Power domination in triangular grids

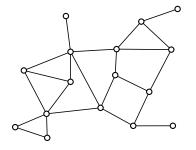
Prosenjit Bose¹, Claire Pennarun², Sander Verdonschot¹

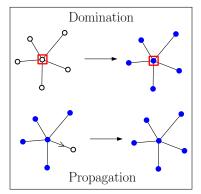
School of Computer Science, Carleton University

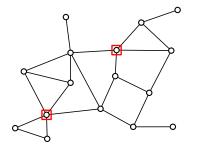
LaBRI, University of Bordeaux

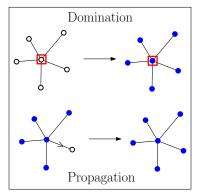
CCCG, July 26, 2017

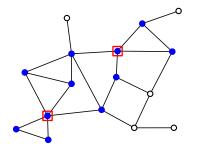
Claire Pennarun

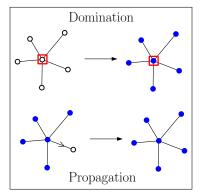


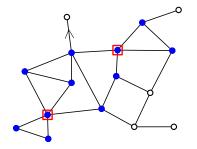


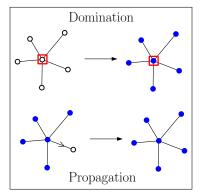


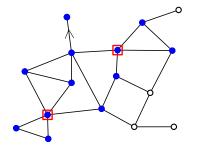


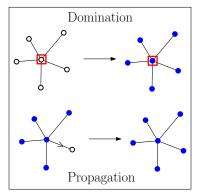


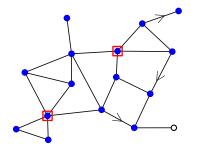


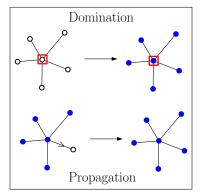


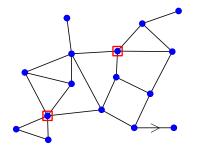


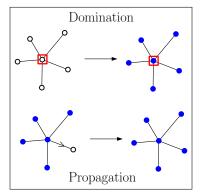




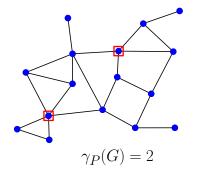


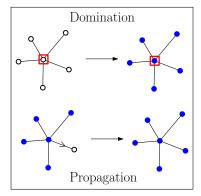






Sets of vertices: S = selected, M = monitored





The **power domination number** $\gamma_P(G)$ of *G* is the minimum size of *S* s.t. M = V(G) at the end.

Power domination: some results

Background story: Placing a minimal number of "sensors" to monitor an electrical system

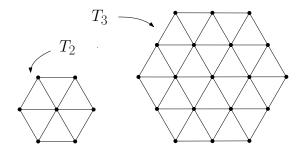
Power dominating set

Input: $G, k \ge 0$. **Question**: Is there a power dominating set $S \subseteq V(G)$ with $|S| \le k$? is NP-complete even for planar graphs, bipartite graphs, chordal graphs... [Guo et al. '05]

Well-studied classes: regular graphs and grids Hexagonal grids [Ferrero et al. '11], some products of paths [Dorfling and Henning '06, Dorbec et al. '08]...

Power domination of triangular grids

Triangular grid T_k : regular triangular grid with border of hexagonal shape (*k* vertices on each side)



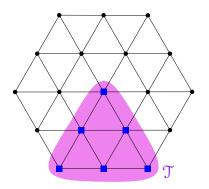
Theorem [Bose, P., Verdonschot 17+]

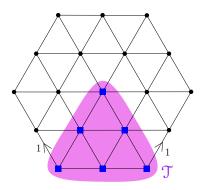
$$\gamma_P(T_k) = \left\lceil \frac{k}{3} \right\rceil$$

Upper bound: simple construction depending on the value of *k* modulo 3.

