
Bisimulations on Data Graphs∗

Sergio Abriola
Dept. Computación

Universidad de Buenos Aires

Pablo Barceló
Center for Semantic Web Research &

Dept. Computer Science
University of Chile

Diego Figueira
CNRS, LaBRI, France

Santiago Figueira
Dept. Computación

Universidad de Buenos Aires
& CONICET, Argentina

Abstract

Bisimulation provides structural conditions to characterize
indistinguishability between nodes on graph-like structures
from an external observer. It is a fundamental notion used
in many areas. However, many applications use graphs where
nodes have data, and where observers can test for equality or
inequality of data values (e.g., asking the attribute ‘name’ of
a node to be different from that of all its neighbors).
The present work constitutes a first investigation of “data
aware” bisimulations on data graphs. We study the problem of
computing such bisimulations, based on the observational in-
distinguishability for XPath —a language that extends modal
logic with tests for data equality. We show that in general
the problem is PSPACE-complete, but identify several restric-
tions that yield better complexity bounds (CO-NP, PTIME)
by controlling suitable parameters of the problem; namely,
the amount of non-locality allowed, and the class of mod-
els considered (graph, DAG, tree). In particular, this analysis
yields a hierarchy of tractable fragments.

1 Introduction
Bisimulation is a fundamental notion that establishes when
two nodes (states) in graph-represented data (transition sys-
tem) cannot be distinguished by an external observer. It was
independently discovered in the areas of computer science
and philosophical logic during the 1970s —see (Sangiorgi
2009) for a thorough historical revision of the notion of
bisimulation. In both contexts, bisimulation (and its “half”
version, simulation) appeared as a refinement of the notion
of morphism, i.e, “structure-preserving” mappings. In the
case of computer science, bisimulation was developed by
Milner (and refined by Park) in the context of concurrency
theory as a way to study the behavior of programs (Mil-
ner 1971; Park 1981). In philosophical logic, it was intro-
duced by van Benthem in order to characterize the expres-
sive power of the basic modal logic in terms of a fragment
of first-order logic (van Benthem 1976).

∗This work was partially supported by the Laboratoire Interna-
tional Associé “INFINIS” and by grant ANPCyT-PICT-2013-2011.
Barceló is funded by the Millenium Nucleus Center for Semantic
Web Research under grant NC120004.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Nowadays, (bi)simulation is applied in many different
fields of computer science. For instance, it is used in con-
currency to study behavioral equality for processes (Mil-
ner 1999); in model checking to tackle the state-explosion
problem (Clarke, Grumberg, and Peled 2001); in databases
as a method for indexing and compressing semi-structured
data (Milo and Suciu 1999; Fan et al. 2012); in stochastic
planning to solve Markov decision processes efficiently (Gi-
van, Dean, and Greig 2003); in description logics to under-
stand the expressiveness of some languages (Kurtonina and
de Rijke 1999); and in natural language generation to de-
fine semantic counterparts to the notion of referring expres-
sion (Areces, Figueira, and Gorı́n 2011). Also, in constraint
satisfaction the closely related notion of arc consistency is
used as an approximation of satisfiability (Dechter 1992;
2003) and as a method for finding tractable instances of SAT
(Kolaitis and Vardi 2000; Dalmau, Kolaitis, and Vardi 2002).

Let us quickly recall the notion of bisimulation for the
basic modal logic (ML). Let G = 〈G,E〉 and G′ = 〈G′, E′〉
be two directed graphs whose edges are labeled over a finite
alphabet Σ. A bisimulation between G and G′ is a relation
Z ⊆ G×G′ such that:

• (Zig) For each pair (u, u′) ∈ Z, if G contains an edge
u
a→v (for a ∈ Σ) then G′ contains an edge u′ a→v′ such

that (v, v′) ∈ Z.
• (Zag) For each pair (u, u′) ∈ Z, if G′ contains an edge
u′

a→v′ (for a ∈ Σ) then G contains an edge u a→v such
that (v, v′) ∈ Z.

The nodes u in G and u′ in G′ are bisimilar if there is a
bisimulation between G and G′ that contains the pair (u, u′).

The following are two important properties of this notion:

• First, bisimulation can be restated in terms of greatest
fixed points, which in turn yields a simple polynomial
time algorithm for checking if u and u′ are bisimilar
(more specifically, for computing the maximal bisimula-
tion between G and G′).

• Second, the notion of bisimulation captures, in a precise
sense, the expressiveness of ML on finite models. For-
mally, Hennesy-Milner’s Theorem establishes that nodes
u and u′ are bisimilar if and only if they cannot be distin-
guished by ML formulas (see, e.g., (Blackburn, de Rijke,
and Venema 2001)). This result is robust, as it continues

to hold if we replace ML by more expressive navigational
logics used in the analysis of programs (e.g., PDL (Fis-
cher and Ladner 1979)) and model checking (e.g., CTL∗
(Clarke, Grumberg, and Peled 2001)).

Data-awareness. An important feature of bisimulations is
that they are defined in terms of the topology of the graph
structure, i.e., the way in which nodes are linked by labeled
edges. This is good enough for applications on which this
topology of labeled edges is the only relevant feature in their
model. However, it is not sufficient for other applications
that impose higher demands on such models and query lan-
guages. We are thinking here, in particular, of “data-aware”
models such as data or property graphs, which have be-
come de-facto standard in the area of graph databases (see,
e.g., (Angles and Gutiérrez 2008; Robinson, Webber, and
Eifrem 2013; Libkin and Vrgoč 2012)), or XML documents
(i.e., data trees). In addition to the topology defined by la-
beled edges, such graph-based models allow nodes to be at-
tributed, i.e., to be associated with a set of property/value
pairs, and languages over these models are endowed with
the capability of testing for equality of such data values.
Example 1. Consider a data graph representation of a movie
database, in which (a) nodes represent actors, directors,
and movies, (b) edges establish relationships between such
nodes, e.g. movie m is directed by director d and casts actor
a, and (c) nodes contain attributes, such as the name of the
actor and its age, or the title of the movie, its duration, and
the company who produced it. �

An important feature of the query languages for data
graphs is that they combine topology and data to express
relevant properties. An example is the query which asks
whether a director has two movies produced by different
companies. This query cannot be expressed in a purely
navigational language such as ML, PDL or CTL∗ (simply
because they cannot compare the attribute values of two
nodes), but can in turn be expressed in the “data-aware” lan-
guage XPath= (Libkin, Martens, and Vrgoč 2013). This lan-
guage extends the navigational core of XPath with data com-
parison formulas of the form 〈α1 = α2〉 and 〈α1 6= α2〉.
Intuitively, when evaluated on a node u these formulas ask
whether there are paths π1 and π2 starting in u such that
πi satisfies the condition given by path expression αi (for
i = 1, 2) and the final nodes of π1 and π2 have the same
(resp., different) data value (we assume for the sake of sim-
plicity that each node is attributed with a single data value,
given by function data).

