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Abstract
This is a brief overview of the material covered in a lecture given at EPIT’19 Spring School.1

Summary: Semistructured data is an umbrella term encompassing data models which are not
logically organized into tables (i.e., the relational data model) but rather in hierarchical structures
using markers such as tags to separate semantic elements and data fields in a ‘self-describing’
way. In this lecture we survey some of the multiple connections between formal language theory
and semi-structured data, in particular concerning the XML format. We will cover ranked and
unranked tree automata, and its connections to Monadic Second Order logic, First Order logic,
and XPath. The aim is to take a glimpse at the landscape of closure properties, algorithms and
expressiveness results for these formalisms.
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1 XML

An XML document is basically a data-exchange format which is very flexible and simple.
XML documents can be seen:

As graphs, more precisely as finite unranked ordered trees. Nodes correspond to elements,
while leaf nodes contain in general arbitrary text. We will often work with the structure
of the document and thus ignore the text in leaf nodes.
As terms, especially when the tree is ranked.
As a string with well-formed opening and closing ‘tags’ (which leads to consider models
such as Visibly Pushdown Automata [1], which are essentially equivalent to the tree
automata on which we focus).

On these documents we are interested in:
Extracting information though query languages (e.g., XPath and XQuery).
Expressing constraints: sometimes the document structure needs to be restricted (for
example to disallow documents which would not lead to a correct interpretation). These
constraint languages are usually called schema languages. For example DTD’s, XML
Schema, Relax NG are some schema languages.

1 Spring School on Theoretical Computer Science EPIT (Ecole de Printemps d’Informatique Théorique)
on Databases, Logic and Automata. 8–12 April 2019. CIRM, Luminy, France. https://conferences.
cirm-math.fr/1934.html
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Why study automata and logics on trees?

Because XML documents are, essentially, trees.
Because tree automata are a formal principled model of computation on trees.
Because logics and automata provide the foundations of query design, evaluation, and
optimization.
Because these formalisms can be used to describe and reason on schema languages.
Because they offer a toolbox of fundamental algorithms, complexity bounds, and they
are suitable for studying the expressive power of query languages. For example, schema
validation (whether a document validates a schema) can be seen as whether a finite tree
verifies an MSO property.

2 Tree Automata

What’s a tree? A class of trees can be classified as
ordered if every node has a sequence of children trees (a.k.a. hedge), or
unordered if every node has a multiset of children trees (a.k.a. forest); and
k-ranked if every node of every tree has at most k children, or
unranked if there is no bound on the number of children of nodes.

There are many definitions of automata on trees, some of them equivalent.
They can walk the tree or work on different branches “in parallel”,
work the computation bottom-up or top-down,
be deterministic or non-deterministic,
be used as “language acceptors” or as “querying devices” by selecting some nodes as
output.

We give a small summary of the main definitions, properties and algorithms for tree
automata. For more details on tree automata, see [12].

2.1 Ranked tree automata
A non-deterministic ranked tree automaton (NTA) is a tuple consisting of a finite set
of states Q, a finite alphabet A, a distinguished subset F ⊆ Q, and a finite set of transitions
δ ⊆ Q∗×A×Q. An accepting run on a tree t is a mapping from nodes of t to Q so that (1)
the root has a state from F , and (2) for every every node with label a and state q having k
children with states q1, . . . , qk we have (q1 · · · qk, a, q) ∈ δ. Note that since δ is finite, the tree
language accepted by such an automaton is always ranked. Note also that one can think
of a run as being top-down having F as initial states and S = {q | (ε, a, q) ∈ δ} as final
states, or as being bottom-up, having S as initial states and F as final states. The class of
languages recognized by NTA are called regular tree languages.

2.1.1 Pumping lemma
A tree with one distinguished leaf is called a context. Given a context C and a tree t the
application of C to t, denoted by C[t], is the tree resulting when replacing the distinguished
leaf of C with the tree t. In particular if C has just one (distinguished) node, C[t] = t,
in which case we say that C is the empty context. The application can be composed or
iterated, e.g., C3[t] = C[C[C[t]]].
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I Lemma 1 (Pumping Lemma). For every regular tree language L there is k ∈ N so that for
every tree t ∈ L of height ≥ k there is a tree t′ and non-empty contexts C1, C2 where
1. t = C1[C2[t′]] and
2. C1[Cn

2 [t′]] ∈ L for every n ∈ N.

