Planar graphs: non-aligned drawings, power domination and enumeration of Eulerian orientations

Claire Pennarun

Advisors: Nicolas Bonichon and Paul Dorbec

Jury: Mireille Bousquet-Mélou (CNRS, LaBRI) Nadia Brauner (Univ. Joseph Fourier, G-SCOP) Eric Fusy (CNRS, LIX, Ecole Polytechnique) Michael Henning (Univ. of Johannesburg)

June 14, 2017

Entities with some pairwise relations

Entities with some pairwise relations \rightarrow Graph: Vertices + Edges

PLANAR GRAPHS

PLANAR GRAPHS

PLANAR GRAPHS

A planar graph can be embedded in the plane without edges crossing.

A planar graph can be embedded in the plane without edges crossing.

A planar graph can be embedded in the plane without edges crossing.

A planar graph can be embedded in the plane without edges crossing.

GLOBAL OVERVIEW

• Non-aligned drawings ← Graph drawing

● Power domination ← Optimization problems

● Planar Eulerian orientations ← Enumerative combinatorics

Global overview

Non-aligned drawings ← Graph drawing

● Power domination ← Optimization problems

● Planar Eulerian orientations ← Enumerative combinatorics

Dynamic graphs (addition/deletion of vertices/edges) Preserving the relative positions of vertices (part of the mental map)

Dynamic graphs (addition/deletion of vertices/edges) Preserving the relative positions of vertices (part of the mental map)

one vertex per line and column on a grid

[Kornaropoulos & Tollis'13, Didimo et al.'14, Angelini et al.'16]

Claire Pennarun

Dynamic graphs (addition/deletion of vertices/edges) Preserving the relative positions of vertices (part of the mental map)

one vertex per line and column on a grid

[Kornaropoulos & Tollis'13, Didimo et al.'14, Angelini et al.'16]

Claire Pennarun

Dynamic graphs (addition/deletion of vertices/edges) Preserving the relative positions of vertices (part of the mental map)

one vertex per line and column on a grid

[Kornaropoulos & Tollis'13, Didimo et al.'14, Angelini et al.'16]

Claire Pennarun

Dynamic graphs (addition/deletion of vertices/edges) Preserving the relative positions of vertices (part of the mental map)

one vertex per line and column on a grid

[Kornaropoulos & Tollis'13, Didimo et al.'14, Angelini et al.'16]

Claire Pennarun

Graph G, n vertices

Non-aligned drawing of a graph:

- vertices at the intersection of a regular grid
- no two vertices on the same row/column

Graph G, n vertices

Non-aligned drawing of a graph:

- vertices at the intersection of a regular grid
- no two vertices on the same row/column

Non-aligned drawings always exist (two permutations of the vertices) What if the graph is planar? \rightarrow planar non-aligned drawing

Definition: a planar graph has a planar drawing with edges as curves

Definition: a planar graph has a planar drawing with edges as curves

[Fáry'48] Drawing planar graphs with only straight-lines

Definition: a planar graph has a planar drawing with edges as curves

[Fáry'48] Drawing planar graphs with only straight-lines

Definition: a planar graph has a planar drawing with edges as curves

[Fáry'48] Drawing planar graphs with only straight-lines

Grid drawing: vertices have integer coordinates [Schnyder'90, de Fraysseix et al.'89]: planar graphs on a grid with n - 1 lines/columns

Definition: a planar graph has a planar drawing with edges as curves

[Fáry'48] Drawing planar graphs with only straight-lines

Grid drawing: vertices have integer coordinates [Schnyder'90, de Fraysseix et al.'89]: planar graphs on a grid with n - 1 lines/columns

1 more line/column: non-aligned?

Sufficient to look only at maximal planar graphs

Now: only planar drawings

On the minimal grid = n lines and columns

[Auber, Bonichon, Dorbec, P. '15] There are planar graphs with **no** straight-line non-aligned drawing on the minimal grid.

On the minimal grid = n lines and columns

[Auber, Bonichon, Dorbec, P. '15] There are planar graphs with **no** straight-line non-aligned drawing on the minimal grid.

On the minimal grid = n lines and columns

On the minimal grid = n lines and columns

On the minimal grid = n lines and columns

On the minimal grid = n lines and columns

On the minimal grid = n lines and columns

On the minimal grid = n lines and columns

[Auber, Bonichon, Dorbec, P. '15] There are planar graphs with **no** straight-line non-aligned drawing on the minimal grid.

Two possibilities:

- Allowing some bends
- Increasing the grid-size

On the minimal grid = n lines and columns

[Auber, Bonichon, Dorbec, P. '15] There are planar graphs with **no** straight-line non-aligned drawing on the minimal grid.

