
Logical foundations of databases

∀∃¬

ESSLLI 2016
Bolzano, Italy

CNRS LaBRI

Diego Figueira Gabriele Puppis

day 1

About the speakers…

!2

Gabriele Puppis
PhD from Udine (Italy)
post-docs in Oxford
Works in LaBRI, Bordeaux
CNRS researcher

Diego Figueira
PhD from ENS Cachan (France),
post-docs in Warsaw, Edinburgh
Works in LaBRI, Bordeaux
CNRS researcher

First and foremost…

!3

interrupt!

Organization

!4

Schedule:

EF games

Conjunctive Queries

First-Order logic

Relational Algebra
databases

lo
gi

c

com
plexity0-1 law

Locality

Acyclicity

Relational databases

Databases

*

mediate between
humans, processes
 &
data

* [Abitebou, Hull, Vianu “Foundations of databases”]
!5

DBMS = a collection of data,
structured in some way

a way of defining, querying,
updating the data inside

+

Databases

*

mediate between
humans, processes
 &
data

* [Abitebou, Hull, Vianu “Foundations of databases”]
!5

DBMS = a collection of data,
structured in some way

a way of defining, querying,
updating the data inside

+

DBMS also implement: transactions, concurrency, access control, resiliency…

Data model
 • how the data is logically organised
 • mathematical abstraction for representing data
 • independent from physical organisation

Relational databases, historical outlook

!6

1970–72: E.F. Codd (IBM San Jose research lab) introduces the
"relational data model" and two query languages: "relational algebra"
and "relational calculus"
1974–75: IBM researchers start implementing
 • "System R": first relational database management system (RDBMS).
 • SEQUEL: a query langauge based on relational algebra
1983: IBM "DB2" is released, based on System R.
 And UC Berkley released Ingres RDBMS
1979: Oracle Corporation is founded
1981: Codd receives Turing award
Now: multi-billion industry

5

Relational Database Industry Today

! According to Gartner, Inc., June
2007:

“Worldwide relational database
management systems (RDBMS)
total software revenue totaled
$15.2 billion in 2006, a 14.2
percent increase from 2005
revenue of $13.3 billion.”

" In 2007, the total RDBMS
software revenue increased to
$17.1 billion (figures released in
July 2008).

100%15.2BTotal

7.8%1.2BOther

3.2%486.7MSybase

3.2%494.2MTeradata

17.4%2.654BMicrosoft

21.1%3.204BIBM

47.1%7.168BOracle

2006
Market
Share

2006
Revenue

Company

Relational databases

• a (finite) subset of the cartesian product of sets

• a “table” with rows and columns

!7

Relational data model = data logically organised into relations (“tables”).

What’s a relation?

Relational databases

• a (finite) subset of the cartesian product of sets

• a “table” with rows and columns

!7

{ (1,a,2), (2,b,6), (2,a,1) } ⊆ N × {a,b} × N

like:

Relational data model = data logically organised into relations (“tables”).

What’s a relation?

Relational databases

• a (finite) subset of the cartesian product of sets

• a “table” with rows and columns

!7

{ (1,a,2), (2,b,6), (2,a,1) } ⊆ N × {a,b} × N

like:

Relational data model = data logically organised into relations (“tables”).

What’s a relation?

a “tuple” (a “3-tuple”)

Relational databases

• a (finite) subset of the cartesian product of sets

• a “table” with rows and columns

!7

{ (1,a,2), (2,b,6), (2,a,1) } ⊆ N × {a,b} × N

like:

Relational data model = data logically organised into relations (“tables”).

What’s a relation?

() 0-tuple
a “tuple” (a “3-tuple”)

Relational databases

• a (finite) subset of the cartesian product of sets

• a “table” with rows and columns

!7

1 a 2
2 b 6
2 a 1

like: “ ”

{ (1,a,2), (2,b,6), (2,a,1) } ⊆ N × {a,b} × N

like:

Relational data model = data logically organised into relations (“tables”).

What’s a relation?

() 0-tuple
a “tuple” (a “3-tuple”)

Relational databases

• a (finite) subset of the cartesian product of sets

• a “table” with rows and columns

!7

DB =

An instance: data conforming to the schema

A schema: names of tables and attributes

Relational data model = data logically organised into relations (“tables”).

What’s a relation?

Relational databases

• a (finite) subset of the cartesian product of sets

• a “table” with rows and columns

!7

Films (Title:string, Director:string, Actor:string)

Schedule (Theatre:string, Title:string)

DB =

An instance: data conforming to the schema

A schema: names of tables and attributes

Relational data model = data logically organised into relations (“tables”).

What’s a relation?

Relational databases

• a (finite) subset of the cartesian product of sets

• a “table” with rows and columns

!7

Films (Title:string, Director:string, Actor:string)

Schedule (Theatre:string, Title:string)

DB =

An instance: data conforming to the schema

A schema: names of tables and attributes

Films Schedule
Title Director Actor

8 1/2 Fellini Mastroianni

Shining Kubrick Nicholson

Dr. Strangelove Kubrick Sellers

8 femmes Ozon Ardant

Theatre Title

Utopia Dr. Strangelove

Utopia 8 1/2

UGC Dr. Strangelove

UGC 8 femmes

Relational data model = data logically organised into relations (“tables”).

