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DBMS  = a collection of data,  
structured in some way

a way of defining, querying,  
updating the data inside
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DBMS also implement: transactions, concurrency, access control, resiliency…

Data model 
   • how the data is logically organised 
   • mathematical abstraction for representing data 
   • independent from physical organisation



Relational databases, historical outlook
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1970–72: E.F. Codd (IBM San Jose research lab) introduces the 
"relational data model" and two query languages: "relational algebra" 
and "relational calculus" 
1974–75: IBM researchers start implementing  
    • "System R": first relational database management system (RDBMS). 
    • SEQUEL: a query langauge based on relational algebra 
1983: IBM "DB2" is released, based on System R.  
            And UC Berkley released Ingres RDBMS 
1979: Oracle Corporation is founded 
1981: Codd receives Turing award 
Now: multi-billion industry
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Relational Database Industry Today

! According to Gartner, Inc., June 
2007:

“Worldwide relational database 
management systems (RDBMS) 
total software revenue totaled 
$15.2 billion in 2006, a 14.2 
percent increase from 2005 
revenue of $13.3 billion.”

" In 2007, the total RDBMS 
software revenue increased to 
$17.1 billion (figures released in 
July 2008).
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7.8%1.2BOther

3.2%486.7MSybase

3.2%494.2MTeradata

17.4%2.654BMicrosoft

21.1%3.204BIBM 
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1 a 2
2 b 6
2 a 1

like:   “              ”
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Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns
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Films (Title:string, Director:string, Actor:string) 

Schedule (Theatre:string, Title:string)

DB =

An instance: data conforming to the schema

A schema: names of tables and attributes

Films Schedule
Title Director Actor

8 1/2 Fellini Mastroianni

Shining Kubrick Nicholson

Dr. Strangelove Kubrick Sellers

8 femmes Ozon Ardant

Theatre Title

Utopia Dr. Strangelove

Utopia 8 1/2

UGC Dr. Strangelove

UGC 8 femmes

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 



Relational databases
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Relational data model = data logically organised into relations (“tables”).

 We assume all elements come from  
     a fixed set of constants or data values U.
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A mapping that
takes a database instance D  
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ? 
computable!

generic! 
(order independent) Boolean query: r=0 

Either “yes” { () } or “no” { }



Relational databases: queries
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A mapping that
takes a database instance D  
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ? 

What do we care about queries?

expressive power evaluation static analysis
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expressiveness efficiency

How to query the relational data model? 

How efficient/expressive is it?



Query languages
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Syntax 

Expressions for querying the db, 
governed by syntactic rules 

“Select X from Y” 

“y :- ∀x (x ≤ y)”

Semantics 

Interpretation of symbols  
in terms of some structure 

Retrieves all strings  
in column X of table Y 

Returns the maximum element 
of the set.

+

Query Language
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• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

[Codd, 1970]

≠ ≠ ≠ ≠

A procedural query language σ{1=3,1≠2}( {(1,2,1), (2,2,2)} ) = {(1,2,1)}

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection
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• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

Question 2:  π2(σ1=3(π2 (σ1=3(R1 × R2)) × R2))= ?

Question 1: What is the RA expression for  
                    { (v1,v2) | there are w1≠w2 so that (v1,w1) ∈ R1 and (v2,w2) ∈ R2 } ?

a 3
b 2
c 4
b 3
a 2

R1 R2

a 4
b 1
b 2
a 1
b 3

[Codd, 1970]
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• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

Question 2:  π2(σ1=3(π2 (σ1=3(R1 × R2)) × R2))= ?
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                    { (v1,v2) | there are w1≠w2 so that (v1,w1) ∈ R1 and (v2,w2) ∈ R2 } ?

a 3
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c 4
b 3
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R1 R2

a 4
b 1
b 2
a 1
b 3bAnswer (only one element): 

[Codd, 1970]

≠ ≠ ≠ ≠

a b
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Answer: π{1,3}(σ1≠3(R1 × R2))
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Select X 
From R1,…,Rn 
Where Z

⟺   πX ( σZ( R1 × ··· × Rn ) )

π2 (σ1≠3(R1 × R2))  ⤳ a 3
b 2
c 4
b 3
a 2

R1 R2

a 4
b 1
b 2
a 1
b 3

π2(σ1=3( ❅  × R2)) ⤳
Select foo 

From ★, R2 
Where foo = R2.2

Select R1.2 as foo 
From R1, R2 
Where R1.1 ≠ R2.1

★

no domain-specific features, 
aggregation, etc

… not in (…) ⟺   difference
… or … ⟺   union

❅
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FO = First-Order logic



Relational structures

!17

A = (D, R1, …, Rn, f1, … fn)