Two possibilities:

- Allowing some bends
- Increasing the grid-size

[Auber, Bonichon, Dorbec, P. '15] Every planar graph has a straight-line non-aligned drawing with at most n-3 bends on the minimal grid, computable in O(n) time.

[Auber, Bonichon, Dorbec, P. '15] Every planar graph has a straight-line non-aligned drawing with at most n-3 bends on the minimal grid, computable in O(n) time.

Use Schnyder woods:

- coloring the edges (local constraints) → 3 trees
- coordinates given by the trees

Filled triangle = vertices inside

- \rightarrow Constrain drawing areas
- \rightarrow Draw them in rectangles not triangles

\rightarrow Add bends only for filled triangles

Claire Pennarun Planar graphs: non-aligned drawings, power domination and enumeration of Eulerian orientations

4-connected graph: no filled triangle (except outerface)

[Biedl et al. '99] Every 4-connected graph with outerface of size \geq 4 has a (non-aligned) straight-line drawing on the minimal grid.

4-connected graph: no filled triangle (except outerface)

[Biedl et al. '99] Every 4-connected graph with outerface of size \geq 4 has a (non-aligned) straight-line drawing on the minimal grid.

Corollary Every 4-connected graph has a non-aligned drawing on the minimal grid with one bend.

 f_G = number of filled triangles in G

[Biedl, P. '16] Every planar graph has a non-aligned drawing on the minimal grid with min $\{f_G, \frac{2n-5}{3}\}$ bends, computable in $O\left((n\log n)^{3/2}\sqrt{\alpha(n,n)}\right)$ time.

- every filled triangle has exactly one edge in E
- no two edges of **E** share a face

 f_G = number of filled triangles in G

[Biedl, P. '16] Every planar graph has a non-aligned drawing on the minimal grid with min $\{f_G, \frac{2n-5}{3}\}$ bends, computable in $O\left((n\log n)^{3/2}\sqrt{\alpha(n,n)}\right)$ time.

- every filled triangle has exactly one edge in E
- no two edges of **E** share a face

 f_G = number of filled triangles in G

[Biedl, P. '16] Every planar graph has a non-aligned drawing on the minimal grid with min $\{f_G, \frac{2n-5}{3}\}$ bends, computable in $O\left((n\log n)^{3/2}\sqrt{\alpha(n,n)}\right)$ time.

- every filled triangle has exactly one edge in **E**
- no two edges of **E** share a face
- **E** \ *e* : subdivision, re-triangulation

 f_G = number of filled triangles in G

[Biedl, P. '16] Every planar graph has a non-aligned drawing on the minimal grid with min $\{f_G, \frac{2n-5}{3}\}$ bends, computable in $O\left((n\log n)^{3/2}\sqrt{\alpha(n,n)}\right)$ time.

- every filled triangle has exactly one edge in **E**
- no two edges of **E** share a face
- **E** \ *e* : subdivision, re-triangulation

 f_G = number of filled triangles in G

[Biedl, P. '16] Every planar graph has a non-aligned drawing on the minimal grid with min $\{f_G, \frac{2n-5}{3}\}$ bends, computable in $O\left((n\log n)^{3/2}\sqrt{\alpha(n,n)}\right)$ time.

- every filled triangle has exactly one edge in E
- no two edges of **E** share a face
- **E** \ *e* : subdivision, re-triangulation

 f_G = number of filled triangles in G

[Biedl, P. '16] Every planar graph has a non-aligned drawing on the minimal grid with min $\{f_G, \frac{2n-5}{3}\}$ bends, computable in $O\left((n\log n)^{3/2}\sqrt{\alpha(n,n)}\right)$ time.

Set E s.t.:

- every filled triangle has exactly one edge in **E**
- no two edges of **E** share a face
- **E** \ *e* : subdivision, re-triangulation

G′ is 4-connected (previous result)

One bend for each subdivision vertex

NON-ALIGNED DRAWINGS

 f_G = number of filled triangles in G

[Biedl, P. '16] Every planar graph has a non-aligned drawing on the minimal grid with min $\left\{ f_G, \frac{2n-5}{3} \right\}$ bends, computable in $O\left((n\log n)^{3/2}\sqrt{\alpha(n,n)}\right)$ time.

Set E s.t.:

- every filled triangle has exactly one edge in E
- no two edges of **E** share a face
- **E** \ *e* : subdivision, re-triangulation

G′ is 4-connected (previous result)

One bend for each subdivision vertex

How to find such a set E?

Planar graph \rightarrow 4-coloring vertices

How to find such a set E?

Planar graph \rightarrow 4-coloring vertices

How to find such a set E?

Planar graph \rightarrow 4-coloring vertices

$$\begin{split} M_1 &= \{1,2\} \cup \{3,4\} \ M_2 = \{1,3\} \cup \{2,4\} \\ M_3 &= \{1,4\} \cup \{2,3\} \end{split}$$

How to find such a set E?