What’s a relation?

Relational databases

!8

Relational data model = data logically organised into relations (“tables”).

 We assume all elements come from
 a fixed set of constants or data values U.

Relational databases: queries

!9

A mapping that
takes a database instance D
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ?

Relational databases: queries

!9

A mapping that
takes a database instance D
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ?
computable!

Relational databases: queries

!9

A mapping that
takes a database instance D
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ?
computable!

generic!
(order independent)

Relational databases: queries

!9

A mapping that
takes a database instance D
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ?
computable!

generic!
(order independent) Boolean query: r=0

Either “yes” { () } or “no” { }

Relational databases: queries

!9

A mapping that
takes a database instance D
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ?

What do we care about queries?

expressive power evaluation static analysis

The fundamental questions:

!10

How to query the relational data model?

How efficient/expressive is it?

The fundamental questions:

!10

expressiveness efficiency

How to query the relational data model?

How efficient/expressive is it?

Query languages

!11

Syntax

Expressions for querying the db,
governed by syntactic rules

“Select X from Y”

“y :- ∀x (x ≤ y)”

Semantics

Interpretation of symbols
in terms of some structure

Retrieves all strings
in column X of table Y

Returns the maximum element
of the set.

+

Query Language

Relational Algebra (RA)

!12

[Codd, 1970]

Syntax: E := R,S,… | E ∪ E | E \ E | E×E | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ

Relational Algebra (RA)

!12

• R1 ∪ R2 : Set union

• R1 × R2 : Cartesian product

• R1 \ R2 : Set difference

[Codd, 1970]

Syntax: E := R,S,… | E ∪ E | E \ E | E×E | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ

Relational Algebra (RA)

!12

• R1 ∪ R2 : Set union

• R1 × R2 : Cartesian product

• R1 \ R2 : Set difference

[Codd, 1970]

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} : Selection

Syntax: E := R,S,… | E ∪ E | E \ E | E×E | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ

Relational Algebra (RA)

!12

• R1 ∪ R2 : Set union

• R1 × R2 : Cartesian product

• R1 \ R2 : Set difference

[Codd, 1970]

≠ ≠ ≠ ≠
• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} : Selection

Syntax: E := R,S,… | E ∪ E | E \ E | E×E | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ

Relational Algebra (RA)

!12

• R1 ∪ R2 : Set union

• R1 × R2 : Cartesian product

• R1 \ R2 : Set difference

[Codd, 1970]

≠ ≠ ≠ ≠

A procedural query language σ{1=3,1≠2}({(1,2,1), (2,2,2)}) = {(1,2,1)}

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} : Selection

Syntax: E := R,S,… | E ∪ E | E \ E | E×E | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ

Relational Algebra (RA)

!12

• R1 ∪ R2 : Set union

• R1 × R2 : Cartesian product

• R1 \ R2 : Set difference

[Codd, 1970]

≠ ≠ ≠ ≠

A procedural query language σ{1=3,1≠2}({(1,2,1), (2,2,2)}) = {(1,2,1)}

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} : Selection

• π{i1,…,in}(R) ≔ {(xi1,…,xin) | (x1, …, xm) ∈ R} : Projection

Syntax: E := R,S,… | E ∪ E | E \ E | E×E | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ

Relational Algebra (RA)

!12

• R1 ∪ R2 : Set union

• R1 × R2 : Cartesian product

• R1 \ R2 : Set difference

[Codd, 1970]

≠ ≠ ≠ ≠

A procedural query language σ{1=3,1≠2}({(1,2,1), (2,2,2)}) = {(1,2,1)}

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} : Selection

• π{i1,…,in}(R) ≔ {(xi1,…,xin) | (x1, …, xm) ∈ R} : Projection

π{1,3}({(1,2,1),(2,2,2)}) = {(1,1), (2,2)}

Syntax: E := R,S,… | E ∪ E | E \ E | E×E | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ

Relational Algebra (RA)

!13

• R1 ∪ R2 : Set union

• R1 × R2 : Cartesian product

• R1 \ R2 : Set difference

Question 2: π2(σ1=3(π2 (σ1=3(R1 × R2)) × R2))= ?

Question 1: What is the RA expression for
 { (v1,v2) | there are w1≠w2 so that (v1,w1) ∈ R1 and (v2,w2) ∈ R2 } ?

a 3
b 2
c 4
b 3
a 2

R1 R2

a 4
b 1
b 2
a 1
b 3

[Codd, 1970]

≠ ≠ ≠ ≠
• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} : Selection

• π{i1,…,in}(R) ≔ {(xi1,…,xin) | (x1, …, xm) ∈ R} : Projection

Relational Algebra (RA)

!13

• R1 ∪ R2 : Set union

• R1 × R2 : Cartesian product

• R1 \ R2 : Set difference

Question 2: π2(σ1=3(π2 (σ1=3(R1 × R2)) × R2))= ?

