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Graphs

Entities with some pairwise relations

→ Graph: Vertices + Edges
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Planar graphs
A planar graph can be embedded in the plane without edges crossing.

Appearing in other
contexts:
chemistry,
electronics,
image analysis...

=
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Global overview

Non-aligned drawings ← Graph drawing

Power domination ← Optimization problems

Planar Eulerian orientations ← Enumerative combinatorics
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Graph visualization
Dynamic graphs (addition/deletion of vertices/edges)

Preserving the relative positions of vertices (part of the mental map)

one vertex per line and column on a grid

[Kornaropoulos & Tollis’13, Didimo et al.’14, Angelini et al.’16]
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Non-aligned drawings
Graph G, n vertices

Non-aligned drawing of a graph:
vertices at the intersection of a regular grid
no two vertices on the same row/column

Non-aligned drawings always exist (two permutations of the vertices)

What if the graph is planar? → planar non-aligned drawing
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Drawing planar graphs

Definition: a planar graph has a planar drawing with edges as curves

A

B
C

H F

E
G

I

D

[Fáry’48] Drawing planar graphs
with only straight-lines

Grid drawing: vertices have
integer coordinates
[Schnyder’90, de Fraysseix et al.’89]:
planar graphs on a grid with n−1
lines/columns

1 more line/column: non-aligned?
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Non-aligned drawings

Sufficient to look only at maximal planar graphs

Now: only planar drawings
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Non-aligned drawings

On the minimal grid = n lines and columns

[Auber, Bonichon, Dorbec, P. ’15] There are
planar graphs with no straight-line
non-aligned drawing on the minimal grid.

n n

n

n

n n

Two possibilities:

Increasing the grid-size
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Non-aligned drawings

[Auber, Bonichon, Dorbec, P. ’15] Every planar graph has a straight-line
non-aligned drawing with at most n−3 bends on the minimal grid,
computable in O(n) time.

Use Schnyder woods:
coloring the edges (local
constraints) → 3 trees
coordinates given by the trees
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Non-aligned drawings

Filled triangle = vertices inside

→ Constrain drawing areas
→ Draw them in rectangles not triangles

vs.

→ Add bends only for filled triangles
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Non-aligned drawings
4-connected graph: no filled triangle (except outerface)

[Biedl et al. ’99] Every 4-connected graph with outerface of size ≥ 4 has a
(non-aligned) straight-line drawing on the minimal grid.

Corollary Every 4-connected graph has a non-aligned drawing on the
minimal grid with one bend.
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Non-aligned drawings
fG = number of filled triangles in G

[Biedl, P. ’16] Every planar graph has a non-aligned drawing on the
minimal grid with min

{
fG, 2n−5

3

}
bends, computable in

O
(
(n logn)3/2pα(n,n)

)
time.

Set E s.t.:
every filled triangle has exactly one edge in E
no two edges of E share a face

E \ e : subdivision, re-triangulation

G′ is 4-connected (previous result)

One bend for each subdivision vertex
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Non-aligned drawings
How to find such a set E?

Planar graph → 4-coloring vertices

M1 = {1,2}∪ {3,4} M2 = {1,3}∪ {2,4}
M3 = {1,4}∪ {2,3}

Keep the edges of filled triangles

Each Mi: independent + one edge
of each filled triangle → |Mi| ≤ fG

Lemma: At most 2n−5 edges belong to a filled triangle.

→ |Mi| ≤ 2n−5
3
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Non-aligned drawings

Other possibility: increasing the grid-size

[Biedl, P. ’16] Every planar graph has a
non-aligned straight-line drawing in an
n×O(n3)-grid, computable in O(n2) time.

[Biedl, P. ’16] Every planar graph has a
non-aligned straight-line drawing in an
O(n2)×O(n2)-grid, computable in O(n)
time.
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Non-aligned drawings ← Graph drawing

Power domination ← Optimization
problems

Planar Eulerian orientations ← Enumerative combinatorics
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Domination

Find a set of vertices S s.t. N[S] =M =V(G)

Optimization problem
The domination number γ(G) is the minimum size of S s.t. M =V(G).
Given G, what is γ(G)?
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Domination

Find a set of vertices S s.t. N[S] =M =V(G)

γ(G) = 5

Optimization problem
The domination number γ(G) is the minimum size of S s.t. M =V(G).
Given G, what is γ(G)?
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Power domination [Haynes et al. ’02]

Some vertices in a set S
(domination) N[S] =M
(propagation steps) while
there exists u ∈M s.t. v is the
only non-monitored neighbor
of u: add v to M.