Planar graph \rightarrow 4-coloring vertices

$$\begin{split} M_1 &= \{1,2\} \cup \{3,4\} \ M_2 = \{1,3\} \cup \{2,4\} \\ M_3 &= \{1,4\} \cup \{2,3\} \end{split}$$

How to find such a set E?

Planar graph \rightarrow 4-coloring vertices

$$\begin{split} M_1 &= \{1,2\} \cup \{3,4\} \ M_2 = \{1,3\} \cup \{2,4\} \\ M_3 &= \{1,4\} \cup \{2,3\} \end{split}$$

Keep the edges of filled triangles

How to find such a set E?

Planar graph \rightarrow 4-coloring vertices

$$\begin{split} M_1 &= \{1,2\} \cup \{3,4\} \ M_2 = \{1,3\} \cup \{2,4\} \\ M_3 &= \{1,4\} \cup \{2,3\} \end{split}$$

Keep the edges of filled triangles

Each M_i : independent + one edge of each filled triangle $\rightarrow |M_i| \leq f_G$

How to find such a set E?

Planar graph \rightarrow 4-coloring vertices

$$\begin{split} M_1 &= \{1,2\} \cup \{3,4\} \ M_2 = \{1,3\} \cup \{2,4\} \\ M_3 &= \{1,4\} \cup \{2,3\} \end{split}$$

Keep the edges of filled triangles

Each M_i : independent + one edge of each filled triangle $\rightarrow |M_i| \leq f_G$

Lemma: At most 2n - 5 edges belong to a filled triangle.

$$\rightarrow |M_i| \le \frac{2n-5}{3}$$

Other possibility: increasing the grid-size

[Biedl, P. '16] Every planar graph has a non-aligned straight-line drawing in an $n \times O(n^3)$ -grid, computable in $O(n^2)$ time.

[Biedl, P. '16] Every planar graph has a non-aligned straight-line drawing in an $O(n^2) \times O(n^2)$ -grid, computable in O(n) time.

• Non-aligned drawings ← Graph drawing

• Power domination - Optimization problems

● Planar Eulerian orientations ← Enumerative combinatorics

Find a set of vertices *S* s.t. N[S] = M = V(G)

Optimization problem

The **domination number** $\gamma(G)$ is the minimum size of *S* s.t. M = V(G). Given *G*, what is $\gamma(G)$?

Find a set of vertices *S* s.t. N[S] = M = V(G)

Optimization problem

The **domination number** $\gamma(G)$ is the minimum size of *S* s.t. M = V(G). Given *G*, what is $\gamma(G)$?

POWER DOMINATION [Haynes et al. '02]

- Some vertices in a set *S*
- (domination) N[S] = M
- (propagation steps) while there exists *u* ∈ *M* s.t. *v* is the only non-monitored neighbor of *u*: add *v* to *M*.

- Some vertices in a set *S*
- (domination) N[S] = M
- (propagation steps) while there exists *u* ∈ *M* s.t. *v* is the only non-monitored neighbor of *u*: add *v* to *M*.

- Some vertices in a set *S*
- (domination) N[S] = M
- (propagation steps) while there exists *u* ∈ *M* s.t. *v* is the only non-monitored neighbor of *u*: add *v* to *M*.

- Some vertices in a set *S*
- (domination) N[S] = M
- (propagation steps) while there exists *u* ∈ *M* s.t. *v* is the only non-monitored neighbor of *u*: add *v* to *M*.

- Some vertices in a set *S*
- (domination) N[S] = M
- (propagation steps) while there exists *u* ∈ *M* s.t. *v* is the only non-monitored neighbor of *u*: add *v* to *M*.

- Some vertices in a set *S*
- (domination) N[S] = M
- (propagation steps) while there exists *u* ∈ *M* s.t. *v* is the only non-monitored neighbor of *u*: add *v* to *M*.

- Some vertices in a set *S*
- (domination) N[S] = M
- (propagation steps) while there exists *u* ∈ *M* s.t. *v* is the only non-monitored neighbor of *u*: add *v* to *M*.

- Some vertices in a set S
- (domination) N[S] = M
- (propagation steps) while there exists *u* ∈ *M* s.t. *v* is the only non-monitored neighbor of *u*: add *v* to *M*.

The **power domination number** $\gamma_P(G)$ of *G* is the minimum size of *S* s.t. M = V(G) at the end.

By definition, $\gamma_P(G) \leq \gamma(G)$, but difference arbitrarily large

In maximal planar graphs: finding tight bounds is an open problem

[Matheson & Tarjan '96] For *n* sufficiently large, every maximal planar graph has $\gamma(G) \le \alpha$, with $\frac{n}{4} \le \alpha \le \frac{n}{3}$.