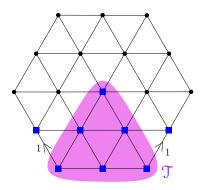
Lower bound: bound an invariant (the number of vertices potentially able to propagate at each step)

Monitoring set $\ensuremath{\mathbb{T}}$ is sufficient

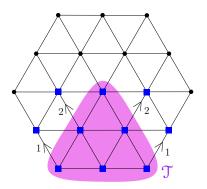


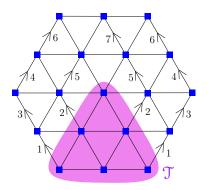


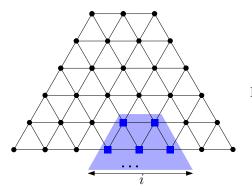
Monitoring set $\ensuremath{\mathbb{T}}$ is sufficient

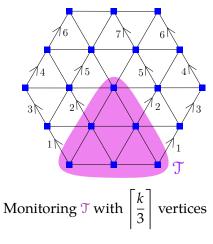


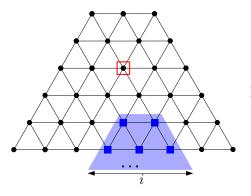
Monitoring set $\ensuremath{\mathbb{T}}$ is sufficient

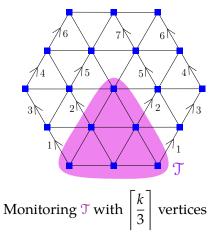


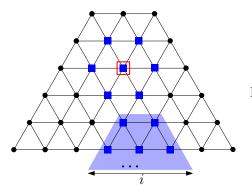


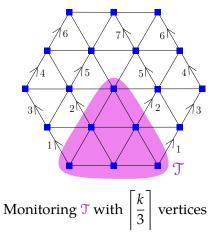


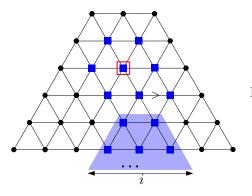


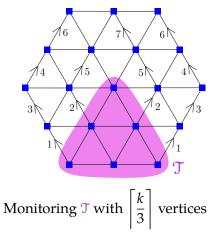


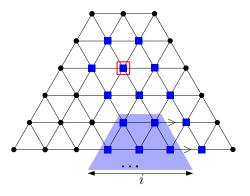


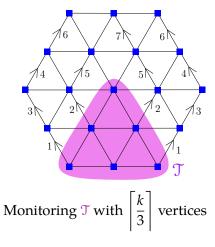


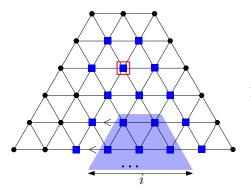


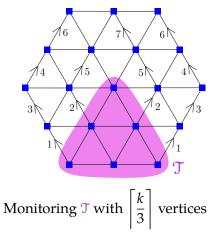


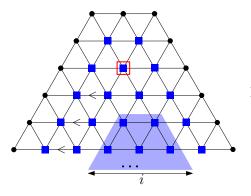


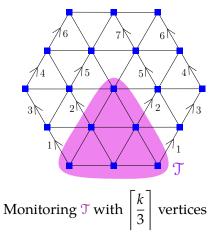




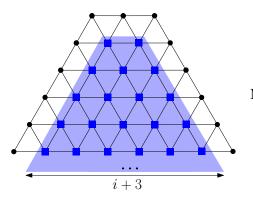


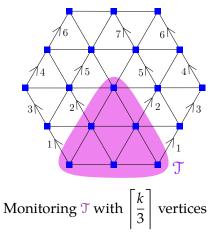






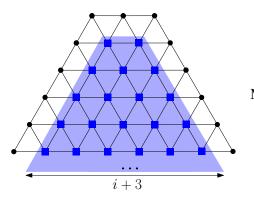
Monitoring set $\ensuremath{\mathbb{T}}$ is sufficient

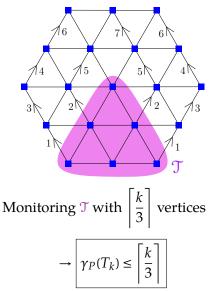




Claire Pennarun



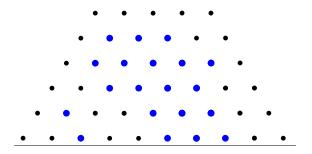




Claire Pennarun

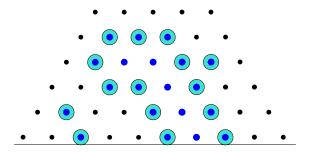
General idea: study the size of the **border** of the set of monitored vertices (= vertices that could potentially propagate in the future)