The power domination number
γP(G) of G is the minimum size of S
s.t. M =V(G) at the end.
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Power domination [Haynes et al. ’02]

Some vertices in a set S
(domination) N[S] =M
(propagation steps) while
there exists u ∈M s.t. v is the
only non-monitored neighbor
of u: add v to M.

γP (G) = 2

The power domination number
γP(G) of G is the minimum size of S
s.t. M =V(G) at the end.
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Power domination vs domination

By definition, γP(G) ≤ γ(G), but difference arbitrarily large

γ(Pk) = dk/3e

In maximal planar graphs: finding tight bounds is an open problem

[Matheson & Tarjan ’96] For n sufficiently large, every maximal planar
graph has γ(G) ≤α, with n

4 ≤α≤ n
3 .

[Dorbec, González, P.’17+] For n sufficiently large, every maximal planar

graph has γP(G) ≤β, with n
6 ≤β≤ n−2

4 <α.
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Power domination in maximal planar graphs

[Dorbec, González, P.’17+] For n sufficiently large, every maximal planar

graph has γP(G) ≤β, with n
6 ≤β≤ n−2

4 <α.

Lower bound: find a family of graphs needing n
6 vertices in S.

Upper bound: Constructive process
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Non-aligned drawings ← Graph drawing

Power domination ← Optimization problems

Planar Eulerian orientations ← Enumerative combinatorics

Claire Pennarun Planar graphs: non-aligned drawings, power domination and enumeration of Eulerian orientations 21 / 29



Eulerian orientations
Planar maps, rooted in a corner

(loops and multiple edges allowed)

6==

A planar map is Eulerian if every vertex has even degree.

Maps + structure

An oriented planar map is a planar Eulerian orientation (PEO) if
every vertex has in-degree and out-degree equal.
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Eulerian orientations
Enumeration: "How many planar Eulerian orientations with n edges?"
→ determining the sequence (an)n≥0

n = 2

n = 1

n = 0

a0 = 1, a1 = 2, a2 = 10, . . .

a37 = ?
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Eulerian orientations
New recursive decomposition of planar maps

} i

v

M ′
` (prime)

M

+

M ′ M ′

vv′

M

Knowing the maps with up to i edges→ compute maps with i+1 edges
Computing the first terms until a15 → OEIS A277493

n an n an n an
0 1 6 37 548 12 37 003 723 200
1 2 7 350 090 13 393 856 445 664
2 10 8 3 380 520 14 4 240 313 009 272
3 66 9 33 558 024 15 46 109 094 112 170
4 504 10 340 670 720
5 4 216 11 3 522 993 656
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Eulerian orientations

Study the growth rate µ= limn→∞ an1/n

Eulerian maps ⊂ PEO ⊂ arbitrarily oriented Eulerian maps
⇒ 8≤µ≤ 16

[Bonichon, Bousquet-Mélou, Dorbec, P. ’17]
The growth rate µ of the planar Eulerian orientations satisfies
11.68≤µ≤ 13.005.

→ study families of subsets and supersets

all have computable algebraic generating functions
subsets behave like trees, (conjecture) supersets behave like maps?

Claire Pennarun Planar graphs: non-aligned drawings, power domination and enumeration of Eulerian orientations 25 / 29



Eulerian orientations

Study the growth rate µ= limn→∞ an1/n

Eulerian maps ⊂ PEO ⊂ arbitrarily oriented Eulerian maps
⇒ 8≤µ≤ 16

[Bonichon, Bousquet-Mélou, Dorbec, P. ’17]
The growth rate µ of the planar Eulerian orientations satisfies
11.68≤µ≤ 13.005.

→ study families of subsets and supersets

all have computable algebraic generating functions
subsets behave like trees, (conjecture) supersets behave like maps?