2.1.2 Myhill-Nerode characterization
For any tree language L, we write t ≡L t′ if for every context C, C[t] ∈ L iff C[t′] ∈ L.

I Lemma 2 (Myhill-Nerode). L is a regular tree language if and only if ≡L has finite index
(i.e., finitely many equivalence classes).

Therefore, if L is regular, it is the union of some (finite number of) equivalence classes of ≡L.
The minimal automaton can be then defined by taking one distinct state per ≡L equivalence
class.

2.1.3 Determinism
Two forms of determinism a tree automaton can be:
deterministic bottom-up (DTA) if it has no two transitions (γ, a, q), (γ′, a′, q′) with γ = γ′

and a = a′. In expressive power, NTA = Deterministic Bottom-up TA (DTA) = “regular
tree languages”.
Determinizing a NTA takes exponential time through the powerset construction: From
a NTA (A, Q, F, δ) construct (A, 2Q, {S : S ∩ F 6= ∅}, δ′) with δ′ = {(S1 · · ·Sn, a, {s :
(s1 · · · sn, a, s) ∈ δ for s1 ∈ S1, . . . , sn ∈ Sn}) : S1, . . . , Sn ⊆ Q, a ∈ A}.

deterministic top-down if it has no two transitions (γ, a, q), (γ′, a′, q′) with q = q′, a = a′

and |γ| = |γ′|. In expressive power, Deterministic top-down TA ( NTA. For example,
the language “there is a leaf with letter a” cannot be expressed. Their weakness comes
from the fact in this model there is no way to take information coming from two different
paths in order to define its behavior. Basically, it can only express whether a regular
property holds on all its branches (extended with information about being a left or right
sibling) [49].2 As a consequence, they are not closed under complement.

2.1.4 Closure properties
NTA languages are closed under intersection, union and complement.
Intersection in PTime. Like for word automata, from two NTA (A, Q1, F1, δ1) and (A, Q2, F2, δ2)

we can produce, in quadratic time, a NTA recognizing the languages intersection: (A, Q1×
Q2, F1×F2, δ), where δ = {(γ1⊗γ2, a, (q1, q2)) : |γ1| = |γ2| and (γi, a, qi) ∈ δi for each i}.3

Union in PTime. This time we produce (A, Q1 ∪̇Q2, F1 ∪̇F2, δ1 ∪ δ2).
Complement in ExpTime. Idea:

1. Determinize it (state blowup);
2. complete it (transition blowup), by adding a new non-final state q⊥ and all transitions

(Q ∪ {q⊥})≤k × A× {q⊥} \ {(γ, a, q⊥) : ∃q ∈ Q s.t. (γ, a, q) ∈ δ};

3. switch final and non-final states.
On the other hand, complementing DTA is in PTime, since the last two items are
computable in PTime (the rank k is fixed).

2 This is also true for unranked trees [14].
3 We write ⊗ for the convolution operator, defined as q1 · · · qn ⊗ p1 · · · pn = (q1, p1) · · · (qn, pn).

EPIT’19
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2.1.5 Decision problems
(Uniform) Membership Given a NTA [resp. DTA] A and a tree t, is t ∈ L(A)? It is in

PTime [resp. in linear time].
More precisely, for NTA it is logCFL-complete: log-space inter-reducible to context-free
grammars; and for DTA it is in logDCFL (the precise complexity is unknown). This
is because it can be solved in logarithmic space and polynomial time if we have access
to a stack (which is not subject to the logarithmic bound). This is known to be a
characterization of logCFL [45].

Emptiness Given a NTA [resp. DTA] A, is L(A) = ∅? It is PTime-complete for both
models. Idea for upper bound: saturation algorithm on the set of reachable states.
Idea for lower bound: reduction from “Path Systems”, which is a well-studied PTime-
complete problem [13] of whether some proposition is ‘provable’ from some set of axioms
and rules, which resemble a lot to leaf states and binary transitions, respectively.

Finiteness Given a NTA [resp. DTA] A, is |L(A)| = ∞? It is PTime-complete for both
models. Idea for upper bound: we find useful states (states that appear in accepting
runs) in PTime, and we see if there is a loop on useful states in NL. Lower bound:
reduce from emptiness.

Universality For a fix rank k and alphabet A, given a NTA [resp. DTA] A, is L(A) =
the set of all k-ranked trees on A? It is ExpTime-complete [resp. in PTime]. For the
ExpSpace lower bound: reduction from halting of alternating linear space bounded
Turing machines, where the tree branching takes care of alternation. The language
consists of all trees which are not correct encodings of halting runs, i.e., the automaton
tests whether there is an ‘error’ in the computation or in the encoding. The result
follows since APSpace = ExpTime [11]. For the upper bound, complement and test
for emptiness.