D is a non-empty set, the domain 

Ri is an m-ary relation for some m  (ie,  Ri ⊆ Dm ) 

fi is an n-ary function for some n    (ie,  fi : Dn ⟶ D )

A structure is:



Relational structures

!17

A = (D, R1, …, Rn, f1, … fn)

D is a non-empty set, the domain 

Ri is an m-ary relation for some m  (ie,  Ri ⊆ Dm ) 

fi is an n-ary function for some n    (ie,  fi : Dn ⟶ D )

A structure is:

A graph G = (V,E) 

• V: nodes 

• E ⊆ V 2: edges (binary relation) 

• (no functions)

A group, like (ℕ,+) 

• ℕ: natural numbers 

• (no relations) 

• +: ℕ2 ⟶ ℕ addition (binary function) 
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variables x, y, z, … 
quantifiers: ∃,∀ 

Boolean connectives: ¬, ⋀, ⋁FO

A language to talk about structures 

Variables range over the domain 

Atomic formulas: R(x1, …, xm), x=y

A graph G = (V,E) 

  • V: nodes 

  • E ⊆ V 2: edges (binary relation) 

  • (no functions)

Language to talk about graphs 

Variables range over nodes 

Atomic formulas: E(x,y), x = y

Formulas: Atomic formulas + connectives + quantifiers



!19

“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))



!19

“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

x is free = not quantified 
(a property of a node in the graph)φ(x) =

free



!19

“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours” 

        ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

x is free = not quantified 
(a property of a node in the graph)φ(x) =

free



!19

“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours” 

        ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

x is free = not quantified 
(a property of a node in the graph)φ(x) =

free

the formula is a sentence  
= no free variables 
(a property of the graph)ψ =



!19

“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours” 

        ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

Question:   • How to express in FO 

                            “Every two adjacent nodes have a common neighbour” ? 

                   • Does it have free variables? Is it a sentence?

x is free = not quantified 
(a property of a node in the graph)φ(x) =

free

the formula is a sentence  
= no free variables 
(a property of the graph)ψ =



!19

“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours” 

        ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

Question:   • How to express in FO 

                            “Every two adjacent nodes have a common neighbour” ? 

                   • Does it have free variables? Is it a sentence?

Answer:     ∀x∀y (¬E(x,y) ⋁ ∃z ( (E(x,z) ⋁ E(z,x)) ⋀ (E(y,z) ⋁ E(z,y)) ) )

x is free = not quantified 
(a property of a node in the graph)φ(x) =

free

the formula is a sentence  
= no free variables 
(a property of the graph)ψ =
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G ⊧α φ(x1,…,xn) α : {x1,…,xn} ⟶ V assigns nodes to free variables

To evaluate a formula φ we need a graph G=(V,E) and a binding α 
                                      that maps free variables of φ to nodes of G.

“The node x has at least two neighbours” 
  φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

G ⊧α φ    if   α = {x↦v}

G

v
v'

v''“Every node has at least two neighbours” 
  ψ = ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

G ⊧∅ ψ

“G,α satisfy φ” “φ is satisfiable”
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Formal Semantics of FO

G ⊧α ∃x φ       iff     for some v ∈ V and α' = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α ∀x φ       iff     for every v ∈ V and α' = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α φ⋀ψ      iff     G ⊧α φ and G ⊧α ψ 

G ⊧α ¬φ          iff     it is not true that G ⊧α φ 

G ⊧α x=y        iff     α(x)=α(y) 

G ⊧α E(x,y)    iff     (α(x),α(y)) ∈ E
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φ(x1, …, xn) evaluated on G=(V,E) yields all the bindings that satisfy φ:
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“The node x has at least two neighbours” 
  φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Return all nodes with 
  at least two neighbours”

⤳

!22

φ(x1, …, xn) evaluated on G=(V,E) yields all the bindings that satisfy φ:

φ(G) = { ( α(x1),…,α(xn) )  |  G ⊧α φ,  α: {x1,…,xn} ⟶ V }

φ(G) = {v, v', v''} 
φ(G') = {v, v'}

G

v
v'

v''

G'

v
v'

v''

  ψ(G) = {()}  ⤳ set with one element: the 0-tuple

“Every node has two neighbours” 
  ψ = ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

