are bent at (x(last descendant(u)), y(u))
- The edges $(u, P_2(u))$ are not bent.

Around a node : $\#bends = \#\{blue\ children\}$ $\rightarrow n-2\ bends\ in\ the\ drawing$

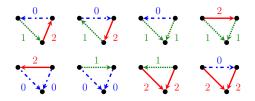


Proof of planarity



Schnyder wood properties

If u is a descendant of v in T_i , then u is not a parent of v in T_j , $j \neq i$.



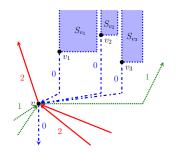
If u is parent of v in T_i , then u is before v in counterclockwise preordering of T_{i-1} and after v in counterclockwise preordering of T_{i+1} .

Edges direction

Edges direction

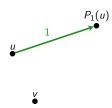
For each inner node u:

- $P_0(u)$ is left and below u.
- $P_1(u)$ is right and above u.
- $P_2(u)$ is left and above u.



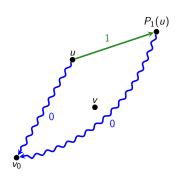
- ullet South-East : edges from children in T_2
- South : edge toward $P_0(v)$
- ullet South-West : edges from children in \mathcal{T}_1
- North-West : edge toward $P_2(v)$
- ullet North-East : edges from children in T_0
- East : edge toward $P_1(v)$

Every node v with $x(u) < x(v) < x(P_1(u))$ has y(v) < y(u) if v is not a descendant of u in T_0 .



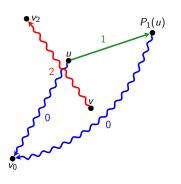
v: between u and $P_1(u)$.

Every node v with $x(u) < x(v) < x(P_1(u))$ has y(v) < y(u) if v is not a descendant of u in T_0 .



v: between u and $P_1(u)$. $\rightarrow v$ in area (v_0, u) , $(u, P_1(u))$, $(P_1(u), v_0)$.

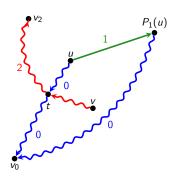
Every node v with $x(u) < x(v) < x(P_1(u))$ has y(v) < y(u) if v is not a descendant of u in T_0 .



v: between u and $P_1(u)$. $\rightarrow v$ in area (v_0, u) , $(u, P_1(u))$, $(P_1(u), v_0)$.

Path $v \rightarrow v_2$ has to "leave" the area!

Every node v with $x(u) < x(v) < x(P_1(u))$ has y(v) < y(u) if v is not a descendant of u in T_0 .

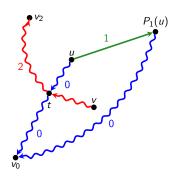


v: between u and $P_1(u)$. $\rightarrow v$ in area (v_0, u) , $(u, P_1(u))$, $(P_1(u), v_0)$.

Path $v \rightarrow v_2$ has to "leave" the area! Intersection t on path (v_0, u) .

Paths $v \to t$ and $u \to t$.

Every node v with $x(u) < x(v) < x(P_1(u))$ has y(v) < y(u) if v is not a descendant of u in T_0 .



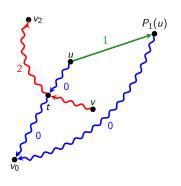
v: between u and $P_1(u)$. $\rightarrow v$ in area (v_0, u) , $(u, P_1(u))$, $(P_1(u), v_0)$.

Path $v \rightarrow v_2$ has to "leave" the area! Intersection t on path (v_0, u) .

Paths $v \rightarrow t$ and $u \rightarrow t$.

 \rightarrow path from v to u is going upwards = y(v) < y(u).

Every node v with $x(u) < x(v) < x(P_1(u))$ has y(v) < y(u) if v is not a descendant of u in T_0 .



v: between u and $P_1(u)$. $\rightarrow v$ in area (v_0, u) , $(u, P_1(u))$, $(P_1(u), v_0)$.

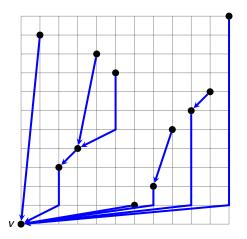
Path $v \rightarrow v_2$ has to "leave" the area! Intersection t on path (v_0, u) .

Paths $v \rightarrow t$ and $u \rightarrow t$.

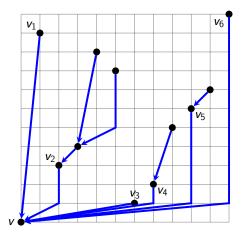
 \rightarrow path from v to u is going upwards = y(v) < y(u).

Every node v with $x(P_2(u)) < x(v) < x(u)$ has y(v) < y(u) if v is not a descendant of $P_2(u)$ in T_0 .