Question 1: What is the RA expression for
 { (v1,v2) | there are w1≠w2 so that (v1,w1) ∈ R1 and (v2,w2) ∈ R2 } ?

a 3
b 2
c 4
b 3
a 2

R1 R2

a 4
b 1
b 2
a 1
b 3

[Codd, 1970]

≠ ≠ ≠ ≠

a b
b a
c a
c b

Answer: π{1,3}(σ1≠3(R1 × R2))

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} : Selection

• π{i1,…,in}(R) ≔ {(xi1,…,xin) | (x1, …, xm) ∈ R} : Projection

Relational Algebra (RA)

!13

• R1 ∪ R2 : Set union

• R1 × R2 : Cartesian product

• R1 \ R2 : Set difference

Question 2: π2(σ1=3(π2 (σ1=3(R1 × R2)) × R2))= ?

Question 1: What is the RA expression for
 { (v1,v2) | there are w1≠w2 so that (v1,w1) ∈ R1 and (v2,w2) ∈ R2 } ?

a 3
b 2
c 4
b 3
a 2

R1 R2

a 4
b 1
b 2
a 1
b 3bAnswer (only one element):

[Codd, 1970]

≠ ≠ ≠ ≠

a b
b a
c a
c b

Answer: π{1,3}(σ1≠3(R1 × R2))

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} : Selection

• π{i1,…,in}(R) ≔ {(xi1,…,xin) | (x1, …, xm) ∈ R} : Projection

RA = Basic SQL

!14

Select X
From R1,…,Rn
Where Z

⟺ πX (σZ(R1 × ··· × Rn))
no domain-specific features,

aggregation, etc

… not in (…) ⟺ difference
… or … ⟺ union

RA = Basic SQL

!14

Select X
From R1,…,Rn
Where Z

⟺ πX (σZ(R1 × ··· × Rn))

π2 (σ1≠3(R1 × R2)) ⤳ a 3
b 2
c 4
b 3
a 2

R1 R2

a 4
b 1
b 2
a 1
b 3

no domain-specific features,
aggregation, etc

… not in (…) ⟺ difference
… or … ⟺ union

RA = Basic SQL

!14

Select X
From R1,…,Rn
Where Z

⟺ πX (σZ(R1 × ··· × Rn))

π2 (σ1≠3(R1 × R2)) ⤳ a 3
b 2
c 4
b 3
a 2

R1 R2

a 4
b 1
b 2
a 1
b 3

Select R1.2 as foo
From R1, R2
Where R1.1 ≠ R2.1

no domain-specific features,
aggregation, etc

… not in (…) ⟺ difference
… or … ⟺ union

RA = Basic SQL

!14

Select X
From R1,…,Rn
Where Z

⟺ πX (σZ(R1 × ··· × Rn))

π2 (σ1≠3(R1 × R2)) ⤳ a 3
b 2
c 4
b 3
a 2

R1 R2

a 4
b 1
b 2
a 1
b 3

π2(σ1=3(❅ × R2)) ⤳

Select R1.2 as foo
From R1, R2
Where R1.1 ≠ R2.1

no domain-specific features,
aggregation, etc

… not in (…) ⟺ difference
… or … ⟺ union

❅

RA = Basic SQL

!14

Select X
From R1,…,Rn
Where Z

⟺ πX (σZ(R1 × ··· × Rn))

π2 (σ1≠3(R1 × R2)) ⤳ a 3
b 2
c 4
b 3
a 2

R1 R2

a 4
b 1
b 2
a 1
b 3

π2(σ1=3(❅ × R2)) ⤳

Select R1.2 as foo
From R1, R2
Where R1.1 ≠ R2.1

★

no domain-specific features,
aggregation, etc

… not in (…) ⟺ difference
… or … ⟺ union

❅

RA = Basic SQL

!14

Select X
From R1,…,Rn
Where Z

⟺ πX (σZ(R1 × ··· × Rn))

π2 (σ1≠3(R1 × R2)) ⤳ a 3
b 2
c 4
b 3
a 2

R1 R2

a 4
b 1
b 2
a 1
b 3

π2(σ1=3(❅ × R2)) ⤳
Select foo

From ★, R2
Where foo = R2.2

Select R1.2 as foo
From R1, R2
Where R1.1 ≠ R2.1

★

no domain-specific features,
aggregation, etc

… not in (…) ⟺ difference
… or … ⟺ union

❅

Denotational languages

!15

Algebra ⤳ How to obtain the result

Logics ⤳ What is the property of the result

Procedural

Declarative

Denotational languages

!15

Algebra ⤳ How to obtain the result

Logics ⤳ What is the property of the result

Relational Algebra
operations on tables{ Procedural

Declarative

Denotational languages

!15

Algebra ⤳ How to obtain the result

Logics ⤳ What is the property of the result

First Order logic
properties on mathematical structures{

Relational Algebra
operations on tables{ Procedural

Declarative

Denotational languages

!15

Algebra ⤳ How to obtain the result

Logics ⤳ What is the property of the result

First Order logic
properties on mathematical structures{

Relational Algebra
operations on tables{ Procedural

Declarative

!16

FO = First-Order logic

Relational structures

!17

A = (D, R1, …, Rn, f1, … fn)

D is a non-empty set, the domain

Ri is an m-ary relation for some m (ie, Ri ⊆ Dm)

fi is an n-ary function for some n (ie, fi : Dn ⟶ D)

A structure is:

Relational structures

!17

A = (D, R1, …, Rn, f1, … fn)