  ψ(G') = {}    ⤳ empty set
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Question:      Which bindings α verify G ⊧α φ for 

                                   φ(x,y) = ∃z (E(x,z) ⋀ E(z,y)) 

                        

                                    and                                                   ?G = v
v'

v''
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Question:      Which bindings α verify G ⊧α φ for 

                                   φ(x,y) = ∃z (E(x,z) ⋀ E(z,y)) 

                        

                                    and                                                   ?G = v
v'

v''

Answer:    • α = { x ↦ v, y ↦ v’ }, 

                    • α = { x ↦ v, y ↦ v }, 

                    • α = { x ↦ v', y ↦ v’ }, 

                    • … and all the rest

φ(G) = {v,v', v''} × {v,v', v''}
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Formulas as queries

!24

FO can serve as a declarative query language on relational databases : 
we express the properties of the answer

  Tables = Relations 

Queries = Formulas 

Rows = Tuples

Particular to databases: 
   • Use of constants 

   • No functions 

   • Finite structure 

   • Quantification over  

      active domain

Finite model theory

⊧finite  is different from  ⊧

There are formulas φ that are satisfiable 
only on infinite structures. 

Like which?

   φ = “ R(x,y) is an infinite linear order ”
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Formulas as queries

!25

   Tables  =  Relations 
    Rows  =  Tuples 
Queries  =  Formulas

[E.F. Codd 1972]

How  = What
RA  =* FO

RA and FO logic have roughly* the same expressive power!

*FO without functions, with equality, on finite domains, …

FO can serve as a declarative query language on relational databases : 
we express the properties of the answer
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• R1 × R2              ⤳   R1(x1, …, xn) ⋀ R2(xn+1, …, xm) 

• R1 ∪ R2              ⤳   R1(x1, …, xn) ∨ R2(x1, …, xn) 

• σ{i1=j1,…,in=jn}(R)   ⤳   R(x1, …, xm) ⋀ (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

) 

• π{i1,…,in}(R)         ⤳   ∃({x1,…,xm} \ {xi1
,…,xin

}). R(x1, …, xm) 

• R1 \ R2              ⤳   R1(x1, …, xn) ⋀ ¬R2(x1, …, xn) 

• …

RA ⊆ FO
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Formulas as queries

!27

elements in the relations

           ⇝ We restrict variables to range over active domain 

“the complement of R”
∉  RA
∈  FO :  ¬R(x)

φ1(x)   = ∀y E(y,x) 
φ1(G) = {v2}  

φ2(x,y) = ¬E(x,y) 
φ2(G)   = {(v1,v1),(v3,v1),(v2,v3)}

G = v1

v2

v3v4

FOact  
=  

FO restricted 
to active domain

FO ⊆ RA/



First-order logic restricted to active domain
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Formal Semantics of FOact

G ⊧α ∃x φ     iff     for some v ∈ ACT(G) and α' = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α ∀x φ     iff     for every v ∈ ACT(G) and α' = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α φ⋀ψ    iff     G ⊧α φ and G ⊧α ψ 

G ⊧α ¬φ        iff     it is not true that G ⊧α φ 

G ⊧α x=y        iff     α(x)=α(y) 

G ⊧α E(x,y)    iff     (α(x),α(y)) ∈ E

ACT(G) = {v | for some v': (v,v') ∈ E or (v',v) ∈ E}
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1. φ has variables x1,…,xn,  

2. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)

∃x1 ∃x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)
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FOact ⊆ RA

1. φ has variables x1,…,xn,  

2. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)

Adom = RA expression for active domain = “π1(E) ∪ π2(E)” 

• (R(xi1,…,xin))✢ ⤳ R 

•  ( ∃xi φ(xi1,…,xin) )✢ ⤳ π{i1,…,in}\{i}( φ✢ ) 

• (xi = xj)✢ ⤳  σ{i=j}( Adom × · · · × Adom ) 

• (ψ1(xi1,…,xin) ⋀ ψ2(xi1,…,xin))✢ ⤳ ψ1✢ ∩ ψ2✢ 

• (¬φ(xi1,…,xin))✢ ⤳ Adom × · · · × Adom  \  φ✢

∃x1 ∃x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)
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First-order logic restricted to active domain

!29

FOact ⊆ RA

1. φ has variables x1,…,xn,  

2. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)

Adom = RA expression for active domain = “π1(E) ∪ π2(E)” 