Claire Pennarun Planar graphs: non-aligned drawings, power domination and enumeration of Eulerian orientations 25 / 29



Conclusion

Planar Eulerian orientations

Future research:
continue the study of Eulerian orientations (find new
decomposition?)
apply the same method for families difficult to enumerate
(polyominoes, self-avoiding walks, meanders?)
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Conclusion

Power domination

[Dorbec, González, P. ’17+] For n sufficiently large, every maximal planar

graph has γP(G) ≤β, with n
6 ≤β≤ n−2

4 <α.

Future research:

study the complexity of the decision problems on maximal planar
graphs
other difficult problems: hypercubes?
generalization of domination/power domination: constraint on
the number of parallel propagation steps

Claire Pennarun Planar graphs: non-aligned drawings, power domination and enumeration of Eulerian orientations 27 / 29



Conclusion

Non-aligned drawings

Not always possible on the minimal grid with straight-lines

Size of the grid Numb. bends Complexity Comments
n×n n−3 O(n) Schnyder wood
n×n min

{
fG, 2n−5

3

}
O(n logn)... filled triangles

n×O(n3) 0 O(n2) canonical ordering
O(n2)×O(n2) 0 O(n) Schnyder construction

Lower bound?
Maybe (n+o(n))× (n+o(n)) with o(n) "bad"
structural configurations

Claire Pennarun Planar graphs: non-aligned drawings, power domination and enumeration of Eulerian orientations 28 / 29



Thank you!
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Drawing graphs

We want to draw large graphs with
hierarchical view: a vertex in the
drawing = a group of vertices in the
graph

preserve the relative positions of
vertices→mental map

low complexity of algorithms
(linear, if possible)

→ new type of drawing with constraints: rook-drawing

Claire Pennarun (LaBRI, Bordeaux) Rook-drawing for plane graphs GD 2015 3 / 15



Schnyder woods
A Schnyder wood is a partition of the internal edges of a triangulation
in three trees T0, T1 and T2 (directed toward the root) and with a
particular configuration around each inner vertex:

P2(u)

P0(u)

P1(u)u
2

0

1

0

21

v0

v1v2

A

B

C

D E

F

G

H

I

[Schnyder 1989]
Every plane triangulation admits at least one Schnyder wood, and it
can be computed in linear time.

Claire Pennarun (LaBRI, Bordeaux) Rook-drawing for plane graphs GD 2015 11 / 15



Planar polyline rook-drawing - Vertices

(T0,T1,T2): Schnyder wood of G.
(v1v0), (v2v0), (v2v1)

x: clockwise preordering of T0 =
{v0v2ABCGDEFHIv1}.
y: clockwise postordering of T1 =
{DEABFHIGCv2v1}
(v0 = 0).

v0

v1v2

A

B

C

D E

F

G

H

I

n

n

n

n

n

n

n

n

n

n

n

n

v0

v1
v2

A

B

C

D

E

F

G

H

I
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Planar polyline rook-drawing - Edges
The edges (u,P0(u)) are bent at
(x(u), y(P0(u)) + 1) (except for the
first child in T0)
The edges (u,P1(u)) are bent at
(x(last descendant0(u)), y(u)) (no
bend if u is a leaf of T0)
Edges of T2: not bent v0

v1v2

A

B

C

D E

F

G

H

I

n

n

n

n

n

n

n

n

n

n

n

n

v0

v1
v2

A B

C

D E

F

G

H

I
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Non-aligned drawings on the minimal grid

A rectangle-of-influence (RI)
drawing:

a straight-line planar
drawing
the minimum open
rectangle containing u
and v is empty if (u,v) is
an edge

[Biedl et al. ’99] If G is 4-connected, and e is an edge of the outerface,
then G− e has a planar non-aligned RI-drawing on the minimal grid.

Claire Pennarun Non-aligned drawings of planar graphs 4 mai 2017 7 / 15



Non-aligned drawing on an (n−1)×O(n3)-grid

1 Canonical ordering v1 · · ·vn of V(G)
2 (Acyclic) orientation of the edges:

v1 → v2
w 6= cr pred. of vk : w→ vk
vk → cr

3 Topological order x : V → {1 · · ·n} s.t. if
u→ v then x(u) < x(v)

x(1) < x(3) < x(5) < x(6) < x(4) < x(7) < x(2)