Border B_A of a set A: vertices of A such that $N(v) \setminus A \neq \emptyset$

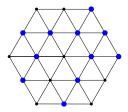


General idea: study the size of the **border** of the set of monitored vertices (= vertices that could potentially propagate in the future)

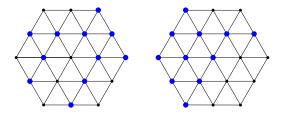
Border B_A of a set A: vertices of A such that $N(v) \setminus A \neq \emptyset$



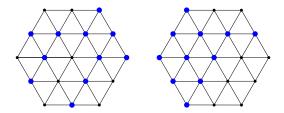
Shifting operation in one direction *A* to *A*' (here direction \leftarrow)



Shifting operation in one direction *A* to *A*' (here direction \leftarrow)

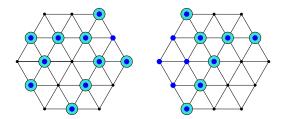


Shifting operation in one direction *A* to *A*' (here direction \leftarrow)



Shifting does not increase the size of the border: $|B_{A^*}| \le |B_A|$.

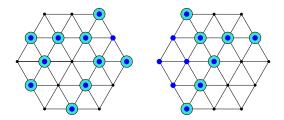
Shifting operation in one direction *A* to *A*' (here direction \leftarrow)



Shifting does not increase the size of the border: $|B_{A^*}| \le |B_A|$.

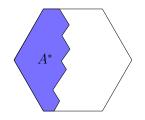
Claire Pennarun

Shifting operation in one direction *A* to *A*' (here direction \leftarrow)



Shifting does not increase the size of the border: $|B_{A^*}| \le |B_A|$.

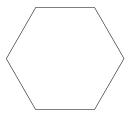
After shifting in directions $\{\leftarrow, \checkmark, \land\}$ until stabilization, A^* has a staircase shape

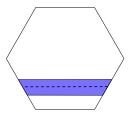


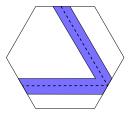
At any time, $|B_M| \le 6|S|$ (by induction on the propagation steps)

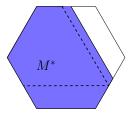
At any time, $|B_M| \le 6|S|$ (by induction on the propagation steps) Consider *M* once it has $\frac{n}{2}$ vertices. Shift $M \to M^*$

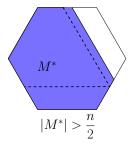
At any time, $|B_M| \le 6|S|$ (by induction on the propagation steps) Consider *M* once it has $\frac{n}{2}$ vertices. Shift $M \to M^*$ Each horizontal line has at least one vertex in B_{M^*}



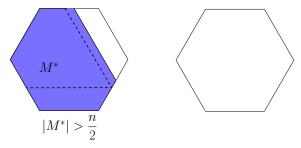




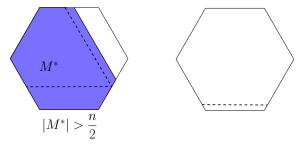




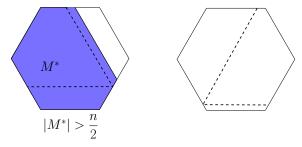
At any time, $|B_M| \le 6|S|$ (by induction on the propagation steps) Consider *M* once it has $\frac{n}{2}$ vertices. Shift $M \to M^*$ Each horizontal line has at least one vertex in B_{M^*}



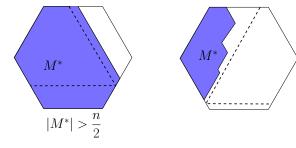
At any time, $|B_M| \le 6|S|$ (by induction on the propagation steps) Consider *M* once it has $\frac{n}{2}$ vertices. Shift $M \to M^*$ Each horizontal line has at least one vertex in B_{M^*}