As it has been recently shown in the context of XML/data
trees, XPath= allows for a Hennessy-Milner’s style charac-
terization in terms of a natural class of “data-aware” bisim-
ulations (Figueira, Figueira, and Areces 2015). We notice in
this article that such characterization extends in a straight-
forward way to the class of data graphs. Let us explain
intuitively how such “data-aware” bisimulation Z (called
XPath=-bisimulation in the paper) between data graphs
G = 〈G,E, data〉 and G′ = 〈G′, E′, data′〉 is defined. The
(Zig=) property establishes that for each pair (u, u′) in Z
and paths π1 and π2 in G starting from u, there must be paths
π′1 and π′2 in G′ starting from u′ such that:

Z

G G0

... ..
.

u
e1

e2

en

d1

d2

dm

... ..
.

e1

e2

en

d1

d2

dm

= (6=) = (6=)

u0

8⇡1

8⇡2

9⇡0
1

9⇡0
2

...
Figure 1: The (Zig=) clause for XPath= on data graphs. In
the picture, (ei)i≤n and (dj)j≤m are labels.

• Topology-preserving property: The labels of πi and π′i
(for i = 1, 2) are the same and the jth node of πi is in the
Z-relation with the jth node of π′i, for every j.

• Data-awareness property: If the data values of the final
nodes of π1 and π2 are equal (resp., different), so is the
case for the data values of the final nodes of π′1 and π′2.

This is graphically depicted in Figure 1. The (Zag=) prop-
erty is, of course, symmetric.

It is worth remarking here that, in general, languages
for data graphs, such as XPath= and others —e.g., (Libkin
and Vrgoč 2012; Bojańczyk et al. 2009; David et al. 2013;
Figueira 2010)— allow to test for (in)equality of data val-
ues only, abstracting away the concrete data. This is be-
cause meaningful properties of the graph topology are nat-
urally closed under renaming of data values through bijec-
tions. While the use of constants may be essential for data
retrieval, from an observational perspective the infinite do-
main of data values is merely a source of unique names to
relate nodes. This is why we work with languages and bisim-
ulation notions that are closed under bijections of data values
and, therefore, domain-independent.

The logics we study are related to description logics with
concrete domains (Lutz 2003) —a family of modal logics
designed for the representation of conceptual knowledge,
equipped with means that allow to describe “concrete quali-
ties” of real-world objects such as their weight, temperature,
and spatial extension. One can draw a connection between,
on the one hand,ALC when restricted to having binary pred-
icates =, 6= on a concrete domain, and, on the other hand,
data-aware XPath without transitive axes on data graphs.

Potential applications. Data-aware bisimulations have been
used to study the expressive power of XPath= on data trees.
We foresee several other potential applications of them when
interpreted over data graphs:

• Indexing: Finding bisimilar nodes over graph-structured
data is the first step in many approaches to building index-
ing data structures for efficient evaluation of navigational
languages (Milo and Suciu 1999; Fan et al. 2012). These
approaches are based on the following idea: If x and y
are bisimilar and x is in the output of a query, also y is
in the output. Extending this to “data-aware” bisimula-
tions might then serve as a building-block over which in-
dex structures for XPath= expressions can be constructed.

Person
ID: 5774

Person
ID: 8750

Account
ID: 48719

Account
ID: 99843

Bank
ID: 56

Bank
ID: 18

Person
ID: 3348

Account
ID: 85994

Account
ID: 44769

Account
ID: 37619

Account
ID: 83420

A B C

has has has has has has

in in in in in in

Figure 2: A scene with people, accounts and banks.

• Clustering: Another motivation stems from the task of
clustering in graph data mining (Getoor and Diehl 2005),
i.e.,, the division of data into groups of similar objects.
One way to define similarity on data graphs is based on
observational indistinguishability, that is, grouping to-
gether elements x, y that cannot be distinguished with a
data aware logic L: x ≡L y. For the logic XPath= this no-
tion corresponds to “data-aware” bisimilarity. Further, in
cases when the previous notion is too strict, it might prove
useful to compute a degree of similarity, where more sim-
ilar elements are elements that are distinguished through
more complex formulas. This degree of similiarity can be
defined, in turn, by restricting suitable parameters in the
definition of “data-aware” bisimulations (e.g., the amount
of non-locality allowed, as studied in this paper).

• Referring expressions generation: A basic and active
task in natural language generation is referring expres-
sions generation (REG), stated as follows: given a scene
and a target element in that context, generate a grammati-
cally correct expression, called referring expression (RE),
in a given language that uniquely represents the element.
Krahmer, van Erk, and Verleg (2003) propose to use la-
beled directed graphs for representing the scene, and Are-
ces, Koller, and Striegnitz (2008) resort to description log-
ics (DLs) as a formalism for representing a RE. Areces,
Figueira, and Gorı́n (2011) show that this approach can
be efficiently implemented using bisimulations.
In some cases, though, a scene for the REG problem is
better modeled as a data graph. Imagine, e.g., a scene
modeling clients, accounts, and banks (Figure 2). Each
object has an ID. Suppose we look for a RE for target B.
It is impossible to distinguish nodes A and B using ML
or the DLs used in previous works, since they are bisimi-
lar (assuming, of course, that IDs are not part of the lan-
guage). However, the RE “the person who has accounts in
different banks” can be formalized in XPath=. Extending
(Areces, Figueira, and Gorı́n 2011), “data-aware” bisim-
ulations might then be an efficient tool for REG in cases
when REs are expressed in the language of XPath=.

Computing “data-aware” bisimulations. In any of the pre-
vious cases one is faced with the fundamental problem of
determining whether two nodes are “data-aware” bisimilar
(more in general, checking if there is a “data-aware” bisimu-
lation relating two data graphs). Recall that this problem can
be solved in PTIME for usual (i.e., purely topological) bisim-
ulations. One of the reasons that explains this is that such

bisimulations are local, in the sense that the (Zig) and (Zag)
conditions for a pair (u, u′) are defined in terms of nodes
which are adjacent to u and u′, resp. But this no longer holds
for “data-aware” bisimulations, as the (Zig=) and (Zag=)
conditions are defined in terms of arbitrarily long paths (i.e.,
in a non-local way). As it turns out, this makes the problem
of computing “data-aware” bisimulations intractable.

It is worth noticing that this is in line with the intractabil-
ity of other non-local notions of bisimulations, such as the
fair bisimulations studied in verification (Kupferman and
Vardi 1998). An important point of departure, though, is that
such notions are defined with respect to infinite paths in tran-
sition systems, while our notion considers finite paths only.
Contributions. Our main contribution is an in-depth study
of the complexity of computing “data-aware” bisimulations
by fine-tuning on the level of non-locality allowed. This
non-locality is measured in terms of (a) the lengths of the
paths considered in the definition of bisimulation, and (b) the
classes of models over which bisimulations are computed. In
particular, we show the following:
• In full generality, checking whether two data graphs

are “data-aware” bisimilar is PSPACE-complete. This is
obtained by showing that the problem is polynomially
equivalent to equivalence of nondeterministic finite au-
tomata, which is PSPACE-complete (Meyer and Stock-
meyer 1972). In particular, there are cases in which the
smallest witness (π1, π2) to the fact that two data graphs
are not bisimilar is a pair of paths of exponential size.