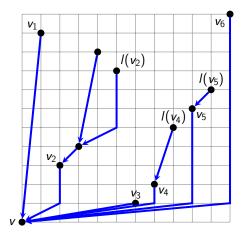
The edges of T_0 do not cross each other.



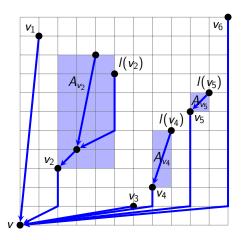
The edges of T_0 do not cross each other.



The edges of T_0 do not cross each other.

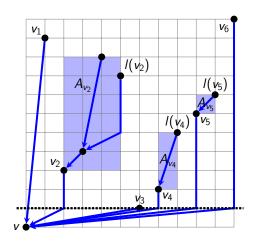


The edges of T_0 do not cross each other.



The subtrees of children "live" in different areas of width $(x(I(v_i)) - x(v_i))$.

The edges of T_0 do not cross each other.



The subtrees of children "live" in different areas of width $(x(I(v_i)) - x(v_i))$.

The edges to the children can not cross each other.

The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends : y-decreasing (by construction); x-increasing :

The edges of T_1 do not cross each other.

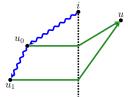
Subtrees live in different areas (by construction). The bends : y-decreasing (by construction); x-increasing :

 u_i descendant of u_{i+1} in T_0

The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends : y-decreasing (by construction); x-increasing :

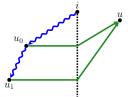
 u_i descendant of u_{i+1} in T_0



The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends : y-decreasing (by construction); x-increasing :

 u_i descendant of u_{i+1} in T_0

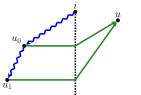


The last descendant of u_{i+1} is on the right to the one of u_i in T_0 .

The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends : y-decreasing (by construction); x-increasing :

 u_i descendant of u_{i+1} in T_0



The last descendant of u_{i+1} is on the right to the one of u_i in T_0 .

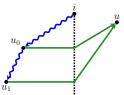
 u_i not descendant of u_{i+1} in T_0

$$x(u_i) > x(u_{i+1})$$

The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends : y-decreasing (by construction); x-increasing :

 u_i descendant of u_{i+1} in T_0



The last descendant of u_{i+1} is on the right to the one of u_i in T_0 .

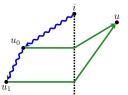
 u_i not descendant of u_{i+1} in T_0

$$x(u_i) > x(u_{i+1})$$

The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends: y-decreasing (by construction); x-increasing:

 u_i descendant of u_{i+1} in T_0



The last descendant of u_{i+1} is on the right to the one of u_i in T_0 .

 u_i not descendant of u_{i+1} in T_0

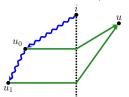
$$x(u_i) > x(u_{i+1})$$

 u_i should be below the edge (u_{i+1}, u)

The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends : y-decreasing (by construction); x-increasing :

 u_i descendant of u_{i+1} in T_0



The last descendant of u_{i+1} is on the right to the one of u_i in T_0 .

 u_i not descendant of u_{i+1} in T_0

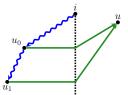
$$x(u_i) > x(u_{i+1}) \qquad x(u_i) < x(u_{i+1})$$

 u_i should be below the edge (u_{i+1}, u)

The edges of T_1 do not cross each other.

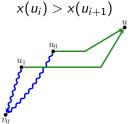
Subtrees live in different areas (by construction). The bends : y-decreasing (by construction); x-increasing :

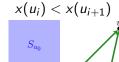
 u_i descendant of u_{i+1} in T_0



The last descendant of u_{i+1} is on the right to the one of u_i in T_0 .

 u_i not descendant of u_{i+1} in T_0



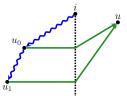


 u_i should be below the edge (u_{i+1}, u)

The edges of T_1 do not cross each other.

Subtrees live in different areas (by construction). The bends : y-decreasing (by construction); x-increasing :

 u_i descendant of u_{i+1} in T_0

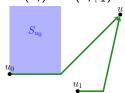


The last descendant of u_{i+1} is on the right to the one of u_i in T_0 .

 u_i not descendant of u_{i+1} in T_0

 $x(u_i) > x(u_{i+1})$

 u_i should be below the edge (u_{i+1}, u)



Descendants of u_i are between $x(u_i)$ and $x(u_{i+1})$.

Conclusion

Open questions:

- Reduce the number of bends necessary to draw a given planar graph?
- Caracterization of planar graphs for which a straight-lines rook-drawing is not possible / is possible
- What is the minimum grid size requested to draw a straight-lines rook-drawing?

Thank you for your attention!