By definition, $\gamma_P(G) \leq \gamma(G)$, but difference arbitrarily large

In maximal planar graphs: finding tight bounds is an open problem

[Matheson & Tarjan '96] For *n* sufficiently large, every maximal planar graph has $\gamma(G) \le \alpha$, with $\frac{n}{4} \le \alpha \le \frac{n}{3}$.

[Dorbec, González, P.'17+] For *n* sufficiently large, every maximal planar graph has $\gamma_P(G) \leq \beta$, with $\frac{n}{6} \leq \beta \leq \frac{n-2}{4} < \alpha$.

[Dorbec, González, P.'17+] For *n* sufficiently large, every maximal planar graph has $\gamma_P(G) \leq \beta$, with $\frac{n}{6} \leq \beta \leq \frac{n-2}{4} < \alpha$.

[Dorbec, González, P.'17+] For *n* sufficiently large, every maximal planar graph has $\gamma_P(G) \leq \beta$, with $\frac{n}{6} \leq \beta \leq \frac{n-2}{4} < \alpha$.

[Dorbec, González, P.'17+] For *n* sufficiently large, every maximal planar graph has $\gamma_P(G) \leq \beta$, with $\frac{n}{6} \leq \beta \leq \frac{n-2}{4} < \alpha$.

[Dorbec, González, P.'17+] For *n* sufficiently large, every maximal planar graph has $\gamma_P(G) \leq \beta$, with $\frac{n}{6} \leq \beta \leq \frac{n-2}{4} < \alpha$.

[Dorbec, González, P.'17+] For *n* sufficiently large, every maximal planar graph has $\gamma_P(G) \leq \beta$, with $\frac{n}{6} \leq \beta \leq \frac{n-2}{4} < \alpha$.

[Dorbec, González, P.'17+] For *n* sufficiently large, every maximal planar graph has $\gamma_P(G) \leq \beta$, with $\frac{n}{6} \leq \beta \leq \frac{n-2}{4} < \alpha$.

[Dorbec, González, P.'17+] For *n* sufficiently large, every maximal planar graph has $\gamma_P(G) \leq \beta$, with $\frac{n}{6} \leq \beta \leq \frac{n-2}{4} < \alpha$.

[Dorbec, González, P.'17+] For *n* sufficiently large, every maximal planar graph has $\gamma_P(G) \leq \beta$, with $\frac{n}{6} \leq \beta \leq \frac{n-2}{4} < \alpha$.

• Lower bound: find a family of graphs needing $\frac{n}{6}$ vertices in *S*.

• Upper bound: Constructive process

• Non-aligned drawings \leftarrow Graph drawing

Power domination ← Optimization problems

● Planar Eulerian orientations ← Enumerative combinatorics

Eulerian orientations

Planar maps, rooted in a corner

Planar maps, rooted in a corner (loops and multiple edges allowed)

Planar maps, rooted in a corner (loops and multiple edges allowed)

A planar map is **Eulerian** if every vertex has even degree.

Planar maps, rooted in a corner (loops and multiple edges allowed)

A planar map is **Eulerian** if every vertex has even degree.

Maps + structure

An oriented planar map is a **planar Eulerian orientation** (PEO) if every vertex has in-degree and out-degree equal.

Enumeration: "How many planar Eulerian orientations with *n* edges?" \rightarrow determining the sequence $(a_n)_{n \ge 0}$

 $a_0 = 1, a_1 = 2, a_2 = 10, \dots$

Enumeration: "How many planar Eulerian orientations with *n* edges?" \rightarrow determining the sequence $(a_n)_{n \ge 0}$

 $a_0 = 1, a_1 = 2, a_2 = 10, \dots a_{37} = ?$

New recursive decomposition of planar maps

Knowing the maps with up to *i* edges \rightarrow compute maps with *i*+1 edges Computing the first terms until $a_{15} \rightarrow \text{OEIS}$ A277493

п	a _n	n	a _n	n	a _n
0	1	6	37 548	12	37 003 723 200
1	2	7	350 090	13	393 856 445 664
2	10	8	3 380 520	14	4 240 313 009 272
3	66	9	33 558 024	15	46 109 094 112 170
4	504	10	340 670 720		
5	4 216	11	3 522 993 656		

Study the growth rate $\mu = \lim_{n \to \infty} a_n^{1/n}$

Eulerian maps \subset PEO \subset arbitrarily oriented Eulerian maps $\Rightarrow 8 \le \mu \le 16$

Study the growth rate $\mu = \lim_{n \to \infty} a_n^{1/n}$

Eulerian maps \subset PEO \subset arbitrarily oriented Eulerian maps $\Rightarrow 8 \le \mu \le 16$

[Bonichon, Bousquet-Mélou, Dorbec, P. '17] The growth rate μ of the planar Eulerian orientations satisfies $11.68 \le \mu \le 13.005$.