• (R(xi1,…,xin))✢ ⤳ R 

•  ( ∃xi φ(xi1,…,xin) )✢ ⤳ π{i1,…,in}\{i}( φ✢ ) 

• (xi = xj)✢ ⤳  σ{i=j}( Adom × · · · × Adom ) 

• (ψ1(xi1,…,xin) ⋀ ψ2(xi1,…,xin))✢ ⤳ ψ1✢ ∩ ψ2✢ 

• (¬φ(xi1,…,xin))✢ ⤳ Adom × · · · × Adom  \  φ✢

∃x1 ∃x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)

A∩B = (A∪B) \ A \ B

Tr
an

sla
tio

n
Assume: 



Corollary
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FOact is equivalent to RA
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Question 1: How is π2(σ1=3(π2(σ1=3(R1 × R2)) × R2)) expressed in FO? 
Remember: R1,R2 are binary

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀  x≠z ) expressed in RA? 
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2 

• R1 × R2 

• R1 \ R2 

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)} 

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠
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Question 1: How is π2(σ1=3(π2(σ1=3(R1 × R2)) × R2)) expressed in FO? 
Remember: R1,R2 are binary

Answer: ∃x2 . ( ∃x1,x4 . (R1(x1,x2) ⋀ R2(x1,x4)) ⋀ R2(x2,x5) )

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀  x≠z ) expressed in RA? 
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2 

• R1 × R2 

• R1 \ R2 

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
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Question 1: How is π2(σ1=3(π2(σ1=3(R1 × R2)) × R2)) expressed in FO? 
Remember: R1,R2 are binary

Answer: ∃x2 . ( ∃x1,x4 . (R1(x1,x2) ⋀ R2(x1,x4)) ⋀ R2(x2,x5) )

Answer:  π1(σ{2=3,1≠4}(R1 × R1))

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀  x≠z ) expressed in RA? 
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2 

• R1 × R2 

• R1 \ R2 

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)} 

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠
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language

= =FO RA SQL



!32

Logic Algebra Programming 
language

= =FO RA SQL

very basic
on finite 
domains

over 
active domain
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Algorithmic problems for query languages

!33

Evaluation problem:  Given a query Q, a database instance db, 
                                  and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?

Emptiness problem:  Given a query Q, is there a database instance db 
                                  so that Q(db) ≠ ∅ ?

⇝ Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem:  Given queries Q1, Q2, is 
                                                   Q1(db) = Q2(db) 
                                    for all database instances db?

⇝ Can we safely replace a query with another? (Query optimization)
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  What can be mechanized?    ⤳ decidable/undecidable 

How hard is it to mechanise?  ⤳ complexity classes

LOGSPACE ⊊ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ · · ·

Alg

f

ti
m

e

input size

usage of resources:   • time 
                               • memory

Algorithm Alg is TIME-bounded  

by a function f : N ⟶ N if 

Alg(input) uses less than f (|input|) units of TIME.

SPACE-bounded by log(n)

TIME-bounded by a polynomial

SPACE-bounded by a polynomial

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE
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Algorithmic problems for FO

!35

Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                              a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                         G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem
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[Trakhtenbrot ’50]

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite
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Algorithmic problems for FO

!36

Proof: By reduction from the Domino (aka Tiling) problem.

[Trakhtenbrot ’50]

Reduction from P to P':   Algorithm that solves P using a O(1) procedure  
                                                                              “  P'(x) ” 
                                                 that returns the truth value of P'(x).

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite
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The (undecidable) Domino problem

Input:  4-sided dominos:

Rules:  sides must match, 
            you can’t rotate the dominos,  but you can ‘clone’ them.

Output:  Is it possible to form a white-bordered rectangle? (of any size)

. . .

. . .

. . .

. . .. . .

 Domino 
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The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino  -  Why is it undecidable? 
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The (undecidable) Domino problem
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Domino ⇝ Sat-FO  (domino has a solution iff φ satisfiable)

1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…
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1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…
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    a unary relation 

 
 
 
    for each domino
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Domino ⇝ Sat-FO  (domino has a solution iff φ satisfiable)

1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…

3. Match the sides             ∀x,y 

    if H(x,y), then Da(x) ⋀ Db(y)  

    for some dominos a,b that ‘match’ 
    horizontally         (Idem vertically)
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Domino ⇝ Sat-FO  (domino has a solution iff φ satisfiable)