D is a non-empty set, the domain

Ri is an m-ary relation for some m (ie, Ri ⊆ Dm)

fi is an n-ary function for some n (ie, fi : Dn ⟶ D)

A structure is:

A graph G = (V,E)

• V: nodes

• E ⊆ V 2: edges (binary relation)

• (no functions)

A group, like (ℕ,+)

• ℕ: natural numbers

• (no relations)

• +: ℕ2 ⟶ ℕ addition (binary function)

First-order logic

!18

First-order logic

!18

variables x, y, z, …
quantifiers: ∃,∀

Boolean connectives: ¬, ⋀, ⋁FO

A language to talk about structures

Variables range over the domain

Atomic formulas: R(x1, …, xm), x=y

First-order logic

!18

variables x, y, z, …
quantifiers: ∃,∀

Boolean connectives: ¬, ⋀, ⋁FO

A language to talk about structures

Variables range over the domain

Atomic formulas: R(x1, …, xm), x=y

A graph G = (V,E)

 • V: nodes

 • E ⊆ V 2: edges (binary relation)

 • (no functions)

Language to talk about graphs

Variables range over nodes

Atomic formulas: E(x,y), x = y

First-order logic

!18

variables x, y, z, …
quantifiers: ∃,∀

Boolean connectives: ¬, ⋀, ⋁FO

A language to talk about structures

Variables range over the domain

Atomic formulas: R(x1, …, xm), x=y

A graph G = (V,E)

 • V: nodes

 • E ⊆ V 2: edges (binary relation)

 • (no functions)

Language to talk about graphs

Variables range over nodes

Atomic formulas: E(x,y), x = y

Formulas: Atomic formulas + connectives + quantifiers

!19

“The node x has at least two neighbours”

 ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

!19

“The node x has at least two neighbours”

 ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

x is free = not quantified
(a property of a node in the graph)φ(x) =

free

!19

“The node x has at least two neighbours”

 ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours”

 ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

x is free = not quantified
(a property of a node in the graph)φ(x) =

free

!19

“The node x has at least two neighbours”

 ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours”

 ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

x is free = not quantified
(a property of a node in the graph)φ(x) =

free

the formula is a sentence
= no free variables
(a property of the graph)ψ =

!19

“The node x has at least two neighbours”

 ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours”

 ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

Question: • How to express in FO

 “Every two adjacent nodes have a common neighbour” ?

 • Does it have free variables? Is it a sentence?

x is free = not quantified
(a property of a node in the graph)φ(x) =

free

the formula is a sentence
= no free variables
(a property of the graph)ψ =

!19

“The node x has at least two neighbours”

 ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours”

 ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

Question: • How to express in FO

 “Every two adjacent nodes have a common neighbour” ?

 • Does it have free variables? Is it a sentence?

Answer: ∀x∀y (¬E(x,y) ⋁ ∃z ((E(x,z) ⋁ E(z,x)) ⋀ (E(y,z) ⋁ E(z,y))))

x is free = not quantified
(a property of a node in the graph)φ(x) =

free

the formula is a sentence
= no free variables
(a property of the graph)ψ =

Binding

!20

G ⊧α φ(x1,…,xn) α : {x1,…,xn} ⟶ V assigns nodes to free variables

To evaluate a formula φ we need a graph G=(V,E) and a binding α
 that maps free variables of φ to nodes of G.

Binding

!20

G ⊧α φ(x1,…,xn) α : {x1,…,xn} ⟶ V assigns nodes to free variables

To evaluate a formula φ we need a graph G=(V,E) and a binding α
 that maps free variables of φ to nodes of G.

“G,α satisfy φ” “φ is satisfiable”

Binding

!20

G ⊧α φ(x1,…,xn) α : {x1,…,xn} ⟶ V assigns nodes to free variables

To evaluate a formula φ we need a graph G=(V,E) and a binding α
 that maps free variables of φ to nodes of G.

“The node x has at least two neighbours”
 φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

G ⊧α φ if α = {x↦v}

G

v
v'

v''

“G,α satisfy φ” “φ is satisfiable”

Binding

!20

G ⊧α φ(x1,…,xn) α : {x1,…,xn} ⟶ V assigns nodes to free variables

To evaluate a formula φ we need a graph G=(V,E) and a binding α
 that maps free variables of φ to nodes of G.

“The node x has at least two neighbours”
 φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

G ⊧α φ if α = {x↦v}

G

v
v'

v''“Every node has at least two neighbours”
 ψ = ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

G ⊧∅ ψ

“G,α satisfy φ” “φ is satisfiable”

First-order logic

!21

Formal Semantics of FO

G ⊧α ∃x φ iff for some v ∈ V and α' = α ∪ {x ↦ v} we have G ⊧α' φ

G ⊧α ∀x φ iff for every v ∈ V and α' = α ∪ {x ↦ v} we have G ⊧α' φ

G ⊧α φ⋀ψ iff G ⊧α φ and G ⊧α ψ

G ⊧α ¬φ iff it is not true that G ⊧α φ

G ⊧α x=y iff α(x)=α(y)

G ⊧α E(x,y) iff (α(x),α(y)) ∈ E

Formulas as queries

!22

φ(x1, …, xn) evaluated on G=(V,E) yields all the bindings that satisfy φ:

φ(G) = { (α(x1),…,α(xn)) | G ⊧α φ, α: {x1,…,xn} ⟶ V }

Formulas as queries

“The node x has at least two neighbours”
 φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Return all nodes with
 at least two neighbours”

⤳

!22

φ(x1, …, xn) evaluated on G=(V,E) yields all the bindings that satisfy φ:

φ(G) = { (α(x1),…,α(xn)) | G ⊧α φ, α: {x1,…,xn} ⟶ V }

Formulas as queries

“The node x has at least two neighbours”
 φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Return all nodes with
 at least two neighbours”

⤳

!22

φ(x1, …, xn) evaluated on G=(V,E) yields all the bindings that satisfy φ:

φ(G) = { (α(x1),…,α(xn)) | G ⊧α φ, α: {x1,…,xn} ⟶ V }

φ(G) = {v, v', v''}
φ(G') = {v, v'}

G

v
v'

v''

G'

v
v'

v''

Formulas as queries

“The node x has at least two neighbours”
 φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Return all nodes with
 at least two neighbours”

⤳

!22

φ(x1, …, xn) evaluated on G=(V,E) yields all the bindings that satisfy φ:

φ(G) = { (α(x1),…,α(xn)) | G ⊧α φ, α: {x1,…,xn} ⟶ V }

φ(G) = {v, v', v''}
φ(G') = {v, v'}

G

v
v'

v''

G'

v
v'

v''

 ψ(G) = {()} ⤳ set with one element: the 0-tuple

“Every node has two neighbours”
 ψ = ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

 ψ(G') = {} ⤳ empty set

!23

Question: Which bindings α verify G ⊧α φ for

 φ(x,y) = ∃z (E(x,z) ⋀ E(z,y))

 and ?G = v
v'

v''

!23

Question: Which bindings α verify G ⊧α φ for

 φ(x,y) = ∃z (E(x,z) ⋀ E(z,y))

 and ?G = v
v'

v''

Answer: • α = { x ↦ v, y ↦ v’ },

 • α = { x ↦ v, y ↦ v },

 • α = { x ↦ v', y ↦ v’ },

 • … and all the rest

φ(G) = {v,v', v''} × {v,v', v''}

Formulas as queries

!24

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

 Tables = Relations

Queries = Formulas

Rows = Tuples

Formulas as queries

!24

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

 Tables = Relations

Queries = Formulas

Rows = Tuples

Particular to databases:
 • Use of constants

 • No functions

 • Finite structure

 • Quantification over

 active domain

Formulas as queries

!24

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

 Tables = Relations

Queries = Formulas

Rows = Tuples

Particular to databases:
 • Use of constants

 • No functions

 • Finite structure

 • Quantification over

 active domain

⊧finite is different from ⊧

Formulas as queries

!24

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

 Tables = Relations

Queries = Formulas

Rows = Tuples

Particular to databases:
 • Use of constants

 • No functions

 • Finite structure

 • Quantification over

 active domain

⊧finite is different from ⊧

There are formulas φ that are satisfiable
only on infinite structures.

Like which?

Formulas as queries

!24

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

 Tables = Relations

Queries = Formulas

Rows = Tuples

Particular to databases:
 • Use of constants

 • No functions

 • Finite structure

 • Quantification over

 active domain

⊧finite is different from ⊧

There are formulas φ that are satisfiable
only on infinite structures.

Like which?

 φ = “ R(x,y) is an infinite linear order ”

Formulas as queries

!24

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

 Tables = Relations

Queries = Formulas

Rows = Tuples

Particular to databases:
 • Use of constants

 • No functions

 • Finite structure

 • Quantification over

 active domain

Finite model theory

⊧finite is different from ⊧

There are formulas φ that are satisfiable
only on infinite structures.

Like which?

 φ = “ R(x,y) is an infinite linear order ”

Formulas as queries

!25

 Tables = Relations
 Rows = Tuples
Queries = Formulas

[E.F. Codd 1972]

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Formulas as queries

!25

 Tables = Relations
 Rows = Tuples
Queries = Formulas

[E.F. Codd 1972]

How = What
RA =* FO

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Formulas as queries

!25

 Tables = Relations
 Rows = Tuples
Queries = Formulas

[E.F. Codd 1972]

How = What
RA =* FO

RA and FO logic have roughly* the same expressive power!

*FO without functions, with equality, on finite domains, …

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Formulas as queries

!26

• R1 × R2 ⤳ R1(x1, …, xn) ⋀ R2(xn+1, …, xm)

• R1 ∪ R2 ⤳ R1(x1, …, xn) ∨ R2(x1, …, xn)

• σ{i1=j1,…,in=jn}(R) ⤳ R(x1, …, xm) ⋀ (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)

• π{i1,…,in}(R) ⤳ ∃({x1,…,xm} \ {xi1
,…,xin

}). R(x1, …, xm)

• R1 \ R2 ⤳ R1(x1, …, xn) ⋀ ¬R2(x1, …, xn)

• …

RA ⊆ FO

Formulas as queries

!27

 does not hold in general! FO ⊆ RA

Formulas as queries

!27

“the complement of R”
∉ RA
∈ FO : ¬R(x)

 does not hold in general! FO ⊆ RA

Formulas as queries

!27

“the complement of R”
∉ RA
∈ FO : ¬R(x)