- \rightarrow study families of subsets and supersets
 - all have computable algebraic generating functions
 - subsets behave like trees, (conjecture) supersets behave like maps?

CONCLUSION

Planar Eulerian orientations

Future research:

- continue the study of Eulerian orientations (find new decomposition?)
- apply the same method for families difficult to enumerate (polyominoes, self-avoiding walks, meanders?)

Conclusion

Power domination

[Dorbec, González, P. '17+] For *n* sufficiently large, every maximal planar graph has $\gamma_P(G) \leq \beta$, with $\frac{n}{6} \leq \beta \leq \frac{n-2}{4} < \alpha$.

Future research:

- study the complexity of the decision problems on maximal planar graphs
- other difficult problems: hypercubes?
- generalization of domination/power domination: constraint on the number of parallel propagation steps

Conclusion

Non-aligned drawings

Not always possible on the minimal grid with straight-lines

Size of the grid	Numb. bends	Complexity	Comments
$n \times n$	n – 3	<i>O</i> (<i>n</i>)	Schnyder wood
$n \times n$	$\min\left\{f_G, \frac{2n-5}{3}\right\}$	<i>O</i> (<i>n</i> log <i>n</i>)	filled triangles
$n \times O(n^3)$	0	$O(n^2)$	canonical ordering
$O(n^2) \times O(n^2)$	0	O(n)	Schnyder construction

Lower bound? Maybe $(n + o(n)) \times (n + o(n))$ with o(n) "bad" structural configurations

Thank you!

Claire Pennarun Planar graphs: non-aligned drawings, power domination and enumeration of Eulerian orientations 29 / 29
DRAWING GRAPHS

- We want to draw **large** graphs with hierarchical view: a vertex in the drawing = a group of vertices in the graph
 - preserve the relative positions of vertices → mental map

Schnyder woods

A Schnyder wood is a partition of the internal edges of a triangulation in three trees T_0 , T_1 and T_2 (directed toward the root) and with a particular configuration around each inner vertex:

[Schnyder 1989]

Every plane triangulation admits at least one Schnyder wood, and it can be computed in linear time.

Planar Polyline Rook-drawing - Vertices

- (T_0, T_1, T_2) : Schnyder wood of *G*.
- $(v_1v_0), (v_2v_0), (v_2v_1)$
- x: clockwise preordering of $T_0 = \{v_0v_2ABCGDEFHIv_1\}.$
- *y*: clockwise postordering of $T_1 = {DEABFHIGCv_2v_1}$ ($v_0 = 0$).

Planar polyline rook-drawing - Edges

- The edges $(u, P_0(u))$ are bent at $(x(u), y(P_0(u)) + 1)$ (except for the first child in T_0)
- The edges $(u, P_1(u))$ are bent at $(x(\text{last descendant}_0(u)), y(u))$ (no bend if u is a leaf of T_0)
- Edges of *T*₂: not bent

Non-aligned drawings on the minimal grid

A rectangle-of-influence (RI) drawing:

- a straight-line planar drawing
- the minimum open rectangle containing *u* and *v* is empty if (*u*, *v*) is an edge

[Biedl et al. '99] If *G* is 4-connected, and *e* is an edge of the outerface, then G - e has a planar non-aligned RI-drawing on the minimal grid.

Non-aligned drawing on an $(n-1) \times O(n^3)$ -grid

- Canonical ordering $v_1 \cdots v_n$ of V(G)
- (Acyclic) orientation of the edges:
 - $v_1 \rightarrow v_2$
 - $w \neq c_r$ pred. of $v_k: w \rightarrow v_k$
 - $v_k \rightarrow c_r$
- Topological order $x: V \to \{1 \dots n\}$ s.t. if $u \to v$ then x(u) < x(v)

x(1) < x(3) < x(5) < x(6) < x(4) < x(7) < x(2)

Non-aligned drawings of planar graphs

Non-aligned drawing on an $(n-1) \times O(n^3)$ -grid

$$x(1) < x(3) < x(5) < x(6) < x(4) < x(7) < x(2)$$

Place v_1 at (1,2), v_3 at ($x(v_3)$,3), v_2 at (n,1) $\rightarrow G_3$

Suppose $G_k = G[v_1 \cdots v_k]$ is drawn.