• The previous observation naturally calls for a restriction
on the length of paths to be inspected in the definition of
“data-aware” bisimulation (restriction (a) above). We start
by considering paths of polynomial length only. While
this decreases the complexity of the problem to the class
CO-NP, we show that it still does not yield tractability.
We thus restrict to paths of constant length only and show
that this condition does guarantee tractability. Interest-
ingly, this restricted notion of bisimulation characterizes
an important fragment of the XPath language; namely,
the one of bounded length. This fragment restricts the
length of expressions α1 and α2 in formulas of the form
〈α1 = α2〉 and 〈α1 6= α2〉 only (but does not restrict the
navigational expressions of the form 〈α〉).

• We then study how the underlying graphs affect the com-
plexity of the problem (restriction (b) above), and look
at the two most important classes of acyclic graphs: trees
and DAGs. We show that checking “data-aware” bisimi-
larity is tractable for the former and CO-NP-complete for
the latter.

• Finally, we look at two-way XPath=, which allows to tra-
verse edges in both directions. The problem of checking
“data aware” bisimilarity in this context remains PSPACE-
complete. The upper bound follows easily, but the lower
bound needs a new proof. As before, the restriction to
paths of polynomial length yields a CO-NP bound, and
for paths of constant length we obtain tractability.

Organization of the paper. We present basic notions in §2.
XPath=-bisimulations are introduced in §3. The complex-

[[ϕ ∧ ψ]]G = [[ϕ]]G ∩ [[ψ]]G [[¬ϕ]]G = G \ [[ϕ]]G

[[↓a]]
G = {(x, y) | (x, a, y) ∈ E} [[αβ]]G = {(x, z) | ∃y : (x, y) ∈ [[α]]G , (y, z) ∈ [[β]]G}

[[ε]]G = {(x, x) | x ∈ G} [[〈α〉]]G = {x ∈ G | ∃y : (x, y) ∈ [[α]]G}

[[α ∪ β]]G = [[α]]G ∪ [[β]]G [[〈α = β〉]]G = {x ∈ G | ∃y, z : (x, y) ∈ [[α]]G , (x, z) ∈ [[β]]G , data(y) = data(z)}

[[[ϕ]]]G = {(x, x) | x ∈ [[ϕ]]G} [[〈α 6= β〉]]G = {x ∈ G | ∃y, z : (x, y) ∈ [[α]]G , (x, z) ∈ [[β]]G , data(y) 6= data(z)}

Figure 3: Semantics of XPath= for a data graph G = 〈G,E, data〉.

ity of XPath=-bisimulations is studied in §4. Restrictions on
paths are presented in §5, and those on data models in §6.
The two-way version of XPath= is studied in §7, while §8 is
devoted to conclusions.

2 Data graphs and XPath
Data graphs. As is customary in graph-structured data,
we work with edge-labeled data graphs, i.e., finite graphs
whose edges are labeled with an element of a finite alphabet
A and whose nodes contain a single value of an infinite do-
main D (Libkin and Vrgoč 2012; Barceló 2013). Formally,
a data graph G over A is a tuple 〈G,E, data〉, where G is a
finite set of nodes, E ⊆ G× A×G, and data : G→ D as-
signs values to nodes. Intuitively, an edge (x, a, y) ∈ E (for
x, y nodes in G and a a symbol in A) represents that there
is an a-labeled edge from x to y. Also, data(x) = d iff the
data value of node x is d.

By convention, the set of nodes of a data graph G will be
denoted by G, the set of nodes of a data graph G′ by G′,
and so on. When E is clear from the context, we write x a→y
instead of (x, a, y) ∈ E.

XPath. We work with the language XPath=, a simplifica-
tion of XPath, stripped of its syntactic sugar, and adapted to
reasoning on data graphs (see, e.g., (Libkin, Martens, and
Vrgoč 2013)). XPath= is a two-sorted language, with path
expressions (denoted α, β, γ) representing binary relations
on nodes, and node expressions (denoted ϕ,ψ, η) represent-
ing unary relations, or properties. Its syntax is defined by
mutual recursion as follows:

α, β ::= ε | ↓a | αβ | α ∪ β | [ϕ] (a ∈ A)
ϕ,ψ ::= ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉.

A node expression is positive if it contains no negation.
We formally define the semantics of XPath= in Figure 3.

For a data graph G and u ∈ G, we write G, u |= ϕ to denote
u ∈ [[ϕ]]G , and we say that G, u satisfies ϕ.

Definition 2 (Indistinguishability). We write G, u ≡ G′, u′
if G, u |= ϕ ⇔ G′, u′ |= ϕ for every node expression ϕ of
XPath=. Further, we write G, u V G′, u′ if G, u |= ϕ ⇒
G′, u′ |= ϕ for every positive node expression ϕ of XPath=.
�

In the next section we introduce a notion of (bi)simulation
that characterizes, in a precise sense, logical indistinguisha-
bility (i.e., the relations ≡ andV) for XPath=.

3 Bisimulations on data graphs
The notion of (bi)simulation for XPath= over data trees was
developed in (Figueira, Figueira, and Areces 2014). As we
observe in this section, this notion is robust and extends in a
straightforward way to data graphs.
Definition 3 (XPath=-bisimulations). Let G and G′ be data
graphs over A. An XPath=-bisimulation between u ∈ G and
u′ ∈ G′ (written G, u↔ G′, u′) is a relation Z ⊆ G × G′
such that uZu′ and for all (x, x′) ∈ G×G′ such that xZx′
we have:
• (Zig=) If there are paths π1 = x

e1→x1 e2→ . . .
en→xn and

π2 = x
d1→y1 d2→ . . .

dm→ym, (for ei, dj ∈ A) in G, then
there are paths π′1 = x′

e1→x′1
e2→ . . .

en→x′n and π′2 =

x′
d1→y′1

d2→ . . .
dm→y′m, in G′ such that:

1. xiZx′i for all i ∈ [1, n], and yjZy′j for all j ∈ [1,m].
2. data(xn) = data(ym)⇔ data(x′n) = data(y′m).

• (Zag=) If there are paths π′1 = x′
e1→x′1

e2→ . . .
en→x′n and

π′2 = x′
d1→y′1

d2→ . . .
dm→y′m, (for ei, dj ∈ A) in G′, then

there are paths: π1 = x
e1→x1 e2→ . . .

en→xn and π2 =

x
d1→y1 d2→ . . .

dm→ym, in G such that conditions 1 and 2
above are verified.
Further, an XPath=-simulation from u ∈ G to u′ ∈ G′

(denoted G, u→ G′, u′) is a relation Z ⊆ G ×G′ such that
uZu′ and for all x ∈ G and x′ ∈ G′ the condition (Zig=)
above is verified.1 �

It is worth comparing our XPath=-bisimulation with the
classical bisimulation notion for ML. There are two simple
ways of transforming a data graph into a Kripke structure:

1. We erase the data values, obtaining a Kripke structure
with empty valuation for the propositional variables. Un-
der this interpretation, it is clear that if two nodes are
XPath=-bisimilar then they are ML-bisimilar, while the
converse implication is not true in general (see Figure 4).

