
Logical foundations of databases

∀∃¬

ESSLLI 2016
Bolzano, Italy

CNRS LaBRI

Diego Figueira Gabriele Puppis

day 2

Recap

• Relational model (tables)

• Relational Algebra (union, product, difference, selection, projection)

• SQL (SELECT … FROM … WHERE …)

• RA ≈ basic SQL

• First-order logic (syntax, semantics)

• Expressiveness: FO =* RA

Formulas as queries

!3

 Tables = Relations
 Rows = Tuples
Queries = Formulas

[E.F. Codd 1972]

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Formulas as queries

!3

 Tables = Relations
 Rows = Tuples
Queries = Formulas

[E.F. Codd 1972]

How = What
RA =* FO

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Formulas as queries

!3

 Tables = Relations
 Rows = Tuples
Queries = Formulas

[E.F. Codd 1972]

How = What
RA =* FO

RA and FO logic have roughly* the same expressive power!

*FO without functions, with equality, on finite domains, …

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Formulas as queries

!4

• R1 × R2 ⤳ R1(x1, …, xn) ⋀ R2(xn+1, …, xm)

• R1 ∪ R2 ⤳ R1(x1, …, xn) ∨ R2(x1, …, xn)

• σ{i1=j1,…,in=jn}(R) ⤳ R(x1, …, xm) ⋀ (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)

• π{i1,…,in}(R) ⤳ ∃({x1,…,xm} \ {xi1
,…,xin

}). R(x1, …, xm)

• R1 \ R2 ⤳ R1(x1, …, xn) ⋀ ¬R2(x1, …, xn)

• …

RA ⊆ FO

Formulas as queries

!5

 does not hold in general! FO ⊆ RA

Formulas as queries

!5

“the complement of R”
∉ RA
∈ FO : ¬R(x)

 does not hold in general! FO ⊆ RA

Formulas as queries

!5

“the complement of R”
∉ RA
∈ FO : ¬R(x)

FO ⊆ RA/

Formulas as queries

!5

 ⇝ We restrict variables to range over active domain

“the complement of R”
∉ RA
∈ FO : ¬R(x)

FO ⊆ RA/

Formulas as queries

!5

elements in the relations

 ⇝ We restrict variables to range over active domain

“the complement of R”
∉ RA
∈ FO : ¬R(x)

FOact
=

FO restricted
to active domain

FO ⊆ RA/

Formulas as queries

!5

elements in the relations

 ⇝ We restrict variables to range over active domain

“the complement of R”
∉ RA
∈ FO : ¬R(x)

φ1(x) = ∀y E(y,x)
φ1(G) = {v2}

φ2(x,y) = ¬E(x,y)
φ2(G) = {(v1,v1),(v3,v1),(v2,v3)}

G = v1

v2

v3v4

FOact
=

FO restricted
to active domain

FO ⊆ RA/

First-order logic restricted to active domain

!6

Formal Semantics of FOact

G ⊧α ∃x φ iff for some v ∈ ACT(G) and α' = α ∪ {x ↦ v} we have G ⊧α' φ

G ⊧α ∀x φ iff for every v ∈ ACT(G) and α' = α ∪ {x ↦ v} we have G ⊧α' φ

G ⊧α φ⋀ψ iff G ⊧α φ and G ⊧α ψ

G ⊧α ¬φ iff it is not true that G ⊧α φ

G ⊧α x=y iff α(x)=α(y)

G ⊧α E(x,y) iff (α(x),α(y)) ∈ E

ACT(G) = {v | for some v': (v,v') ∈ E or (v',v) ∈ E}

First-order logic restricted to active domain

!7

FOact ⊆ RA

First-order logic restricted to active domain

!7

FOact ⊆ RA

1. φ in normal form: (∃* (¬∃)*)* + quantifier-free ψ(x1,…,xn)

2. φ has n variables

∃x1 ∃x2 ¬∃x3 ∃x4 . (E(x1,x3) ⋀ ¬E(x4,x2)) ⋁ (x1=x3)

Assume:

First-order logic restricted to active domain

!7

FOact ⊆ RA

1. φ in normal form: (∃* (¬∃)*)* + quantifier-free ψ(x1,…,xn)

2. φ has n variables

Adom = RA expression for active domain = “π1(E) ∪ π2(E)”

• (R(xi1,…,xit))✢ ⤳ R

• (xi = xj)✢ ⤳ σ{i=j}(Adom × · · · × Adom)

• (ψ1 ⋀ ψ2)✢ ⤳ ψ1✢ ∩ ψ2✢

• (¬ψ)✢ ⤳ Adom × · · · × Adom \ ψ✢

• (∃xi φ(xi1,…,xit))✢ ⤳ π{i1,…,it}\{i}(φ✢)

∃x1 ∃x2 ¬∃x3 ∃x4 . (E(x1,x3) ⋀ ¬E(x4,x2)) ⋁ (x1=x3)

Tr
an

sla
tio

n
Assume:

First-order logic restricted to active domain

!7

FOact ⊆ RA

1. φ in normal form: (∃* (¬∃)*)* + quantifier-free ψ(x1,…,xn)

2. φ has n variables

Adom = RA expression for active domain = “π1(E) ∪ π2(E)”

• (R(xi1,…,xit))✢ ⤳ R

• (xi = xj)✢ ⤳ σ{i=j}(Adom × · · · × Adom)

• (ψ1 ⋀ ψ2)✢ ⤳ ψ1✢ ∩ ψ2✢

• (¬ψ)✢ ⤳ Adom × · · · × Adom \ ψ✢

• (∃xi φ(xi1,…,xit))✢ ⤳ π{i1,…,it}\{i}(φ✢)

∃x1 ∃x2 ¬∃x3 ∃x4 . (E(x1,x3) ⋀ ¬E(x4,x2)) ⋁ (x1=x3)

Tr
an

sla
tio

n
Assume:

π{1,…,n}(σ{i1=n+1,…,it=n+t} (Adomn × R))

First-order logic restricted to active domain

!7

FOact ⊆ RA

1. φ in normal form: (∃* (¬∃)*)* + quantifier-free ψ(x1,…,xn)

2. φ has n variables

Adom = RA expression for active domain = “π1(E) ∪ π2(E)”

• (R(xi1,…,xit))✢ ⤳ R

• (xi = xj)✢ ⤳ σ{i=j}(Adom × · · · × Adom)

• (ψ1 ⋀ ψ2)✢ ⤳ ψ1✢ ∩ ψ2✢

• (¬ψ)✢ ⤳ Adom × · · · × Adom \ ψ✢

• (∃xi φ(xi1,…,xit))✢ ⤳ π{i1,…,it}\{i}(φ✢)

∃x1 ∃x2 ¬∃x3 ∃x4 . (E(x1,x3) ⋀ ¬E(x4,x2)) ⋁ (x1=x3)

Tr
an

sla
tio

n
Assume:

Adomn

First-order logic restricted to active domain

!7

FOact ⊆ RA

1. φ in normal form: (∃* (¬∃)*)* + quantifier-free ψ(x1,…,xn)

2. φ has n variables

Adom = RA expression for active domain = “π1(E) ∪ π2(E)”

• (R(xi1,…,xit))✢ ⤳ R

• (xi = xj)✢ ⤳ σ{i=j}(Adom × · · · × Adom)

• (ψ1 ⋀ ψ2)✢ ⤳ ψ1✢ ∩ ψ2✢

• (¬ψ)✢ ⤳ Adom × · · · × Adom \ ψ✢

• (∃xi φ(xi1,…,xit))✢ ⤳ π{i1,…,it}\{i}(φ✢)

∃x1 ∃x2 ¬∃x3 ∃x4 . (E(x1,x3) ⋀ ¬E(x4,x2)) ⋁ (x1=x3)

A∩B = ((A∪B) \ (A \ B))
 \ (B \ A)

Tr
an

sla
tio

n
Assume:

First-order logic restricted to active domain

!7

FOact ⊆ RA

1. φ in normal form: (∃* (¬∃)*)* + quantifier-free ψ(x1,…,xn)