 $y(v_{k+1})$ is the smallest possible such that:

- v_{k+1} can see all its precedessors
- the edge from c_{ℓ} has positive slope
- the row $\{y = y(v_{k+1})\}$ is empty

Non-aligned drawings of planar graphs

Non-aligned drawing on an $(n-1) \times O(n^3)$ -grid

Left-steepness of a vertex:
$$s(v) = \left| \frac{y(v) - y(c_{\ell})}{x(v) - x(c_{\ell})} \right|$$

In the non-aligned drawing of
$$G_k$$
, $s(v_k) \le \frac{(k-1)(k-2)}{2}$ for $k \ge 3$.

$$s(v_n) \le \frac{1}{2}(n-1)(n-2)$$

 $c_\ell = v_1 \to x(v_n) - x(v_1) \le n-2 \text{ and } y(v_1) = 2$
 $y(v_n) \le 2 + \frac{1}{2}(n-1)(n-2)^2 \leftarrow \text{Maximal height}$

Every planar graph with *n* vertices has a non-aligned straight-line drawing in an $(n-1) \times \left(1 + \frac{1}{2}(n-1)(n-2)^2\right)$ grid.

Claire Pennarun

Non-aligned drawings of planar graphs

4 mai 2017 12 / 15

Non-ALIGNED DRAWING ON AN $O(n^2) \times O(n^2)$ -GRID Mapping $v \in V(G)$ to a point $(p_1(v), p_2(v), p_3(v))$

Lexicographic order: For vertices *u*, *v* and *i* = 0, 1, 2, $(p_i(u), p_{i+1}(u)) <_{lex} (p_i(v), p_{i+1}(v))$ if either $p_i(u) < p_i(v)$ or $p_i(u) = p_i(v)$ and $p_{i+1}(u) < p_{i+1}(v)$.

Weak barycentric representation of *G*:

- $p_0(v) + p_1(v) + p_2(v) = c$ for every vertex *v*
- for each edge (u, v) and each vertex $w \neq \{u, v\}$, there is *k* s.t. $(p_k(u), p_{k+1}(u)), (p_k(v), p_{k+1}(v)) <_{lex} (p_k(w), p_{k+1}(w)).$

[Schnyder 90] Every maximal planar graph *G* has a straight-line planar drawing on a grid with n - 1 rows and columns where coordinates are given by a weak barycentric representation of *G*.

Non-aligned drawing on an $O(n^2) \times O(n^2)$ -grid

 $p'_i(v) := (n-1) \times p_i(v) + p_{i+1}(v)$, for i = 0, 1, 2, is also a weak barycentric representation.

- [Schnyder 90] mapping vertices to (p'₀(v), p'₁(v))
 → planar straight-line drawing
- $1 \le p_i(v) \le n-2 \rightarrow p'_i(v) \le (n-1)(n-2) + (n-2) = n(n-2)$ \rightarrow drawing on an $(n(n-2) - 1 \times n(n-2) - 1)$ -grid
- $p'_i(u) \neq p'_i(v)$ for any vertices u, v and any $i \rightarrow$ **non-aligned** drawing

Every planar graph with *n* vertices has a non-aligned straight-line drawing on an $(n(n-2) - 1 \times n(n-2) - 1)$ grid.

Claire Pennarun

Non-aligned drawings of planar graphs

STEPS 1 AND 2

- Step 1. Monitor the octahedra with $l \le n'/6$ sensors
- Step 2. While we can: For every vertex v in M
 in decreasing degree
 (in G) order: if adding v
 to S adds at least 4
 vertices in M (with
 propagation):
 add v to S and
 propagate

After Step 2

(a) $G[\overline{M}]$ has maximum degree 2 (it is a union of cycles or paths).

(b) Each connected component of $G[\overline{M}]$ has at most three vertices.

 \rightarrow A connected component of $G[\overline{M}]$ is isomorphic to K_3 , P_3 , P_2 or K_1 .

AFTER STEP 2

After Step 2, each non-monitored induced triangulation G' of G is isomorphic to one configuration of $\{C_1, \dots, C_7\}$:

 C_7

Claire Pennarun (Univ. Bordeaux)

Power domination in triangulations

28 avril 2017 9 / 12

Step 3

Bottom-up addition of vertices to *S*:

Induced triangulation G' with $C_i = \{u, v, w\}$ G_1, G_2 monitored with sets S_1, S_2

$$|S_1| \le \frac{n_1 - 2}{4}, |S_2| \le \frac{n_2 - 2}{4}$$

 $\longrightarrow \text{ new set } S' \ (= S_1 \cup S_2 \cup \{v\})$

$$|S'| \le \frac{n_1 + n_2}{4} \text{ and } |G'| \ge n_1 + n_2 + 2 \ \rightarrow |S'| \le \frac{|G'| - 2}{4}$$

S has the good number of nodes after of Step 3.

Claire Pennarun (Univ. Bordeaux)

Power domination in triangulations

Power domination of triangular grids

Another problem of power-domination: regular graphs Hexagonal grids [Ferrero et al. '11], some products of paths [Dorfling and Henning '06, Dorbec et al. '08] ...