2. We assign a propositional variable pd to every node of
the data graph with data value d in the data graph. In
contrast with the previous case, now the existence of an
ML-bisimulation over the Kripke structure implies the ex-
istence of a data-aware bisimulation in the original data
1Both notions are slightly different from the ones in (Figueira,

Figueira, and Areces 2014). This is because the data trees studied
in such article are node-labeled while our data graphs are edge-
labeled. The difference is, of course, inessential to the results.

u1

u2 u3

u4

u0
1

u0
2

u0
3

G G0

1

2

3

1

1

2

3

Figure 4: The dotted lines represent the largest bisimulation
for XPath=. Observe that, in particular, G, u1 6↔ G′, u′1 and
G, u2↔ G′, u′2. If G and G′ are regarded as Kripke models
without propositional variables, the solid lines represent an
ML-bisimulation. In particular, u1 and u′1 are bisimilar for
this logic. If G and G′ are regarded as Kripke models with
one propositional variable for each data value, then u2 and
u′2 are ML-bisimilar.

graph, but the converse does not hold (see Figure 4). This
is because XPath= (and, therefore, the data-aware bisim-
ulations studied in the paper) cannot speak about a partic-
ular data value (it cannot express “data value d holds in
this node”), but can only check whether two paths finish
in nodes with the same (or different) data value.

It is not hard to verify that XPath=-(bi)simulations are
closed under union; i.e., if Z1 ⊆ G×G′ and Z2 ⊆ G×G′
are XPath=-(bi)simulations between u ∈ G and u′ ∈ G,
then so is Z1 ∪ Z2. This immediately implies the following:

Proposition 4. If there is an XPath=-(bi)simulation between
u ∈ G and u′ ∈ G, then there is a maximal such XPath=-
(bi)simulation.

The characterization. One can verify that the following
theorem, originally stated in terms of data trees, holds also
in the general case of data graphs. It establishes the desired
characterization of the notion of logical indistinguishability
for XPath= in terms of XPath=-(bi)simulations:

Theorem 5. (Figueira, Figueira, and Areces 2015) Let G
and G′ be data graphs over the same alphabet A, and u and
u′ nodes in G and G′, respectively. Then G, u ≡ G′, u′ iff
G, u↔ G′, u′, and G, uV G′, u′ iff G, u→ G′, u′.

In the example of Figure 4, G, u1 6≡ G′, u′1 since G, u1 |=
〈↓ 6= ↓〉 but G′, u′1 6|= 〈↓ 6= ↓〉. Another distinguishing node
expression could be 〈ε = ↓〉. Notice that u2 and u′2 cannot
be distinguished in XPath= though they have different data
values (as this cannot be expressed in the logic).

Notice that if we add the transitive reflexive closure ↓∗a
of ↓a to our language, the notion of (bi)simulation does not
change, and Theorem 5 still holds (when V and ≡ are re-
placed with the corresponding indistinguishability notion).

4 Computing XPath=-bisimulations
As mentioned in the Introduction, a fundamental problem
when dealing with (bi)simulations is checking whether a
pair of nodes is (bi)similar. In this section we study the
complexity of such problem for XPath=-(bi)simulations and

show it to be PSPACE-complete. This establishes an impor-
tant difference with the problem of computing bisimulations
in the absence of data, which can be solved efficiently.

Formally, we study the following problem:

XPATH=-(BI)SIMILARITY

INPUT : Data graphs G and G′, nodes u ∈ G and u′ ∈ G′.
QUESTION : G, u→ G′, u′? (G, u↔ G′, u′?, resp.)

Our main result establishes the following:
Theorem 6. The problem XPATH=-(BI)SIMILARITY is
PSPACE-complete.

From Theorem 5 we obtain:
Corollary 7. The problem of checking G, u ≡ G′, u′ or
G, uV G′, u′, given data graphs G and G′ and nodes u ∈ G
and u′ ∈ G′, is PSPACE-complete.

Further, the following holds by direct inspection of the
proof of Theorem 6:
Corollary 8. Checking G, u ≡ G′, u′ or G, u V G′, u′
is PSPACE-complete, even if ≡ and V are defined only
with respect to formulas of the form 〈ε = ↓e1 . . . ↓en〉, for
e1 . . . en ∈ A.

To prove Theorem 6 we show that XPATH=-
(BI)SIMILARITY is polynomially equivalent to the
containment problem (resp., equivalence problem) for
nondeterministic finite automata (NFAs). Recall that
this is defined as follows: Given NFAs A1 and A2, is
L(A1) contained in L(A2) (resp., are both languages the
same)? Both containment and equivalence of NFAs are
PSPACE-complete (Meyer and Stockmeyer 1972).

4.1 Upper bound
We prove a PSPACE upper bound for XPATH=-
SIMILARITY. The proof for bisimilarity is analogous
but using equivalence instead of containment of NFAs. The
algorithm first guesses the candidate relation Z ⊆ G × G′,
which contains (u, u′), and then checks that it satisfies the
(Zig=) property. Since Z is of polynomial size and PSPACE
= NPSPACE, we only need to show that the latter can be
checked in PSPACE. This is done by reducing the problem
in polynomial time to containment of NFAs. Since the latter
is in PSPACE the result follows (as PSPACE computable
functions are closed under composition).

Let us explain now the reduction to containment of NFAs.
Given a node x ∈ G, it is not hard to construct in polynomial
time an NFAAG,x over alphabet A×G∪{=, 6=} that accepts
precisely those words of the form:

(e1, x1) . . . (en, xn) ? (d1, y1) . . . (dm, ym), (1)
for ? ∈ {=, 6=}, such that G contains paths:

x
e1→x1 e2→ . . .

en→xn and x
d1→y1 d2→ . . .

dm→ym
for which data(xn) ? data(ym). In the same way, it is pos-
sible to construct in polynomial time an NFA AG′,x′,Z over
alphabet A×G∪{=, 6=} that accepts precisely those words
of the form (1) such that G′ contains paths:

x′
e1→x′1

e2→ . . .
en→x′n and x′

d1→y′1
d2→ . . .

dm→y′m,
and the following holds:

•Gi = Qi ∪ {ui, vi, wi}
• (x, a, y) ∈ Ei iff one of the following holds:

- (x, a, y) ∈ δi
- x ∈ Qi \ {qi, fi} and y ∈ {ui, vi, wi}
- x = qi and y = ui

- x = ui and y ∈ {ui, vi, wi}
• datai(q) =

1 if q ∈ {qi} ∪ Fi

2 if q ∈ {ui} ∪Qi \ {qi, fi}
3 if q = vi
4 if q = wi

• xZy iff one of the following holds:

- x = q1 and y = q2.

- x ∈ {u1} ∪ Q1 \ {q1, f1} and
y ∈ {u2} ∪Q2 \ {q2, f2}.

- x ∈ {v1, w1, f1} and

y ∈ {v2, w2, f2}.

q1

u1

v1 w1

1

2

1

2

3 4

A1

Q1 \ {q1, f1}

1

2

1 3 4

Q2 \ {q2, f2}

q2 A2

u2

v2 w2

G1 G2

Z

Z

Zf1 f2

2

Figure 5: The data graphs Gi = (Gi, Ei, datai) (i = 1, 2), constructed from NFAs A1 and A2, and the bisimulation Z ⊆
G1 ×G2. All nodes inside a dotted area on G1 are related to all nodes inside a dotted on G2 area via Z.

• xiZx′i for i ∈ [1, n], and yjZy′j for j ∈ [1,m].

• data(x′n) ? data(y′m).

It is clear that Z satisfies (Zig=) if and only if AG,x ⊆
AG′,x′,Z for each (x, x′) ∈ Z. Since Z is of polynomial
size, we only need to check containment for a polynomial
number of pairs of NFAs. This establishes the upper bound.