Containment Given two NTA [resp. DTA] A,B is L(A) ⊆ L(B)? Again, it is ExpTime-
complete [resp. in PTime], hardness comes from universality. For the upper bound, we
test L(A) ∩ L(B) = ∅. Lower bound: from universality.

Equivalence Given two NTA [resp. DTA] A,B is L(A) = L(B)? Again, it is ExpTime-
complete [resp. in PTime], hardness comes from universality, membership from contain-
ment.

Emptiness of intersection Given NTA [resp. DTA] A1, . . . ,An, is L(A1) ∩ · · · ∩ L(An) =
∅? It is ExpTime-complete for both models. Upper bound: construct n-fold product
automaton and test for emptiness. For the lower bound again we reduce from simulating
an alternating n-space Turing machine. The idea is that Ai ensures that the simulation
is correct in the neighborhood of the i-th position of the tape.

Minimization Not really a decision problem... It is the task of, given a NTA [resp. DTA],
producing an equivalent minimal automaton. It can be done in ExpTime [resp. in
PTime] by computing the equivalence class on the statespace corresponding to the
Myhill-Nerode equivalence class ≡L of the language L recognized by the automaton.
From a complete and reduced DTA4, we start with the equivalence relation (∼0) =
F 2 ∪ (Q \ F )2 and we iteratively refine it (∼0) ) (∼1) ) · · · until we reach some n
(bounded by the number of states) so that (∼n) = (∼n+1). We then replace each state
with its ∼n-equivalence class and we obtain the minimal automaton. The refinement is

4 A DTA is reduced if every state is reachable, that is, for each state there is a tree whose partial run
maps the root to that state.
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defined, at each step, as p ∼i+1 q if: (1) p ∼i q, and (2) for every γ, γ′ ∈ Q∗, r1, r2 ∈ Q,
and a ∈ A so that (γpγ′, a, r1), (γqγ′, a, r2) ∈ δ we have r1 ∼i r2.

2.1.6 Alternation, two-wayness

As for finite word automata, there is an alternating and a two-way version of NTA, which
does not increase its expressive power (but its succinctness). See e.g., [48].

2.1.7 A different perspective: try walking

Tree walking automata (TWA) are another, perhaps even more natural, generalization of
finite automata on words to trees. On binary trees it is defined as a non-deterministic word
automaton with a transition set

δ ⊆ Q×{the root,not the root}×{a leaf,not a leaf}×A×{left child, right child, parent}×Q,

with the expected semantics: a transition (q, r, l, a, d, q′) says “If I’m in state q on a node
which is r and l and has letter a, then go to d with state q′”. There are deterministic and
non-deterministic versions in the usual sense. In terms of expressive power,

det. TWA ([3] non-det. TWA ([4],[8] nested TWA ([10] regular tree languages.

A nested TWA is parameterized by a rank k ∈ N, and it is, intuitively, “a non-deterministic
TWA A that has finitely many sub-automata of rank less than k, and such that each
transition of A may be conditional on whether some of the sub-automata do or do not have
an accepting run from the current node, either in general or within the subtree rooted at
the current node.” [10] We do not give the definition here.

With respect to closure properties, all these models are closed under union and inter-
section. On the other hand, while deterministic TWA are closed under complement, it is
not known whether the same holds for non-deterministic TWA. Finally, nested TWA are
(trivially) closed under complement.

It is easy to see that alternating extension of TWA define, exactly, the class of tree
regular languages. So we conclude that adding non-determinism and/or alternation to TWA
increases its expressive power.

2.2 Unranked tree automata

But wait a second, XML documents are unranked trees! Most commonly occurring XML
documents are in fact shallow.

2.2.1 Definition

A non-deterministic unranked tree automaton is defined similarly as on ranked trees:
a tuple consisting of a finite set of states Q, a finite alphabet A, a distinguished subset
F ⊆ Q, and a set of transitions δ ⊆ Q∗×A×Q, which can now be infinite, given as a finite
set of triples (L, a, q), where L ⊆ Q∗ is regular —usually represented as an NFA on words.
An accepting run is defined as before.