7

6

5 4

3
2

1

Claire Pennarun Non-aligned drawings of planar graphs 4 mai 2017 10 / 15



Non-aligned drawing on an (n−1)×O(n3)-grid

x(1) < x(3) < x(5) < x(6) < x(4) < x(7) < x(2)

Place v1 at (1,2), v3 at (x(v3),3), v2 at (n,1)
→ G3

Suppose Gk =G[v1 · · ·vk] is drawn.

y(vk+1) is the smallest possible such that:

vk+1 can see all its precedessors
the edge from c` has positive slope
the row {y = y(vk+1)} is empty

1 23 5 6 4 7

7

6

5 4

3
2

1
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Non-aligned drawing on an (n−1)×O(n3)-grid

Left-steepness of a vertex: s(v) =
∣∣∣∣∣y(v)−y(c`)

x(v)−x(c`)

∣∣∣∣∣
In the non-aligned drawing of Gk, s(vk) ≤ (k−1)(k−2)

2 for k ≥ 3.

s(vn) ≤ 1
2 (n−1)(n−2)

c` = v1 → x(vn)−x(v1) ≤ n−2 and y(v1) = 2

y(vn) ≤ 2+ 1
2 (n−1)(n−2)2 ← Maximal height

Every planar graph with n vertices has a non-aligned straight-line
drawing in an (n−1)×

(
1+ 1

2 (n−1)(n−2)2
)
grid.

Claire Pennarun Non-aligned drawings of planar graphs 4 mai 2017 12 / 15



Non-aligned drawing on an O(n2)×O(n2)-grid
Mapping v ∈V(G) to a point

(
p1(v),p2(v),p3(v)

)
Lexicographic order: For vertices u,v and i = 0,1,2,(
pi(u),pi+1(u)

)<lex
(
pi(v),pi+1(v)

)
if either pi(u) < pi(v) or pi(u) = pi(v) and

pi+1(u) < pi+1(v).

Weak barycentric representation of G:
p0(v)+p1(v)+p2(v) = c for every vertex v
for each edge (u,v) and each vertex w 6= {u,v}, there is k s.t.(
pk(u),pk+1(u)

)
,
(
pk(v),pk+1(v)

)<lex
(
pk(w),pk+1(w)

)
.

[Schnyder 90] Every maximal planar graph G has a straight-line planar
drawing on a grid with n−1 rows and columns where coordinates are
given by a weak barycentric representation of G.

Claire Pennarun Non-aligned drawings of planar graphs 4 mai 2017 13 / 15



Non-aligned drawing on an O(n2)×O(n2)-grid

p′i(v) := (n−1)×pi(v)+pi+1(v), for i = 0,1,2, is also a weak barycentric
representation.

[Schnyder 90] mapping vertices to (p′0(v),p′1(v))
→ planar straight-line drawing
1≤ pi(v) ≤ n−2→ p′i(v) ≤ (n−1)(n−2)+ (n−2) = n(n−2)
→ drawing on an

(
n(n−−−2)−−−1×××n(n−−−2)−−−1

)
-grid

p′i(u) 6= p′i(v) for any vertices u,v and any i → non-aligned drawing

Every planar graph with n vertices has a non-aligned straight-line
drawing on an

(
n(n−2)−1×n(n−2)−1

)
grid.

Claire Pennarun Non-aligned drawings of planar graphs 4 mai 2017 14 / 15



Steps 1 and 2

Step 1. Monitor the
octahedra with l≤ n′/6
sensors
Step 2. While we can:
For every vertex v in M
in decreasing degree
(in G) order: if adding v
to S adds at least 4
vertices in M (with
propagation):
add v to S and
propagate

Claire Pennarun (Univ. Bordeaux) Power domination in triangulations 28 avril 2017 7 / 12



After Step 2
(a) G[M] has maximum degree 2 (it is a union of cycles or paths).

(b) Each connected component of G[M] has at most three vertices.

→ A connected component of G[M] is isomorphic to K3, P3, P2 or K1.