4.2 Lower bound
Again, we only show the lower bound for XPATH=-
SIMILARITY. The proof for bisimilarity is analogous. We
proceed by constructing a polynomial time reduction from
containment of NFAs to XPATH=-SIMILARITY. Let Ai =
(Qi, δi, qi, Fi) be NFAs over alphabet A, for i = 1, 2. Here,
(a) Qi is the finite set of states of Ai, (b) δi ⊆ Qi ×A×Qi
is its transition relation, (c) qi is the initial state, and (d) Fi
is the set of final states. We assume, without loss of gener-
ality, that qi has no incoming transitions and Fi consists of
a single state fi without outgoing transitions. Furthermore,
we assume that fi (for i = 1, 2) is reachable from every state
in Qi and that Q1 ∩Q2 = ∅.

Let u1, u2, v1, v2, w1, w2 be elements that do not be-
long to Q1 ∪ Q2. For i = 1, 2, we define a data graph
Gi = (Gi, Ei, datai) as in Figure 5. We show that L(A1) ⊆
L(A2) iff G1, q1 → G2, q2. The right-to-left direction is
straightforward, since for e1 . . . en ∈ A (n > 0) and
ϕ = 〈ε = ↓e1 . . . ↓en〉 we have that: e1 . . . en ∈ L(A1) then
by construction G1, q1 |= ϕ then (since G1, q1 → G2, q2)
G2, q2 |= ϕ, and then by construction e1 . . . en ∈ L(A2).
For the left-to-right direction, let us define Z ⊆ G1 ×G2 as
in Figure 5. We show next that Z satisfies the (Zig=) clause
for any pair x1 ∈ G1, x2 ∈ G2 such that x1Zx2.

If x1 ∈ {f1, v1, w1} and x2 ∈ {f2, v2, w2}, (Zig=) holds
trivially as there are no outgoing paths from f1, v1 or w1. If
x1 ∈ Q1\{q1, f1}∪{u1} and x2 ∈ Q2\{q2, f2}∪{u2}, let
α, β be two paths starting in x1. Suppose first that α = x1
and β = x1y2 . . . ymz (resp., x1y2 . . . ym), where the yi’s
are in Q1 \ {q1, f1} ∪ {u1} and z ∈ {f1, v1, w1}. Then the
corresponding β′ in G2 is x2u2 . . . u2v2 (resp., x2u2 . . . u2),
where there are m − 1 occurrences of u2. If both α and β
have length greater than 0, then the procedure is similar, but
one path may end in w2 if the data values of the endpoints
of α, β are different elements in {1, 3, 4}.

Finally, if x1 = q1 and x2 = q2, there are two main cases
for the type of paths α, β in G1 to be replicated in G2, assum-
ing they are of length greater than 0 (when one of the paths is
of length 0 the analysis is easier). If any of these paths ends
in f1, its inner nodes (save for the beginning and the end),
must lay in Q1 \ {q1, f1}; thus the path corresponds with
a word of L(A1). But L(A1) ⊆ L(A2), and thus this path
can also be replicated starting from q2. On the other hand,
if any of these paths ends in a node different from f1, say
α = q1y2 . . . ym, then α′ = q2u2 . . . u2t, with m− 2 occur-
rences of u2, and where t = u2 if ym ∈ Q1\{q1, f1}∪{u1},
t = v2 if ym = v1, and t = w2 if ym = w1.

5 Restricting paths in bisimulations
The smallest witness to the fact that two NFAs are not equiv-
alent (resp., one NFA is not contained in another one) might
be a path of exponential length (Meyer and Stockmeyer
1972). As a corollary to the proof of Theorem 6, we obtain
then that the smallest witness to the fact that a given relation
Z ⊆ G×G′ does not satisfy the (Zig=) condition might also
be a pair (π1, π2) of paths of exponential length. This natu-
rally calls for a restriction on the length of paths considered
in the definition of XPath=-(bi)simulation as a way to ob-
tain better complexity bounds. We consider this restriction
natural for the following reasons:
• Long witnesses correspond to large distinguishing formu-

las in XPath=. But rarely will users be interested in check-
ing if nodes are distinguishable by formulas that they can-
not even write. Thus, the restriction to shorter paths can
be seen as an approximation to the notion of XPath=-
(bi)similarity based on user-understandable formulas.

• In practice, algorithms for computing (bi)simulations in
the absence of data stop after a few iterations (Luo et al.
2013b; 2013a). This tells us that when nodes in real-world
graphs are distinguishable by ML formulas, they are dis-
tinguishable by some small formula. One might expect a
similar behavior for XPath=, implying that the restriction
to shorter paths provides a fair approximation of the prob-
lem in practice.
In this section we study the complexity of XPath=-

(bi)similarity for paths of restricted length. We show that
the problem becomes CO-NP-complete for paths of polyno-
mial length, and tractable for paths of constant length. This

notion of bisimilarity further captures the expressive power
of a natural fragment of XPath=; namely, the one formed by
expressions of bounded length. This fragment only restricts
formulas of the form 〈α ? β〉, for ? ∈ {=, 6=}.

5.1 Bounded bisimulation and equivalence
Let f : N → N be a positive, non-decreasing function. We
define the notion of f -XPath=-(bi)simulation as in Defini-
tion 3, but now in the (Zig=) (resp., (Zag=)) condition we
only consider paths π1 and π2 (resp., π′1 and π′2) of length at
most f(max(|G|, |G′|)). We call the new conditions (Zigf=)
and (Zagf=), respectively. We write G, u↔f G′, u′ if there is
an f -XPath=-bisimulation between G and G′ that contains
the pair (u, u′). Similarly, G, u →f G′, u′ if there is an f -
XPath=-simulation from u in G to u′ in G′.

We define the logical counterpart of this refined notion of
bisimulation. We aim at an analog of Theorem 5 relative to
the adequate restriction of indistinguishability (cf. Def. 2).
As we show below, this restriction is defined by the frag-
ment of XPath= whose path expressions α occurring in an
expression of the form 〈α ? β〉 (for ? ∈ {=, 6=}) have length
bounded by f . In the following we formalize this idea.

The length of a path expression α, denoted len(α), was
defined in (Abriola, Descotte, and Figueira 2015). It cor-
responds to the number of ↓a’s occurring in α at the up-
permost level, i.e., outside any test of the form [ϕ]. E.g.,
len(↓a[〈↓b = ↓a↓b↓c〉]↓b) = len(↓a↓b) = 2. We use this no-
tion to define the maximum length of a node or path expres-
sion. This represents the maximum length of paths that are
involved in expressions of the form 〈α?β〉, for ? ∈ {=, 6=}.
Definition 9 (Maximum length). Given a node or path ex-
pression θ, we write ml(θ) to denote the maximum length
of θ. Formally, ml is recursively defined as follows:

ml(λ) = 0
ml(εα) = ml(α)

ml([ϕ]α) = max{ml(ϕ),ml(α)}
ml(↓aα) = ml(α)

ml(ϕ ∧ ψ) = max{ml(ϕ),ml(ψ)}
ml(¬ϕ) = ml(ϕ)
ml(〈α〉) = ml(α)

ml(〈α ? β〉) = max{len(α), len(β),ml(α),ml(β)},
where α is any path expression or the empty string λ. For
c ≥ 0, we call XPath=(c) the syntactical fragment of
XPath= of ml bounded by c. �

E.g., ml(〈↓a[〈↓b↓a↓c〉]↓b = ↓b[〈↓a↓b↓a↓b〉]〉) = 2.
Notice that XPath=(0) corresponds of the fragment of the

logic without data value comparisons 〈α ? β〉 (? ∈ {=, 6=}).
Further, fragments of the form XPath=(c) (for c ≥ 1) extend
multi-modal logic, which in turn coincides with XPath=(0):
Proposition 10. XPath=(0) is semantically equivalent to
multi-modal logic with no propositions and only atom >.