EPIT’19
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2.2.2 Deterministic version
If we define the deterministic version as for ranked automata (i.e., there are no two trans-
itions (γ, a, q), (γ, a, q′) ∈ δ with q 6= q′), we obtain the class of blockwise deterministic
unranked tree automata. However, note that this definition does not imply that the lan-
guages L of the triples (L, a, q) of δ are defined by deterministic automata, and in general
they don’t admit a canonical minimal automaton. There exists another, more restrictive
version of determinism, the stepwise determinism, which is closer to the intuition of
determinism (and which we’re not defining here, but you can find the definition in [12]).

2.2.3 Bridging with ranked tree automata
There are many ways to encode unranked tree as binary tree. One possibility is the first-
child/next-sibling (fcns) encoding, in which any tree is represented as the binary tree whose
left child is corresponds to the leftmost child relation, and the right child corresponds to the
next-sibling relation. Note that the fcns encoding is injective (i.e., for any two trees t, t′,
fcns(t) = fcns(t′) implies t = t′). This encoding allows to easily transfer results back and
forth thanks to this lemma:

I Lemma 3. [44]
For every unranked NTA A there is a binary NTA B computable in linear time so that
L(B) = {fcns(t) : t ∈ L(A)};
For every binary NTA B there is an unranked NTA A computable in linear time so that
L(B) = {fcns(t) : t ∈ L(A)}.

This fact, together with the fact that unranked tree automata are closed under union,
intersection and complement has as immediate corollary:

I Corollary 4. For non-deterministic unranked tree automata, the same complexities hold as
for non-deterministic tree automata for the problems of: membership, emptiness, finiteness,
universality, containment, equivalence, emptiness of intersection.

2.3 Querying with automata
A query automaton [35] is a NTA together with some subset of X ⊆ Q×A. A node of a
tree t is output by the automaton if there is an accepting run5 on t containing a node with
symbol a and state q so that (q, a) ∈ X. A deterministic version exists, but it needs two
passes.

3 Logic

There are two usual yardsticks: first-order logic (FO) and monadic second-order logic (MSO).
For this, we consider the four basic binary relations inherited from finite trees: the child
relation, the descendant relation, the next-sibling relation (i.e., whether two nodes sharing
the same parent are one next to the other), and the following-sibling relation (the transitive
closure of the next-sibling relation). Henceforward, FO and MSO stand for these logics
over finite trees with unary relations a(·) for each a ∈ A and the four binary relations just
mentioned, interpreted in the expected way. Note that any sentence ϕ from a logic on trees
defines the tree language consisting of all trees verifying ϕ.

5 If instead we use a universal semantics (i.e., “...for every accepting run...”) we obtain an equi-expressive
formalism [35].
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3.1 Monadic Second Order logic
Monadic Second Order logic (MSO) is the fragment of second-order logic where the second-
order quantification is limited to quantification over sets. That is we have first order quan-
tification of variables ranging over nodes of the tree, and second-order quantification over
sets of nodes.

We can, for example, state that a node x is the root

root(x) = ¬∃y (x is child of y)

that the sets X and Y alternate

alt(X,Y ) = ∀x, y (x is child of y)⇒ (x ∈ X ⇔ y ∈ Y )

or that x is an a-labelled node at even depth

a(x) ∧ ∀X,Y x ∈ X ∧ alt(X,Y )⇒ (∃y y ∈ Y ∧ root(y)).

Similar to what happens in the case of words, MSO and NTA are equivalent in expressive
power.

I Lemma 5. MSO sentences characterize the class of regular tree languages [9]. Further,
unary MSO formulas are equi-expressive to query automata, both on ranked and unranked
trees [35].

The idea is that one can encode the run of a NTA with statespace {q1, . . . , qn} as a formula
∃Q1, . . . , Qn ϕ, where ϕ is an FO formula expressing that the guessed sets represent an
accepting run: every node has exactly one state, the root has a final state, for every node
and its children sequence there is a transition in conformity.

On the other hand, every MSO sentence can be encoded in a NTA. In order to do this,
each formula ϕ(X1, . . . , Xn, xn+1, . . . , xm) can be seen as defining a tree language over an
extended alphabet A × {0, 1}m (nodes having a 1 in the i-th bit stand for nodes which
are in the interpretation of the i-th free variable). One can then show that every formula
is definable by a NTA by structural induction on the formula. The base cases are the
atoms: a(xi), xi ∈ Xj , xi child of xj , xi next sibling of xj are easily definable by NTA. For
example, for xi ∈ Xj the automaton checks that the i-th bit is 1 in exactly one node, which
happens to have the j-th bit equal to 1; for xi child of xj the automaton checks that there
is exactly one node n1 having the i-th bit in 1, and exactly one node n2 having the j-th bit
in 1, and that n1 is a child of n2. Conjunction, disjunction and negation follow from closure
properties of NTA. Finally, existential quantification ∃Xi and ∃xi follow by projecting the
alphabet of the language recognized by the NTA by dropping the i-th bit. Note that this
last projection operation yields always a non-deterministic automaton.