Claire Pennarun (Univ. Bordeaux) Power domination in triangulations 28 avril 2017 8 / 12



After Step 2
After Step 2, each non-monitored induced triangulation G′ of G is
isomorphic to one configuration of {C1, · · · ,C7}:

G1

G2u1

u2 u3

G1

G2

u1
u2 u3

G1

G2

u1
u2

u3

C1 C2 C3

G1

G2

u3

u1 u2

G1

G2

u1 u2 u3

G1

u2

G2u1

u3

G1

G2

u1

u2 u3

C4 C5 C6 C7

Claire Pennarun (Univ. Bordeaux) Power domination in triangulations 28 avril 2017 9 / 12



Step 3
Bottom-up addition of vertices to S:

Induced triangulation G′ with Ci = {u,v,w}

G1,G2 monitored with sets S1,S2

C4

Ci

(in G1) (in G2)

(in G′)

|S1| ≤
n1−2
4 , |S2| ≤

n2−2
4

−→ new set S′ (= S1∪S2∪ {v})

|S′| ≤ n1+n2
4 and |G′| ≥ n1+n2+2 →|S′| ≤ |G′|−2

4

S has the good number of nodes after of Step 3.

Claire Pennarun (Univ. Bordeaux) Power domination in triangulations 28 avril 2017 11 / 12



Power domination of triangular grids
Another problem of power-domination: regular graphs
Hexagonal grids [Ferrero et al. ’11] , some products of paths [Dorfling and
Henning ’06, Dorbec et al. ’08] ...

Triangular grid TG(k) : regular triangular grid with border of
hexagonal shape (k vertices on each side)

TG(3)

TG(2)

One property: monitoring T is sufficient!
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Relation with the hexagonal grid
Hexagonal grid with dimension ` (number of hexagons per side) is an
induced subgraph of TG(2`)...

... and γP(HG(`)) = γP(TG(2`)) (if our conjecture is true)
When/why does this happen? May be interesting to look to induced
regular grids?
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Decomposition of PEO
Two ways of creating a PEO:

merge two PEOs O1, O2 and orient the new edge
split the root-vertex at index i iff the resulting map is still a PEO

} i

v

vv′

O1 O2

O

O′

O

Splits at index 1 or ∆−1 are always possible; oth. we must check!
Remember the full orientation around the root: no recurrence relation
with a finite number of parameters
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Approximation of the growth rate
µ = growth rate of PEOs = limn→∞ o(n)1/n

Merging two PEOs with n and n′ edges gives a PEO with n+n′ edges
→ {o(n)}n≥0 is super-multiplicative , i.e. o(n+n′) ≥ o(n) o(n′) .

Variant of Fekete’s Lemma (1923): µ= supn≥1 o(n)1/n ∈R∗+
⇒µ≥ (o(15))1/15 ∼ 8.145525470

PEO ⊂ arbitrary orientations of
Eulerian maps
⇒ 8.14<µ< 16

o(n+1)

o(n)
as a function of 1/n →
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Prime decomposition of maps

A map is prime if the
root-vertex appears exactly
once on the root-face.

Planar map = concatenation of
prime maps

} i

}
i

Operations to create a prime map:
Add a loop around any map
Split at index i ≤∆(P`) in the
last prime P` of any map
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Subsets (and supersets) of O

Two families of sets of orientations O−
k and O+

k s.t.
O−

k ⊂O−
k+1 ⊂O ⊂O+

k+1 ⊂O+
k

Definition
A map of O−

k is obtained by either:
a concatenation of prime maps of O−

k ,
adding a loop around a map O ∈O−

k and orienting it,
a split on the last prime component P` of a map P1 . . .P` ∈O−

k at
index i < 2k or i =∆(P`)−1 .

The atomic map (one vertex, no edges) is in O−
k .

Fewer splits allowed → the number of orientations necessary to look at
form now a word of finite length , which we can use as a parameter
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Algebraic system for O (k)− ≡O−

The root-word w(O) of a map O is
the binary word formed as follows
in counterclockwise order around
the root-vertex:

1 if there is an out-edge,
0 if there is an in-edge.

1110000101

A word w is balanced iff |w|0−|w|1 = 0.