Proof. In the jargon of ML, we have a language with modal-
ities 〈a〉 for each a ∈ A. On the one hand, any node ex-
pression of the form 〈α ? β〉 in XPath=(0) is also of the
form 〈[ϕ1] . . . [ϕn] ? [ψ1] . . . [ψm]〉, which is equivalent to∧
i ϕi ∧

∧
j ψj , if ? is =, and to a contradiction (e.g. ¬〈ε〉)

otherwise. On the other hand, a node expression 〈↓aα〉 is
equivalent to 〈↓a[〈α〉]〉. Any node expression of the form
〈↓a[ϕ]〉 of XPath=(0) can be straightforwardly translated (in
a truth preserving way) to ML via T as 〈a〉T (ϕ). The trans-
lation from modal logic to XPath=(0) is obvious.

We now introduce the notion of f -XPath=-
indistinguishability which matches f -XPath=-bisimulation
(cf. Definition 2). We write G, u ≡f G′, u′ (resp.
G, u Vf G′, u′) if G, u |= ϕ ⇔ G′, u′ |= ϕ (resp.
G, u |= ϕ ⇒ G′, u′ |= ϕ) for every (positive) node expres-
sion ϕ of XPath= such that ml(ϕ) ≤ f(max(|G|, |G′|)).

As in Theorem 5 we obtain the following characterization:

Proposition 11. G, u ≡f G′, u′ iff G, u ↔f G′, u′, and
G, uVf G′, u′ iff G, u→f G′, u′.

5.2 Computing f -XPath=-bisimulations
Here we study the complexity of computing f -XPath=-
(bi)simulations:

f -XPATH=-(BI)SIMILARITY

INPUT : Data graphs G and G′, nodes u ∈ G and u′ ∈ G′.
QUESTION : G, u→f G

′, u′? (G, u↔f G
′, u′?, resp.)

Since this problem is PSPACE-complete when f is an ex-
ponential function, it is natural to start by restricting f to
be a polynomial. We show next that while this restriction
lowers the complexity of our problem, it still does not yield
tractability:

Proposition 12. The following holds:

1. The problem p-XPATH=-(BI)SIMILARITY is in CO-NP
for every non-decreasing polynomial p : N→ N.

2. For every k ≥ 1 there exists a non-decreasing polyno-
mial p : N → N of degree k such that p-XPATH=-
(BI)SIMILARITY is CO-NP-hard.

Proof. We only prove the claim for p-XPATH=-
SIMILARITY. The proof for bisimilarity is analogous.
We start with item 1. Let G and G′ be data graphs and u, u′
nodes in G,G′, respectively. In order to check whether
there is an XPath=-simulation from u to u′ we can use the
standard greatest fixed point algorithm for computing the
maximal simulation in the absence of data. We adapt it here
to the (Zigp=) condition of XPath=-simulations.

The algorithm computes the maximal XPath=-simulation
from G to G′. We start by defining Z = G × G′. At each
step we choose an arbitrary pair (x, x′) ∈ Z. If (Zigp=) fails
when evaluated on this pair we simply remove it from Z.
We proceed iteratively until we reach a fixed point. Finally,
we check whether (u, u′) ∈ Z. Only if this is the case we
declare that there is an XPath=-simulation from u to u′.

Thus, in order to check that there is no XPath=-simulation
from u to u′, we can simply guess a computation of the al-
gorithm that removes the pair (u, u′) from Z. Such com-
putation consists of (a) pairs (x1, x

′
1), . . . , (xm, x

′
m); (b)

relations Z0, . . . , Zm such that: Z0 = G × G′, Zi =
Zi−1 \ {(xi, x′i)} for each 1 ≤ i ≤ m, and Zm does not
contain (u, u′); and (c) suitable witnesses for the fact that

(xi, x
′
i) does not satisfy (Zigp=) with respect to Zi−1, for

each 1 ≤ i ≤ m. Such witness consists of a pair (π1, π2) of
paths of length at most p(max (|G|, |G′|)) in G starting from
xi, and yet another witness for the fact that no pair (π′1, π

′
2)

of paths in G′ starting from x′i satisfies (Zigp=) with respect
to (π1, π2). The latter can be represented by an accepting
run of the complement of the NFA AG′,x′i,Zi−1

(as defined
in the proof of the upper bound of Theorem 6) over the word
that represents the pair (π1, π2) in AG,xi

. Clearly, each one
of the components of this guess can be represented using
polynomial space. Further, it can be checked in polynomial
time that the guess satisfies the required conditions—in par-
ticular, to check that the word representing (π1, π2) does not
belong to the language ofAG′,x′i,Zi−1

. It follows that check-
ing whether there is no XPath=-simulation from u to u′ is in
NP (and, thus, that our problem is in CO-NP).

For item 2 we use the following fact: For every k ≥ 1
there exists a non-decreasing polynomial p : N → N of
degree k such that the problem of checking containment
of NFA A1 in A2, restricted to words of length at most
p(max (|A1|, |A2|)), is CO-NP-hard. This is obtained by
simply mimicking the proof of PSPACE-hardness for con-
tainment of NFAs, but this time restricted to words of poly-
nomial length only. Once this is established, we reduce such
restricted containment problem to p-XPATH=-SIMILARITY
by applying the construction in the proof of the lower bound
of Theorem 6.

The reason why the previous restriction is not sufficient to
obtain tractability is that there are too many paths of polyno-
mial length in a data graph. We solve this issue by restricting
to paths of constant length only. In the following we identify
the function that takes constant value c ∈ N with the letter c.
Proposition 13. The problem c-XPATH=-(BI)SIMULATION
is PTIME-complete for each constant c > 0.

Proof. We use the same algorithm as in the proof of the
previous upper bound. The difference now is that checking
whether a pair (x, x′) ∈ Z satisfies (Zigc=) can be solved
efficiently for each c > 0. This is because there is at most a
polynomial number of paths of length≤ c in G starting from
x. We conclude that checking whether G, u →c G′, u′ is in
PTIME. The same holds for G, u↔c G′, u′. The lower bound
follows from PTIME-hardness for bisimulations (Balcázar,
Gabarro, and Santha 1992).

Recall that Proposition 11 establishes that c-XPath=-
simulations characterize the expressive power of the frag-
ment of XPath= defined by formulas of ml bounded by the
constant c. The following corollary to the proof of Propo-
sition 13 states that when two nodes are not c-XPath=-
bisimilar, it is possible to compute in polynomial time a node
expression in this fragment that distinguishes them.
Corollary 14. There is a polynomial time algorithm which
given G, u 6↔c G′, u′ (resp., G, u 6→c G′, u′), constructs2 a
(positive) node expression ϕ of XPath=(c) such that G, u |=
ϕ and G′, u′ 6|= ϕ.