Note that as a consequence, there is a normal form for MSO sentences: every MSO
sentence ϕ is equivalent to one of the form ϕ ≡ ∃X1, . . . , Xn ψ where ψ is a FO formula
—here n is related to the number of states needed in a NTA recognizing ϕ.

But then, is MSO a good candidate for a query language? MSO sentences can be evalu-
ated in linear time in the tree, by transforming it to a tree automata, but the transformation
is non-elementary!

I Lemma 6. For every n ∈ N there is an MSO sentence with n quantifiers of polynomial
size in n so that every NTA A that recognizes the same language has size

|A| ≥ 22··2︸︷︷︸
n+1 times

.

EPIT’19
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What’s more, there is no elementary algorithm to solve the satisfiability problem. Further,
this is even true for FO on words. [42, 36]

3.2 Monadic Datalog
A Monadic Datalog program is a sequence of rules of the form

H :- P1, . . . , Pk

where H, P1, . . . , Pk are atoms and H is monadic (i.e., of the form H(x)). Predicates
that appear on the left of some rule are called intensional, all other are called extensional.
Monadic Datalog over extensional monadic predicates Leaf, LastChild, Root, extensional
binary predicates next-sibling and first-child is equivalent in expressive power to unary MSO
queries [23]. Further, Monadic Datalog queries can be evaluated in linear time both in the
program and the tree.

3.3 First Order logic
First-order logic (FO), on the other hand, is closer to XPath, the most popular node-selecting
language for XML documents.

Core-XPath [25] is the navigational core of XPath 1.0. We don’t define its syntax and
semantics here, we refer the reader to [25]. The satisfiability problem is in general ExpTime-
complete [30] and the evaluation problem is linear in the tree and polynomial in the query
[7]. As it turns out, node expressions of XPath are equivalent in expressive power (‘equi-
expressive’ for short) to formulas of the two-variable fragment of FO having one free variable.
As opposed to XPath, satisfiability for FO2 is ExpSpace-complete [2].

I Lemma 7. Unary core-XPath is equi-expressive to unary FO2 —the two-variable fragment
of FO [31].

On the other hand, XPath path expressions (denoting binary relations) are not closed under
intersection nor complement.

In order to get the full expressive power of FO one needs to add some sort of Until to
the language. More precisely, path expressions of the form (child[ψ])∗, interpreted as the
transitive closure of child :: n[ψ], i.e., the existence of a descending path whose every node
verifies an XPath node expression ψ. We call this extension Conditional XPath, or CXPath
for short.

I Lemma 8. CXPath and FO are equi-expressive [30] (for both unary and binary expres-
sions).

This result can be seen as the analogue of the expressive completeness of the relational
algebra with respect to FO on finite relational structures.

If we extend this further by having a Kleene star on any path expression, we obtain
Regular XPath (regXPath for short). And if we also add subtree relativization (W ), we
obtain a formalisms which is equi-expressive to FO(MTC), the extension of First-order logic
with monadic transitive closure, that is, FO extended with binary formulas TCϕ

x,y(u, v) for
each formula ϕ having x, y free. Such formulas are interpreted as the reflexive-transitive
closure of the binary relation denoted by ϕ on x, y:

∀X.(u ∈ X ∧ ∀xy(x ∈ X ∧ ϕ⇒ y ∈ X)⇒ v ∈ X).
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I Lemma 9. regXPath(W ), FO(MTC), and nested TWA are equi-expressive [10].

The restriction to transitive-closure formulas TCϕ
x,y(u, v) where ϕ has exactly x, y as free

variables yields FO∗. If we extend regXPath with loop(α) meaning that the path loops —or,
equivalently, with path equalities 〈α ≈ β〉— we obtain regXPath≈ [46].

I Lemma 10. regXPath≈ and FO∗ are equi-expressive [46].