Fw(t) : g.f. of the set {O ∈O−|w(O) =w}
Lw(t) : g.f. of the set {O ∈O−|w(O) = uw for some u}

F′
w(t) , L′

w(t) : their counterparts for primemaps of O−.
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An example: equation for F′
w(t)

Prime oriented maps of O− with root-word w.
ws : maximal proper suffix of w, wc : central factor of w (w=αwcᾱ)
For w balanced, 2≤ |w| ≤ 2k:

F′
w = tFwc + tLεL′

ws

w

w(O′) = wc

O′

ws is a suffix of w(P`)

}
O′ = P1...P`

w

ws
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Algebraic system for O (k)−



Fw = ∑
w=uv

FuF′
v |w| ≤ 2k−2

Lw =
LεL′

w + ∑
w=uv,u 6=ε

LuF′
v |w| ≤ 2k−2

1+LεL′
ε w= ε

F′
w = tFwc + tLεL′

ws |w| ≤ 2k

L′
w =


tLwp + tFwc + tLεL′

w+
tLε

∑
u=vw

u balanced
0<|u|≤2k

(L′
us −Fu)+ tLε(L′

w′ −F′
w) |w| ≤ 2k−2

2tLε+ tLεL′
ε w= ε

w= ε⇒ Fw = 1,F′
w = 0

w non-balanced ⇒ Fw = F′
w = 0.
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Small example: subsets, k = 2

F01 = F10 = F′
01,

F′
10 = F′

01 = t+ tLεL′
1,

F′
1100 = tF10+ tLεL′

100,

F′
1010 = tF01+ tLεL′

010,

F′
0110 = tLεL′

110,

Lε = 1+LεL′
ε,

L0 = L1 = LεL′
0,

L00 = L11 = LεL′
00,

L01 = L10 = LεL′
01,

L′
ε = 2tLε+ tLε(L′

ε+2(L′
0−F′

10+L′
100−F′

1100+L′
010−F′

1010+L′
110−F′

0110)),

L′
0 = L′

1 = tLε+ tLε(L′
0+L′

0−F′
10+L′

100−F′
1100+L′

010−F′
1010+L′

110−F′
0110),

L′
00 = tL0+ tLε(L′

00+L′
100−F′

1100),

L′
10 = L′

01 = tL1+ t+ tLε(L′
10+L′

1−F′
01+L′

010−F′
1010+L′

110−F′
0110),

L′
100 = tL10+ tLε(L′

100+L′
100−F′

1100),

L′
010 = tL01+ tLε(L′

010+L′
010−F′

1010),

L′
110 = tL11+ tLε(L′

110+L′
110−F′

0110).

Eliminating all series but Lε gives an equation of degree 6 for Lε:

2t5L6
ε−t4(t+8)L5

ε−t3(3t2−16)L4
ε+t2(2t+3)(2t−5)L3

ε−t(2t2−7t−7)L2
ε−(5t+1)Lε+1= 0.

(1)
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Finding Lε
Generate the systems automatically then eliminate the variables with
Maple (keeping Lε)
k ≥ 4: find the first terms using the Newton GF package

nature k degree growth rate
inf 1 3 10.60
inf 2 6 10.97
inf 3 20 11.22
inf 4 258 11.44(∗)

inf 5 − 11.56(∗)

inf 6 − 11.68(∗)

PEO − − ?
(∗) not proven, use of quadratic approximants

For each k > 0, ok(n) ∼ γn−3/2ρ−n (ρ and γ depend on k).

Let µ−
k be the growth rate of the set O−

k . Then µ
−
k →k→∞ µ .
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Supersets of PEO

General idea: allowing splits at indices i ≥∆(P`) , creating non Eulerian
orientations

One catalytic variable x (for the half-degree of the root)

Same kind of systems, but with divided differences !

For k = 1:
Lε(t,x) = 1+Lε(t,x)L′

ε(t,x),

L′
ε(t,x) = 2txLε(t,x)+ tLε(t,1)

(
2xL′

0(t,1)+ x
x−1 (L′

ε(t,x)−xL′
ε(t,1))

)
,

L′
0(t,x) = txLε(t,x)+ tLε(t,1)

(
xL′

0(t,1)+ x
x−1 (L′

0(t,x)−xL′
0(t,1))

)
.
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Supersets of PEO

The supersets of PEO have algebraic generating functions.

Conjecture
For each k > 0, ok(n) ∼ γn−5/2ρ−n (ρ and γ depend on k).

nature k degree growth rate
PEO − − ?
sup 5 − 13.005(∗)

sup 4 − 13.017(∗)

sup 3 − 13.031(∗)

sup 2 28 13.047
sup 1 3 13.065

(∗) not proven, use of quadratic approximants
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