FO ⊆ RA/

Formulas as queries

!27

 ⇝ We restrict variables to range over active domain

“the complement of R”
∉ RA
∈ FO : ¬R(x)

FO ⊆ RA/

Formulas as queries

!27

elements in the relations

 ⇝ We restrict variables to range over active domain

“the complement of R”
∉ RA
∈ FO : ¬R(x)

FOact
=

FO restricted
to active domain

FO ⊆ RA/

Formulas as queries

!27

elements in the relations

 ⇝ We restrict variables to range over active domain

“the complement of R”
∉ RA
∈ FO : ¬R(x)

φ1(x) = ∀y E(y,x)
φ1(G) = {v2}

φ2(x,y) = ¬E(x,y)
φ2(G) = {(v1,v1),(v3,v1),(v2,v3)}

G = v1

v2

v3v4

FOact
=

FO restricted
to active domain

FO ⊆ RA/

First-order logic restricted to active domain

!28

Formal Semantics of FOact

G ⊧α ∃x φ iff for some v ∈ ACT(G) and α' = α ∪ {x ↦ v} we have G ⊧α' φ

G ⊧α ∀x φ iff for every v ∈ ACT(G) and α' = α ∪ {x ↦ v} we have G ⊧α' φ

G ⊧α φ⋀ψ iff G ⊧α φ and G ⊧α ψ

G ⊧α ¬φ iff it is not true that G ⊧α φ

G ⊧α x=y iff α(x)=α(y)

G ⊧α E(x,y) iff (α(x),α(y)) ∈ E

ACT(G) = {v | for some v': (v,v') ∈ E or (v',v) ∈ E}

First-order logic restricted to active domain

!29

FOact ⊆ RA

First-order logic restricted to active domain

!29

FOact ⊆ RA

1. φ has variables x1,…,xn,

2. φ in normal form: (∃* (¬∃)*)* + quantifier-free ψ(x1,…,xn)

∃x1 ∃x2 ¬∃x3 ∃x4 . (E(x1,x3) ⋀ ¬E(x4,x2)) ⋁ (x1=x3)

Assume:

First-order logic restricted to active domain

!29

FOact ⊆ RA

1. φ has variables x1,…,xn,

2. φ in normal form: (∃* (¬∃)*)* + quantifier-free ψ(x1,…,xn)

Adom = RA expression for active domain = “π1(E) ∪ π2(E)”

• (R(xi1,…,xin))✢ ⤳ R

• (∃xi φ(xi1,…,xin))✢ ⤳ π{i1,…,in}\{i}(φ✢)

• (xi = xj)✢ ⤳ σ{i=j}(Adom × · · · × Adom)

• (ψ1(xi1,…,xin) ⋀ ψ2(xi1,…,xin))✢ ⤳ ψ1✢ ∩ ψ2✢

• (¬φ(xi1,…,xin))✢ ⤳ Adom × · · · × Adom \ φ✢

∃x1 ∃x2 ¬∃x3 ∃x4 . (E(x1,x3) ⋀ ¬E(x4,x2)) ⋁ (x1=x3)

Tr
an

sla
tio

n
Assume:

First-order logic restricted to active domain

!29

FOact ⊆ RA

1. φ has variables x1,…,xn,

2. φ in normal form: (∃* (¬∃)*)* + quantifier-free ψ(x1,…,xn)

Adom = RA expression for active domain = “π1(E) ∪ π2(E)”

• (R(xi1,…,xin))✢ ⤳ R

• (∃xi φ(xi1,…,xin))✢ ⤳ π{i1,…,in}\{i}(φ✢)

• (xi = xj)✢ ⤳ σ{i=j}(Adom × · · · × Adom)

• (ψ1(xi1,…,xin) ⋀ ψ2(xi1,…,xin))✢ ⤳ ψ1✢ ∩ ψ2✢

• (¬φ(xi1,…,xin))✢ ⤳ Adom × · · · × Adom \ φ✢

∃x1 ∃x2 ¬∃x3 ∃x4 . (E(x1,x3) ⋀ ¬E(x4,x2)) ⋁ (x1=x3)

A∩B = (A∪B) \ A \ B

Tr
an

sla
tio

n
Assume:

Corollary

!30

FOact is equivalent to RA

!31

Question 1: How is π2(σ1=3(π2(σ1=3(R1 × R2)) × R2)) expressed in FO?
Remember: R1,R2 are binary

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀ x≠z) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2

• R1 × R2

• R1 \ R2

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)}

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠

!31

Question 1: How is π2(σ1=3(π2(σ1=3(R1 × R2)) × R2)) expressed in FO?
Remember: R1,R2 are binary

Answer: ∃x2 . (∃x1,x4 . (R1(x1,x2) ⋀ R2(x1,x4)) ⋀ R2(x2,x5))

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀ x≠z) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2

• R1 × R2

• R1 \ R2

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)}

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠

!31

Question 1: How is π2(σ1=3(π2(σ1=3(R1 × R2)) × R2)) expressed in FO?
Remember: R1,R2 are binary

Answer: ∃x2 . (∃x1,x4 . (R1(x1,x2) ⋀ R2(x1,x4)) ⋀ R2(x2,x5))

Answer: π1(σ{2=3,1≠4}(R1 × R1))

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀ x≠z) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2

• R1 × R2

• R1 \ R2

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)}

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠

!32

Logic Algebra Programming
language

= =FO RA SQL

!32

Logic Algebra Programming
language

= =FO RA SQL

very basic
on finite
domains

over
active domain

Algorithmic problems for query languages

!33

Evaluation problem: Given a query Q, a database instance db,
 and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?