Triangular grid TG(k) : regular triangular grid with border of hexagonal shape (*k* vertices on each side)

One property: monitoring \mathcal{T} is sufficient!

Claire Pennarun

Relation with the hexagonal grid

Hexagonal grid with dimension ℓ (number of hexagons per side) is an induced subgraph of $TG(2\ell)$...

... and $\gamma_P(HG(\ell)) = \gamma_P(TG(2\ell))$ (if our conjecture is true) When/why does this happen? May be interesting to look to induced regular grids?

Claire Pennarun

Power domination and drawings of planar graphs

DECOMPOSITION OF PEO

Two ways of creating a PEO:

- merge two PEOs *O*₁, *O*₂ and orient the new edge
- split the root-vertex at index *i* iff the resulting map is still a PEO

Splits at index 1 or Δ – 1 are always possible; oth. we must check! Remember the **full orientation** around the root: no recurrence relation with a finite number of parameters APPROXIMATION OF THE GROWTH RATE μ = growth rate of PEOs = $\lim_{n\to\infty} o(n)^{1/n}$

Merging two PEOs with *n* and *n'* edges gives a PEO with n + n' edges $\rightarrow \{o(n)\}_{n \ge 0}$ is **super-multiplicative**, i.e. $o(n + n') \ge o(n) o(n')$.

Variant of Fekete's Lemma (1923): $\mu = \sup_{n \ge 1} o(n)^{1/n} \in \mathbb{R}^*_+$ ⇒ $\mu \ge (o(15))^{1/15} \sim 8.145525470$

PRIME DECOMPOSITION OF MAPS

A map is **prime** if the root-vertex appears **exactly once** on the root-face.

Planar map = concatenation of prime maps

Operations to create a prime map:

- Add a loop around any map
- Split at index $i \leq \Delta(P_{\ell})$ in the last prime P_{ℓ} of any map

Subsets (and supersets) of ${\mathscr O}$

Two families of sets of orientations \mathcal{O}_k^- and \mathcal{O}_k^+ s.t. $\mathcal{O}_k^- \subset \mathcal{O}_{k+1}^- \subset \mathcal{O} \subset \mathcal{O}_{k+1}^+ \subset \mathcal{O}_k^+$

Definition

A map of \mathcal{O}_k^- is obtained by either:

- a concatenation of prime maps of \mathcal{O}_k^- ,
- adding a loop around a map $O \in \mathcal{O}_k^-$ and orienting it,
- a split on the last prime component P_{ℓ} of a map $P_1 \dots P_{\ell} \in \mathcal{O}_k^-$ at index i < 2k or $i = \Delta(P_{\ell}) 1$.

The atomic map (one vertex, no edges) is in \mathcal{O}_k^- . Fewer splits allowed \rightarrow the number of orientations necessary to look at form now a word of finite length, which we can use as a parameter

Algebraic system for $\mathcal{O}^{(k)-} \equiv \mathcal{O}^{-}$

The **root-word** w(O) of a map O is the binary word formed as follows in counterclockwise order around the root-vertex:

- 1 if there is an out-edge,
- 0 if there is an in-edge.

1110000101

A word *w* is **balanced** iff $|w|_0 - |w|_1 = 0$.

 $F_w(t)$: g.f. of the set { $O \in \mathcal{O}^- | \mathbf{w}(O) = w$ } $L_w(t)$: g.f. of the set { $O \in \mathcal{O}^- | \mathbf{w}(O) = uw$ for some u} $F'_w(t)$, $L'_w(t)$: their counterparts for **prime** maps of \mathcal{O}^- .

An example: equation for $F'_w(t)$

Prime oriented maps of \mathcal{O}^- with root-word w.

 w_s : maximal proper suffix of w, w_c : central factor of w ($w = \alpha w_c \bar{\alpha}$) For w balanced, $2 \le |w| \le 2k$:

 $F'_{70} =$ tF_{w_c} $tL_{\varepsilon}L'_{w_{\varepsilon}}$ $O' = P_1...I$ w_s is a suffix of $\mathbf{w}(P_\ell)$ $\mathbf{w}(O') = w_c$ w

Algebraic system for $\mathcal{O}^{(k)-}$

$$\begin{cases} F_w = \sum_{w=uv} F_u F'_v & |w| \le 2k-2 \\ L_w = \begin{cases} L_\varepsilon L'_w + \sum_{w=uv, u \ne \varepsilon} L_u F'_v & |w| \le 2k-2 \\ 1 + L_\varepsilon L'_\varepsilon & w = \varepsilon \end{cases} \\ F'_w = tF_{w_c} + tL_\varepsilon L'_{w_s} & |w| \le 2k \\ L'_w = \begin{cases} tL_{w_p} + tF_{w_c} + tL_\varepsilon L'_w + \\ tL_\varepsilon \sum_{\substack{u=vw \\ u \text{ balanced} \\ 0 < |u| \le 2k \\ 2tL_\varepsilon + tL_\varepsilon L'_\varepsilon & w = \varepsilon \end{cases} \end{cases}$$