2Provided an adequate representation for such formula is cho-
sen (Figueira and Gorı́n 2010).

6 Restricting the models
Here we follow a different approach from the one in
§5: We constrain the topology of graphs instead of the
(bi)simulations. Since our goal is restricting the number
and/or length of the paths considered in the analysis of
(bi)simulations, it is natural to look into acyclic graphs;
namely, trees and DAGs.

Let us start with data trees, i.e., data graphs whose un-
derlying graph is a directed tree. This case is relevant as
data trees are (essentially) XML documents, and the study
of XPath=-bisimulations was started in such context. No-
tice that for data trees both the number and the length
of paths one needs to consider when checking the (Zig=)
and (Zag=) conditions are polynomial. This implies that
the problem of computing XPath=-(bi)simulations over data
trees is tractable:
Theorem 15. The problem XPATH=-(BI)SIMULATION for
data trees is in PTIME.

As a second case, let us consider data DAGs, which allow
for undirected cycles only. In this case the length, but not the
number, of the paths one needs to consider at the moment of
checking the (Zig=) and (Zag=) conditions is polynomial.
The first observation helps lowering the complexity of com-
puting XPath=-(bi)simulations in this context from PSPACE
to CO-NP, while the second one prevents us from obtaining
tractability.
Proposition 16. The problem XPATH=-(BI)SIMULATION
for data DAGs is CO-NP-complete.

Proof. The upper bound is a consequence of Proposition 12,
since paths in DAGs are of linear size. For the lower
bound we use the following observation: Checking contain-
ment/equivalence of DAG NFAs (i.e., NFAs whose underly-
ing graph is a DAG) is CO-NP-complete. This can be proved
by an easy reduction from the complement of 3SAT. Once
this is established, we can adapt the proof of Theorem 6.
Given A1,A2 DAG NFAs, we can build data DAGs G1,G2
reducing from the problem of equivalence/containment. In
order to obtain data DAG, the nodes u1 and u2 of Figure 5
are replaced with DAGs of size n and data value 2, where
n is the maximum number of states of the NFAs. Let Qji be
the set of nodes q ∈ Qi at “maximum distance j” from fi,
that is, so that there is a directed path from q to fi of length
j but not of length > j (note that Qi =

⋃
j≤nQ

j
i). Each ui

is replaced with n fresh nodes u1i , . . . , u
n
i with every possi-

ble edge from Qji to uj−1i , from uji to vi, wi, and from uji
to uj

′

i for every j′ < j. It is easy to check that the resulting
graphs are DAGs, and that the reductions are preserved. This
time, the maximal bisimulation relates all nodes with equal
maximum distance from {fi, vi, wi}.

7 Two way XPath=

A common expressive extension for languages on graphs
is to consider a two-way version that allows to traverse
edges in both directions (see, e.g., (Calvanese et al. 2000;
Libkin, Martens, and Vrgoč 2013)). We call XPathl= the ex-
tension of XPath= with path expressions of the form ↑a,

for a ∈ A. The semantics of these expressions over G =
〈G,E, data〉 is as follows: [[↑a]]G = {(x, y) | (y, a, x) ∈
E}. We write G, u ≡l G′, u′ (resp. G, u Vl G′, u′) if
G, u |= ϕ⇔ G′, u′ |= ϕ (resp. G, u |= ϕ⇒ G′, u′ |= ϕ) for
every (positive) node expression ϕ of XPathl=.

A notion of (bi)simulation for XPathl= over data trees
was introduced in (Figueira, Figueira, and Areces 2015), and
turns out to be tractable. It heavily relies on the determinism
of ↑a over trees, and hence does not fit in the context of data
graphs. However, there is a simple way to adapt XPath=-
bisimulations to the case of two-way XPath=.

Given a data graph G = 〈G,E, data〉 over A, we define
its completion over A ∪ A−, where A− := {a− | a ∈ A},
as the data graph Gc = 〈G,Ec, data〉, where Ec extends E
by adding the edge (v, a−, u), for each edge (u, a, v) ∈ E.
That is, Gc extends G with the “inverse” of every edge in E.

We also define a bijection ϕ 7→ ϕc mapping node expres-
sions of XPath= over A to node expressions of XPathl= over
A ∪ A− as follows: ϕc is the result of replacing each oc-
currence of ↑a in ϕ (for a ∈ A) with ↓a− . The following
proposition is straightforward:

Proposition 17. G, u |= ϕ iff Gc, u |= ϕc.

We say that there is is an XPathl=-bisimulation between
u ∈ G and u′ ∈ G′ (denoted G, u ↔l G′, u′) if Gc, u ↔
G′c, u′ (over the extended alphabet A ∪ A−). Similarly, we
define XPathl=-simulations→l. An analog of Theorem 5 can
be shown for the case of ≡l (resp.Vl) and↔l (resp.→l)

We study the complexity of the following problem:

XPATHl=-(BI)SIMILARITY

INPUT : Data graphs G and G′, nodes u ∈ G and u′ ∈ G′.
QUESTION : G, u→l G′, u′? (G, u↔l G′, u′?, resp.)

The bounded notions of bisimulation introduced in §5
are defined over XPathl= and alphabet A in the expected
way: reducing to XPath= over the signature A ∪ A− and
the corresponding completion of the data graphs. We use
symbols →lf (resp. ↔lf) for referring to the f -XPathl=
(bi)simulations. We then study:

f -XPATHl=-(BI)SIMILARITY

INPUT : Data graphs G and G′, nodes u ∈ G and u′ ∈ G′.
QUESTION : G, u→lf G

′, u′? (G, u↔lf G
′, u′?, resp.)

The identification of XPathl= over A with XPath= over
A∪A− and the corresponding completions of graphs allows
us to straightforwardly transfer some upper bounds:

• XPATHl=-(BI)SIMILARITY is in PSPACE (§4.1).

• p-XPATHl=-(BI)SIMILARITY, for p a non-decreasing
polynomial, is in CO-NP (item 1 of Proposition 12).

• c-XPATHl=-(BI)SIMILARITY, for c a constant function, is
in PTIME (Proposition 13)

Regarding the lower bounds, we focus here on the general
case of XPathl=. One can check that the proof given in §4.2

q0

2

A

G

Z

Z

Z

qf

1 3 4 4 3

1 3 4 4 3

2

2

u

2

1u0
3

1 3

G0

Figure 6: Definition of the data graphs G and G′ based on an
NFA A over alphabet A. Boldface arrows have, as label, all
symbols from A. Lightface arrows have all the same label
e /∈ A for some e. All nodes of A (the grey area) have data
value 2. All nodes inside a dotted area on G are related to all
nodes inside a dotted area on G′ via Z.

does not work because in the two way context, more nodes in
the graphs can be reached through the accessibility relations.
The main result of this section is the following:

Theorem 18. XPATHl=-(BI)SIMILARITY is PSPACE-hard.