1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…

3. Match the sides             ∀x,y 

    if H(x,y), then Da(x) ⋀ Db(y)  

    for some dominos a,b that ‘match’ 
    horizontally         (Idem vertically)
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4. Borders are white.
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2. Assign one domino to each node: 

    a unary relation 

 
 
 
    for each domino

D ( x )
H

V



Algorithmic problems for FO

!40

Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                              a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem
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φ is satisfiable  iff  φ is not equivalent to ⊥

Satisfiability problem undecidable  ⇝  Equivalence problem undecidable

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?
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Algorithmic problems for FO

!41

φ is satisfiable  iff  φ is not equivalent to ⊥

Satisfiability problem undecidable  ⇝  Equivalence problem undecidable

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction from the satisfiability problem

Actually, there are reductions in both senses: 

φ(x1,…,xn) and ψ(y1,…,ym) are  equivalent  iff  

   •  n=m 

   •  (x1=y1) ⋀ ··· ⋀ (xn=yn) ⋀ φ(x1,…,xn) ⋀ ¬ψ(y1,…,yn) is unsatisfiable 

   •  (x1=y1) ⋀ ··· ⋀ (xn=yn) ⋀ ψ(x1,…,xn) ⋀ ¬φ(y1,…,yn) is unsatisfiable



Algorithmic problems for FO
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Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                      a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                      and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem



Evaluation problem for FO

!43

φ(x1,…,xn) 

G = (V,E) 

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:



Evaluation problem for FO

!43

Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|), 
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)
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!43

Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|), 
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)

Encoding of α = {x1,…,xn} ⟶ V

• each node is coded with a bit string of size log(|V|),

Cost of coding: ||α|| = n·log(|V|)

φ(x1,…,xn) 

G = (V,E) 

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:
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φ(x1,…,xn) 

G = (V,E) 

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:



Evaluation problem for FO
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φ(x1,…,xn) 

G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  iff  (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES  iff  G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO  iff  G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES  iff  for some v ∈ V and α'= α ∪ {y↦v} 
                         we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:
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Question: 
How much space 
does it take? !44
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Question: 
How much space 
does it take? !44

φ(x1,…,xn) 

G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  iff  (α(xi),α(xj)) ∈ E  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≤ |φ| times
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in PSPACE
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A database of size 106

A query of size 100
Problem: Usual scenario in database
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A database of size 106

A query of size 100
Problem: Usual scenario in database
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Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

database

!45

query +Input:

TIME(2|query| + |data|)

TIME(|query| + 2|data|)
But we don’t distinguish this in the analysis: =



Combined, Query, and Data complexities 

!46

Separation of concerns:    How the resources grow with respect to 

                                                 • the size of the data 

                                                 • the query size

Query and data play very different roles.

[Vardi, 1982]



Combined, Query, and Data complexities 

!47

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|



Combined, Query, and Data complexities 

!47

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

O(2|query| + |data|) is 

O(|query| + 2|data|) is 

exponential in combined complexity 
exponential in query complexity 
linear in data complexity

exponential in combined complexity 
linear in query complexity 
exponential in data complexity



!48

Question

What is the data, query and combined complexity 
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space



!48

Question

What is the data, query and combined complexity 
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space

dataquery

O(log(|data|)·|query|) space PSPACE combined and query complexity

LOGSPACE data complexity



Evaluation pb for FO is PSPACE-complete 

!49

(combined  
 complexity)

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 



Evaluation pb for FO is PSPACE-complete 

!49

(combined  
 complexity)

∃p ∀q . (p ⋁ ¬q)    where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 
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(combined  
 complexity)

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q)    where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 



Evaluation pb for FO is PSPACE-complete 

!49

(combined  
 complexity)

Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
               let ψ'(x) be the replacement  
               of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element 
graph  iff  ψ is QBF-satisfiable

3. Test if  G ⊧∅ ψ'  for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q)    where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 
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∃p ∀q . (p ⋁ ¬q)    where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 

ψ'(x)=∃p ∀q . ( (p=x) ⋁ ¬(q=x) )



Evaluation pb for FO is PSPACE-complete 

!49

(combined  
 complexity)

Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
               let ψ'(x) be the replacement  
               of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element 
graph  iff  ψ is QBF-satisfiable

3. Test if  G ⊧∅ ψ'  for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q)    where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 

ψ'(x)=∃p ∀q . ( (p=x) ⋁ ¬(q=x) )

∃x ∃p ∀q . ( (p=x) ⋁ ¬(q=x) )



Recap
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Eval-FO 
(data)

Sat-FO

Equivalence-FO

Equivalence-SQL

Equivalence-RA

QBF
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