 $w = \varepsilon \Rightarrow F_w = 1, F'_w = 0$ w non-balanced $\Rightarrow F_w = F'_w = 0.$

Small example: subsets, k = 2

 $\begin{cases} F_{01} = F_{10} = F'_{01}, \\ F'_{10} = F'_{01} = t + tL_{\varepsilon}L'_{1}, \\ F'_{1100} = tF_{10} + tL_{\varepsilon}L'_{100}, \\ F'_{1010} = tF_{01} + tL_{\varepsilon}L'_{100}, \\ F'_{0110} = tL_{\varepsilon}L'_{110}, \\ L_{\varepsilon} = 1 + L_{\varepsilon}L'_{\varepsilon}, \\ L_{0} = L_{1} = L_{\varepsilon}L'_{00}, \\ L_{01} = L_{10} = L_{\varepsilon}L'_{01}, \\ L'_{\varepsilon} = 2tL_{\varepsilon} + tL_{\varepsilon}(L'_{\varepsilon} + 2(L'_{0} - F'_{10} + L'_{100} - F'_{1100} + L'_{010} - F'_{1010} + L'_{110} - F'_{0110})), \\ L'_{0} = L'_{1} = tL_{\varepsilon} + tL_{\varepsilon}(L'_{\varepsilon} + 2(L'_{0} - F'_{10} + L'_{100} - F'_{1010} + L'_{110} - F'_{0110}), \\ L'_{00} = tL_{0} + tL_{\varepsilon}(L'_{00} + L'_{100} - F'_{1100}), \\ L'_{10} = L'_{11} = tL_{10} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1100}), \\ L'_{100} = tL_{10} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1100}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1100}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1100}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1100}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1010}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1010}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1010}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1010}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1010}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1010}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1010}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1010}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1010}), \\ L'_{100} = tL_{01} + tL_{\varepsilon}(L'_{100} + L'_{100} - F'_{1010}). \\ \end{bmatrix}$

FINDING L_{ε}

Generate the systems automatically then **eliminate** the variables with Maple (keeping L_{ε})

 $k \ge 4$: find the first terms using the Newton GF package

nature	k	degree	growth rate		
inf	1	3	10.60		
inf	2	6	10.97		
inf	3	20	11.22		
inf	4	258	$11.44^{(*)}$		
inf	5	-	$11.56^{(*)}$		
inf	6	-	$11.68^{(*)}$		
PEO	_	-	?		
not proven, use of quadratic approximation					

(*) not proven, use of quadratic approximants

For each k > 0, $o_k(n) \sim \gamma n^{-3/2} \rho^{-n}$ (ρ and γ depend on k).

Let μ_k^- be the growth rate of the set \mathcal{O}_k^- . Then $\mu_k^- \to_{k \to \infty} \mu$.

SUPERSETS OF PEO

General idea: allowing splits at indices $i \ge \Delta(P_{\ell})$, creating non Eulerian orientations

One catalytic variable *x* (for the half-degree of the root)

Same kind of systems, but with divided differences !

For k = 1:

$$\begin{cases} L_{\varepsilon}(t,x) &= 1 + L_{\varepsilon}(t,x)L'_{\varepsilon}(t,x), \\ L'_{\varepsilon}(t,x) &= 2txL_{\varepsilon}(t,x) + tL_{\varepsilon}(t,1)\left(2xL'_{0}(t,1) + \frac{x}{x-1}(L'_{\varepsilon}(t,x) - xL'_{\varepsilon}(t,1))\right), \\ L'_{0}(t,x) &= txL_{\varepsilon}(t,x) + tL_{\varepsilon}(t,1)\left(xL'_{0}(t,1) + \frac{x}{x-1}(L'_{0}(t,x) - xL'_{0}(t,1))\right). \end{cases}$$

Supersets of PEO

The supersets of PEO have algebraic generating functions.

Conjecture

For each k > 0, $o_k(n) \sim \gamma n^{-5/2} \rho^{-n}$ (ρ and γ depend on k).

	nature	k	degree	growth rate	
	PEO	_	-	?	
	sup	5	-	13.005(*)	
	sup	4	-	13.017(*)	
	sup	3	-	13.031(*)	
	sup	2	28	13.047	
	sup	1	3	13.065	
not proven use of quadratic approxima					

(*) not proven, use of quadratic approximants