In terms of expressive power, FO(MTC) ( MSO [10] over trees,6 but it is not known
whether FO(MTC) = FO∗, or equivalently, if regXPath≈ = regXPath(W ). Even further, it
is not known whether regXPath = regXPath(W).

Note that by the above characterizations CXPath, regXPath≈ and regXPath(W ) are,
contrary to XPath, closed under intersection and complement both on node and path ex-
pressions. It is not known whether regXPath is closed under complement and intersection
of path expressions.

3.4 Complexity of decision problems

Logic Evaluation problem Satisfiability pb.
MSO PSpace-c [43, 47], in time O(2|t|·|ϕ|) or O(tower(|ϕ|) · |t|) non-elementary [42]
FO PSpace-c [43, 47], in time O(|t||ϕ|) or O(tower(|ϕ|) · |t|) non-elementary [42]
FO2 PTime-c (in fact, this holds for every fragment FOk, even

on arbitrary relational structures)
ExpSpace-c [2]

XPath PTime-c [24], in time O(|ϕ|2 · |t|) [7] ExpTime-c [30]
regXPath(W) PTime-c [24, 10] 2ExpTime-c [10]

Note that on arbitrary relational structures, the satisfiability problem for FO and MSO is
undecidable. Also, on arbitrary structures, although the evaluation problem is still PSpace-
complete, unless P = NP there is no algorithm solving it in time O(f(|ϕ|) · p(|Structure|))
for some computable f and polynomial p (we say that it is not fixed-parameter tractable),
and this is true even for conjunctive queries (the {∃,∧}-fragment of FO).7

3.5 Patterns
Another way of querying trees is through the use of patterns, which can be seen as a positive
fragment of XPath with no disjunction. This is akin to Conjunctive Queries for relational
databases. The use of patterns a fundamental tool for node selection and querying trees,
appearing in many specification formalisms. Paradigmatic decision problems for patterns
are, unsurprisingly, better behaved than NTA, in particular evaluation is polynomial time
[24], their containment is coNP-complete [32], and its minimization is Σp

2-complete [15].

4 Data values

XML documents have not only ‘labels’ but also ‘data values’ associated with some nodes
(attributes or PCDATA values).

6 As opposed to what happens on strings, where FO(MTC)=MSO.
7 This is because these problems are hard for the parameterized complexity class ‘W[1]’. Parameterized
complexity theory provides a framework for a refined analysis of hard algorithmic problems, see [22].

EPIT’19
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Schemas describe a class of XML documents, where
structure constraints can be captured by regular tree languages and
data constraints can be specified through uniqueness, keys, and foreign keys constraints.

XPath can
specify navigational queries, but it also
allows comparisons between data.

The model of tree can be extended to data trees, which are finite trees with one data
value (i.e., an element from an infinite domain) per node. Specification mechanisms (auto-
mata and logics) can be extended in one way or another to have the ability to compare data
values (for equality, or other domain-specific relations).

4.1 Automata
Register Tree Automata We can add registers to tree automata. An automaton can store

data values in registers and during the computation check whether the data value stored
in the current node is equal or not to the content of some given register. For this
automata model, non-emptiness is decidable (PSpace [16] or NP [27] depending on
two equi-expressive variants of the model) Containment decidable as long as the bigger
automaton has at most two registers [27]. Universality is undecidable even for one
register, even for words [27]. It is closed under union and intersection, but not under
complement. Variants: 1-way or 2-way; deterministic or non-deterministic; alternating
(decidable both on words [16] and trees [26] when restricted to one register).

4.2 Logic
XPath Evaluation is in linear time in the tree and polynomial in the query [7], but satis-

fiability is undecidable. Some navigational fragments are decidable: the downward (hav-
ing child and descendant) [18], the forward (having child, descendant, next-sibling and
following-sibling) [17], the vertical (having child, descendant, next-sibling, and following-
sibling) [21], and the transitive (having descendant, following-sibling, and its inverse) [19].
See [20] for a survey.

FO2 Remember, all the navigational part of XPath can be captured by two-variable FO.
Then, what if we add an equal-data relation? Satisfiability is unknown (only variant
decidable: only successor relation available [6]). On data words, it is decidable but
non-elementary (equivalent to the reachability problem for VAS) [5].

The general landscape when adding data is that there is no silver bullet:
Each formalism has its own specific features and it is expressive-incomparable with oth-
ers.
There is no candidate for what could be a robust class of “regular data tree languages”.
Static analysis tasks (e.g., equivalence,...) become quickly undecidable or intractable.
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