Proof. We reduce from the PSPACE-complete problem of
universality for NFA (i.e., does an NFA accept all words?).
Let A be a NFA over A, with initial state q0 and final state
qf . We build data-graphs G and G′ as in Figure 6. We claim
that G, u↔l G, u′ iff L(A) = Σ∗. The left-to-right direction
is straightforward, and for the right-to-left direction, one can
check that the relation Z depicted in the figure is an XPathl=-
bisimulation. Due to space constraints we omit details.

8 Conclusions
As we have seen, while in general computing
(bi)simulations on data graphs is PSPACE-complete,
tractability can be regained by either restricting the
topology of the graph, or by relaxing the conditions for
bisimulation. Further, several upper bounds continue to
hold when inverses are added (the only case left open is for
DAGs). The following table summarizes our results:

Model Problem Logic
XPath= XPathl=

Graph
(bi)simulation PSPACE-c PSPACE-c
p-(bi)simulation CO-NP CO-NP
c-(bi)simulation PTIME-c PTIME

DAG (bi)simulation CO-NP-c ?
Tree (bi)simulation PTIME PTIME

In the future we would like to consider XPath with
reflexive-transitive axes. Instead of having ↓a, we then have
↓∗A denoting pairs of nodes that can be reached through paths
with labels from a set A. Although having both ↓a and ↓∗A
does not change the indistinguishability (nor bisimulation)
relation, having only ↓∗A in the absence of ↓a gives rise
to a different bisimulation relation, somewhat akin to ML-
bisimulation over transitive frames (Dawar and Otto 2009).

References
Abriola, S.; Descotte, M. E.; and Figueira, S. 2015. Model
theory of XPath on data trees. Part II: Binary bisimulation
and definability. Information and Computation. To appear.
Angles, R., and Gutiérrez, C. 2008. Survey of graph
database models. ACM Comput. Surv. 40(1).
Areces, C.; Figueira, S.; and Gorı́n, D. 2011. Using logic in
the generation of referring expressions. In Logical Aspects
of Computational Linguistics. Springer. 17–32.
Areces, C.; Koller, A.; and Striegnitz, K. 2008. Referring
expressions as formulas of description logic. In Proc. of the
5th INLG.
Balcázar, J.; Gabarro, J.; and Santha, M. 1992. Deciding
bisimilarity is P-complete. Formal aspects of computing
4(1):638–648.
Barceló, P. 2013. Querying graph databases. In PODS,
175–188.
Blackburn, P.; de Rijke, M.; and Venema, Y. 2001. Modal
Logic. Cambridge University Press.
Bojańczyk, M.; Muscholl, A.; Schwentick, T.; and Segoufin,
L. 2009. Two-variable logic on data trees and XML reason-
ing. J. ACM 56(3).
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2000. Containment of conjunctive regular path queries
with inverse. In KR, 176–185.
Clarke, E. M.; Grumberg, O.; and Peled, D. 2001. Model
checking. MIT Press.
Dalmau, V.; Kolaitis, P. G.; and Vardi, M. Y. 2002. Con-
straint satisfaction, bounded treewidth, and finite-variable
logics. In CP, 310–326.
David, C.; Gheerbrant, A.; Libkin, L.; and Martens, W.
2013. Containment of pattern-based queries over data trees.
In ICDT, 201–212. ACM.
Dawar, A., and Otto, M. 2009. Modal characterisation the-
orems over special classes of frames. Annals of Pure and
Applied Logic 161(1):1–42.
Dechter, R. 1992. From local to global consistency. Artif.
Intell. 55(1):87–108.
Dechter, R. 2003. Constraint processing. Elsevier Morgan
Kaufmann.
Fan, W.; Li, J.; Wang, X.; and Wu, Y. 2012. Query preserv-
ing graph compression. In SIGMOD, 157–168.
Figueira, S., and Gorı́n, D. 2010. On the size of shortest
modal descriptions. In Advances in Modal Logic, volume 8,
114–132.
Figueira, D.; Figueira, S.; and Areces, C. 2014. Basic model
theory of xpath on data trees. In ICDT, 50–60.
Figueira, D.; Figueira, S.; and Areces, C. 2015. Model
theory of XPath on data trees. Part I: Bisimulation and
characterization. Journal of Artificial Intelligence Research
53:271–314.
Figueira, D. 2010. Reasoning on Words and Trees with
Data. PhD thesis, Laboratoire Spécification et Vérification,
ENS Cachan, France.

Fischer, M. J., and Ladner, R. E. 1979. Propositional
dynamic logic of regular programs. J. Comput. Syst. Sci.
18(2):194–211.
Getoor, L., and Diehl, C. P. 2005. Link mining: a survey.
ACM SIGKDD Explorations Newsletter 7(2):3–12.
Givan, R.; Dean, T. L.; and Greig, M. 2003. Equivalence no-
tions and model minimization in markov decision processes.
Artif. Intell. 147(1-2):163–223.
Kolaitis, P. G., and Vardi, M. Y. 2000. A game-theoretic
approach to constraint satisfaction. In AAAI, 175–181.
Krahmer, E.; van Erk, S.; and Verleg, A. 2003. Graph-based
generation of referring expressions. Computational Linguis-
tics 29(1).
Kupferman, O., and Vardi, M. Y. 1998. Verification of fair
transition systems. Chicago J. Theor. Comput. Sci. 1998.
Kurtonina, N., and de Rijke, M. 1999. Expressiveness of
concept expressions in first-order description logics. Artif.
Intell. 107(2):303–333.
Libkin, L., and Vrgoč, D. 2012. Regular path queries on
graphs with data. In ICDT, 74–85.
Libkin, L.; Martens, W.; and Vrgoč, D. 2013. Querying
graph databases with XPath. In ICDT, 129–140. ACM.
Luo, Y.; Fletcher, G. H. L.; Hidders, J.; Bra, P. D.; and Wu, Y.
2013a. Regularities and dynamics in bisimulation reductions
of big graphs. In GRADES 2013, 13.
Luo, Y.; Fletcher, G. H. L.; Hidders, J.; Wu, Y.; and Bra,
P. D. 2013b. External memory k-bisimulation reduction of
big graphs. In 22nd ACM CIKM’13, 919–928.
Lutz, C. 2003. Description logics with concrete domains—
a survey. In Advances in Modal Logics Volume 4. King’s
College Publications.
Meyer, A. R., and Stockmeyer, L. J. 1972. The equivalence
problem for regular expressions with squaring requires ex-
ponential space. In SWAT (FOCS), 125–129.
Milner, R. 1971. An algebraic definition of simulation be-
tween programs. In Proceedings of the 2nd International
Joint Conference on Artificial Intelligence, 481–489.
Milner, R. 1999. Communicating and mobile systems - the
Pi-calculus. Cambridge University Press.
Milo, T., and Suciu, D. 1999. Index structures for path
expressions. In ICDT, 277–295.
Park, D. M. R. 1981. Concurrency and automata on infi-
nite sequences. In Theoretical Computer Science, 5th GI-
Conference, Karlsruhe, Germany, March 23-25, 1981, Pro-
ceedings, 167–183.
Robinson, I.; Webber, J.; and Eifrem, E. 2013. Graph
Databases. O’Reilly Media, Inc.
Sangiorgi, D. 2009. On the origins of bisimulation and coin-
duction. ACM Trans. Program. Lang. Syst. 31(4):1–41.
van Benthem, J. 1976. Modal Correspondence Theory. PhD
thesis, Universiteit van Amsterdam.