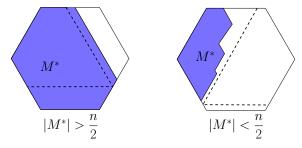
At any time, $|B_M| \le 6|S|$ (by induction on the propagation steps) Consider *M* once it has $\frac{n}{2}$ vertices. Shift $M \to M^*$ Each horizontal line has at least one vertex in B_{M^*}



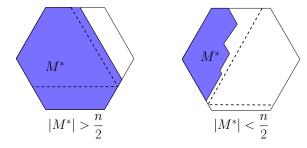
At any time, $|B_M| \le 6|S|$ (by induction on the propagation steps) Consider *M* once it has $\frac{n}{2}$ vertices. Shift $M \to M^*$ Each horizontal line has at least one vertex in B_{M^*}



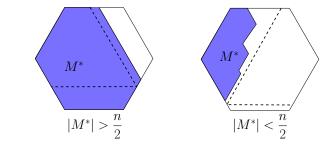
At any time, $|B_M| \le 6|S|$ (by induction on the propagation steps) Consider *M* once it has $\frac{n}{2}$ vertices. Shift $M \to M^*$ Each horizontal line has at least one vertex in B_{M^*}



At any time, $|B_M| \le 6|S|$ (by induction on the propagation steps) Consider *M* once it has $\frac{n}{2}$ vertices. Shift $M \to M^*$ Each horizontal line has at least one vertex in B_{M^*}

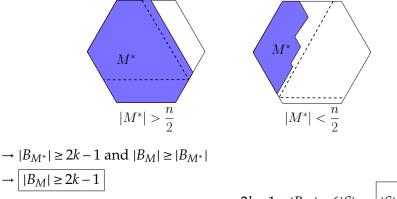


 $\rightarrow |B_{M^*}| \ge 2k - 1$ and $|B_M| \ge |B_{M^*}|$



$$\rightarrow |B_{M^*}| \ge 2k - 1 \text{ and } |B_M| \ge |B_{M^*}|$$
$$\rightarrow |B_{M^*}| \ge 2k - 1$$

At any time, $|B_M| \le 6|S|$ (by induction on the propagation steps) Consider *M* once it has $\frac{n}{2}$ vertices. Shift $M \to M^*$ Each horizontal line has at least one vertex in B_{M^*}



$$2k-1 \le |B_M| \le 6|S| \to |S| \ge \frac{2k-1}{6}.$$

Result

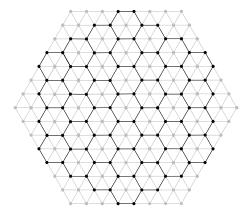
$$\frac{2k-1}{6} \le \gamma_P(T_k) \le \lceil \frac{k}{3} \rceil.$$

$$\gamma_P(T_k) \text{ is an integer + there are no integers between } \frac{2k-1}{6} \text{ and } \lceil \frac{k}{3} \rceil.$$

$$\rightarrow \boxed{\gamma_P(T_k) = \lceil \frac{k}{3} \rceil}.$$

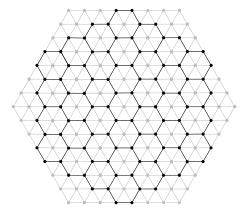
Relation with the hexagonal grid

Hexagonal grid H_{ℓ} with dimension ℓ (number of hexagons per side) is an induced subgraph of $T_{2\ell}$...



Relation with the hexagonal grid

Hexagonal grid H_{ℓ} with dimension ℓ (number of hexagons per side) is an induced subgraph of $T_{2\ell}$...



... and $\gamma_P(H_\ell) = \gamma_P(T_{2\ell})$

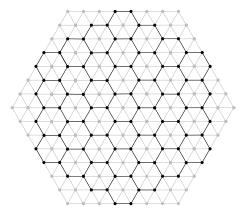
Claire Pennarun

Power domination in triangular grids

CCCG, July 26, 2017 11 / 12

Relation with the hexagonal grid

Hexagonal grid H_{ℓ} with dimension ℓ (number of hexagons per side) is an induced subgraph of $T_{2\ell}$...



... and $\gamma_P(H_\ell) = \gamma_P(T_{2\ell})$ When/why does this happen? Look at induced regular grids?

Claire Pennarun

Thank you!

Claire Pennarun

Power domination in triangular grids

CCCG, July 26, 2017 12 / 12