Algorithmic problems for query languages

!33

Evaluation problem: Given a query Q, a database instance db,
 and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db
 so that Q(db) ≠ ∅ ?

⇝ Does Q make sense? Is it a contradiction? (Query optimization)

Algorithmic problems for query languages

!33

Evaluation problem: Given a query Q, a database instance db,
 and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db
 so that Q(db) ≠ ∅ ?

⇝ Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem: Given queries Q1, Q2, is
 Q1(db) = Q2(db)
 for all database instances db?

⇝ Can we safely replace a query with another? (Query optimization)

Complexity theory

!34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

Complexity theory

!34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

K

H’s 10th PCPDomino
. . .

Complexity theory

!34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes
usage of resources: • time
 • memory

K

H’s 10th PCPDomino
. . .

Complexity theory

!34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes
usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

Complexity theory

!34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

Alg

f

ti
m

e

input size

usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

Complexity theory

!34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

Alg

f

ti
m

e

input size

usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE

Complexity theory

!34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

LOGSPACE ⊊ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ · · ·

Alg

f

ti
m

e

input size

usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE

Complexity theory

!34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

LOGSPACE ⊊ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ · · ·

Alg

f

ti
m

e

input size

usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

SPACE-bounded by log(n)

TIME-bounded by a polynomial

SPACE-bounded by a polynomial

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE

Algorithmic problems for FO

!35

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

Algorithmic problems for FO

!35

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

Algorithmic problems for FO

!35

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

Algorithmic problems for FO

!35

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem

Algorithmic problems for FO

!36

[Trakhtenbrot ’50]

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Algorithmic problems for FO

!36

Proof: By reduction from the Domino (aka Tiling) problem.

[Trakhtenbrot ’50]

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Algorithmic problems for FO

!36

Proof: By reduction from the Domino (aka Tiling) problem.

[Trakhtenbrot ’50]

Reduction from P to P': Algorithm that solves P using a O(1) procedure
 “ P'(x) ”
 that returns the truth value of P'(x).

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

The (undecidable) Domino problem

Input: 4-sided dominos:

 Domino

The (undecidable) Domino problem

Input: 4-sided dominos:

Output: Is it possible to form a white-bordered rectangle? (of any size)

. . .

. . .

. . .

.

 Domino

The (undecidable) Domino problem

Input: 4-sided dominos:

Rules: sides must match, 
 you can’t rotate the dominos, but you can ‘clone’ them.

Output: Is it possible to form a white-bordered rectangle? (of any size)

. . .

. . .

. . .

.

 Domino

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

1
l

(head is here, symbol is 
 rewritten, head moves left)

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

1
l

(head is here, symbol is 
 rewritten, head moves left)

s 0 0 0
(initial configuration)

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

1
l

(head is here, symbol is 
 rewritten, head moves left)

s 0 0 0
(initial configuration)

h 0 0 0

. . .

(halting configuration)

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

H
V

∀

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

H

V

∃

H
V

∀

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

. . .

. .
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V
H

V

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

. . .

. .
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V

2. Assign one domino to each node:

 a unary relation 

 
 
 
 for each domino

D (x)
H

V

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

3. Match the sides ∀x,y

 if H(x,y), then Da(x) ⋀ Db(y)

 for some dominos a,b that ‘match’ 
 horizontally (Idem vertically)

. . .

. .
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V

2. Assign one domino to each node:

 a unary relation 

 
 
 
 for each domino

D (x)
H

V

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

3. Match the sides ∀x,y

 if H(x,y), then Da(x) ⋀ Db(y)

 for some dominos a,b that ‘match’ 
 horizontally (Idem vertically)

. . .

. .
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

4. Borders are white.

H

V

2. Assign one domino to each node:

 a unary relation 

 
 
 
 for each domino

D (x)
H

V

Algorithmic problems for FO

!40

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem

Algorithmic problems for FO

!41

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction from the satisfiability problem

Algorithmic problems for FO

!41

φ is satisfiable iff φ is not equivalent to ⊥

Satisfiability problem undecidable ⇝ Equivalence problem undecidable

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction from the satisfiability problem

Algorithmic problems for FO

!41

φ is satisfiable iff φ is not equivalent to ⊥

Satisfiability problem undecidable ⇝ Equivalence problem undecidable

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction from the satisfiability problem

Actually, there are reductions in both senses:

φ(x1,…,xn) and ψ(y1,…,ym) are equivalent iff

 • n=m

 • (x1=y1) ⋀ ··· ⋀ (xn=yn) ⋀ φ(x1,…,xn) ⋀ ¬ψ(y1,…,yn) is unsatisfiable

 • (x1=y1) ⋀ ··· ⋀ (xn=yn) ⋀ ψ(x1,…,xn) ⋀ ¬φ(y1,…,yn) is unsatisfiable

Algorithmic problems for FO

!42

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem

Evaluation problem for FO

!43

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:

Evaluation problem for FO

!43

Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|),
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:

Evaluation problem for FO

!43

Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|),
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)

Encoding of α = {x1,…,xn} ⟶ V

• each node is coded with a bit string of size log(|V|),

Cost of coding: ||α|| = n·log(|V|)

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:

Evaluation problem for FO

!44

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:

Evaluation problem for FO

!44

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

Evaluation problem for FO

Question: 
How much space 
does it take? !44

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

Evaluation problem for FO

Question: 
How much space 
does it take? !44

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers ⇝ LOGSPACE

Evaluation problem for FO

Question: 
How much space 
does it take? !44

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers ⇝ LOGSPACE

⇝ MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

Evaluation problem for FO

Question: 
How much space 
does it take? !44

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers ⇝ LOGSPACE

⇝ MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

⇝ SPACE(G ⊧α ψ))

Evaluation problem for FO

Question: 
How much space 
does it take? !44

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers ⇝ LOGSPACE

⇝ MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

⇝ SPACE(G ⊧α ψ))

⇝ 2·log(|G|) + SPACE(G ⊧α' ψ)

Evaluation problem for FO

Question: 
How much space 
does it take? !44

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?

2·log(|G|) + ··· + 2·log(|G|) + k·log(|α|+|G|) space

≤ |φ| times

Input: Output:

use 4 pointers ⇝ LOGSPACE

⇝ MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

⇝ SPACE(G ⊧α ψ))

⇝ 2·log(|G|) + SPACE(G ⊧α' ψ)

Evaluation problem for FO

Question: 
How much space 
does it take? !44

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?

2·log(|G|) + ··· + 2·log(|G|) + k·log(|α|+|G|) space

≤ |φ| times

Input: Output:

use 4 pointers ⇝ LOGSPACE

⇝ MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

⇝ SPACE(G ⊧α ψ))

⇝ 2·log(|G|) + SPACE(G ⊧α' ψ)

in PSPACE

Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

!45

Input:

Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

!45

query +Input:

Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

database

!45

query +Input:

Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

database

!45

query +Input:

TIME(2|query| + |data|)

TIME(|query| + 2|data|)
But we don’t distinguish this in the analysis: =

Combined, Query, and Data complexities

!46

Separation of concerns: How the resources grow with respect to

 • the size of the data

 • the query size

Query and data play very different roles.

[Vardi, 1982]

Combined, Query, and Data complexities

!47

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

Combined, Query, and Data complexities

!47

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

O(2|query| + |data|) is

O(|query| + 2|data|) is

exponential in combined complexity
exponential in query complexity
linear in data complexity

exponential in combined complexity
linear in query complexity
exponential in data complexity

!48

Question

What is the data, query and combined complexity
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space

!48

Question

What is the data, query and combined complexity
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space

dataquery

O(log(|data|)·|query|) space PSPACE combined and query complexity

LOGSPACE data complexity

Evaluation pb for FO is PSPACE-complete

!49

(combined
 complexity)

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of Quantified Boolean Formulas)
 PSPACE-complete problem: QBF

Evaluation pb for FO is PSPACE-complete

!49

(combined
 complexity)

∃p ∀q . (p ⋁ ¬q) where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of Quantified Boolean Formulas)
 PSPACE-complete problem: QBF

Evaluation pb for FO is PSPACE-complete

!49

(combined
 complexity)

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q) where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of Quantified Boolean Formulas)
 PSPACE-complete problem: QBF

Evaluation pb for FO is PSPACE-complete

!49

(combined
 complexity)

Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
 let ψ'(x) be the replacement  
 of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element
graph iff ψ is QBF-satisfiable

3. Test if G ⊧∅ ψ' for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q) where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of Quantified Boolean Formulas)
 PSPACE-complete problem: QBF

Evaluation pb for FO is PSPACE-complete

!49

(combined
 complexity)

Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
 let ψ'(x) be the replacement  
 of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element
graph iff ψ is QBF-satisfiable

3. Test if G ⊧∅ ψ' for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q) where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of Quantified Boolean Formulas)
 PSPACE-complete problem: QBF

ψ'(x)=∃p ∀q . ((p=x) ⋁ ¬(q=x))

Evaluation pb for FO is PSPACE-complete

!49

(combined
 complexity)

Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
 let ψ'(x) be the replacement  
 of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element
graph iff ψ is QBF-satisfiable

3. Test if G ⊧∅ ψ' for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q) where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of Quantified Boolean Formulas)
 PSPACE-complete problem: QBF

ψ'(x)=∃p ∀q . ((p=x) ⋁ ¬(q=x))

∃x ∃p ∀q . ((p=x) ⋁ ¬(q=x))

Recap

!50
LOGSPACEPSPACEUNDECIDABLE

Domino

Eval-FO
(combined)

Eval-FO
(data)

Sat-FO

Equivalence-FO

Equivalence-SQL

Equivalence-RA

QBF

Bibliography

!51

Abiteboul, Hull, Vianu, “Foundations of Databases”, Addison-Wesley, 1995.

(freely available at http://webdam.inria.fr/Alice/)

Chapters 1, 2, 3

http://webdam.inria.fr/Alice/