2. φ has n variables

Adom = RA expression for active domain = “π1(E) ∪ π2(E)”

• (R(xi1,…,xit))✢ ⤳ R

• (xi = xj)✢ ⤳ σ{i=j}(Adom × · · · × Adom)

• (ψ1 ⋀ ψ2)✢ ⤳ ψ1✢ ∩ ψ2✢

• (¬ψ)✢ ⤳ Adom × · · · × Adom \ ψ✢

• (∃xi φ(xi1,…,xit))✢ ⤳ π{i1,…,it}\{i}(φ✢)

∃x1 ∃x2 ¬∃x3 ∃x4 . (E(x1,x3) ⋀ ¬E(x4,x2)) ⋁ (x1=x3)

Tr
an

sla
tio

n
Assume:

Adomt if t is the arity of ψ✢

Corollary

!8

FOact is equivalent to RA

!9

Question 1: How is π2(σ1=3(R1 × R2) expressed in FO?
Remember: R1,R2 are binary

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀ x≠z) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2

• R1 × R2

• R1 \ R2

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)}

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠

!9

Question 1: How is π2(σ1=3(R1 × R2) expressed in FO?
Remember: R1,R2 are binary

Answer: ∃x1,x3,x4 (R1(x1,x2) ⋀ R2(x3,x4) ∧ x1 = x3)

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀ x≠z) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2

• R1 × R2

• R1 \ R2

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)}

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠

!9

Question 1: How is π2(σ1=3(R1 × R2) expressed in FO?
Remember: R1,R2 are binary

Answer: ∃x1,x3,x4 (R1(x1,x2) ⋀ R2(x3,x4) ∧ x1 = x3)

Answer: π1(σ{2=3,1≠4}(R1 × R1))

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀ x≠z) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2

• R1 × R2

• R1 \ R2

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)}

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠

!10

Logic Algebra Programming
language

= =FO RA SQL

!10

Logic Algebra Programming
language

= =FO RA SQL

very basic
on finite
domains

over
active domain

Algorithmic problems for query languages

!11

Evaluation problem: Given a query Q, a database instance db,
 and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?

Algorithmic problems for query languages

!11

Evaluation problem: Given a query Q, a database instance db,
 and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db
 so that Q(db) ≠ ∅ ?

⇝ Does Q make sense? Is it a contradiction? (Query optimization)

Algorithmic problems for query languages

!11

Evaluation problem: Given a query Q, a database instance db,
 and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db
 so that Q(db) ≠ ∅ ?

⇝ Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem: Given queries Q1, Q2, is
 Q1(db) = Q2(db)
 for all database instances db?

⇝ Can we safely replace a query with another? (Query optimization)

Complexity theory

!12

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

Complexity theory

!12

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

K

H’s 10th PCPDomino
. . .

Complexity theory

!12

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes
usage of resources: • time
 • memory

K

H’s 10th PCPDomino
. . .

Complexity theory

!12

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes
usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

Complexity theory

!12

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

Alg

f

ti
m

e

input size

usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

Complexity theory

!12

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

Alg

f

ti
m

e

input size

usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE

Complexity theory

!12

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ · · ·

Alg

f

ti
m

e

input size

usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE

Complexity theory

!12

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ · · ·

Alg

f

ti
m

e

input size

usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

SPACE-bounded by log(n)

TIME-bounded by a polynomial

SPACE-bounded by a polynomial

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE

Algorithmic problems for FO

!13

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

Algorithmic problems for FO

!13

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

Algorithmic problems for FO

!13

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

Algorithmic problems for FO

!13

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem

Algorithmic problems for FO

!14

[Trakhtenbrot ’50]

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Algorithmic problems for FO

!14

Proof: By reduction from the Domino (aka Tiling) problem.

[Trakhtenbrot ’50]

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Algorithmic problems for FO

!14

Proof: By reduction from the Domino (aka Tiling) problem.

[Trakhtenbrot ’50]

Reduction from P to P': Algorithm that solves P using a O(1) procedure
 “ P'(x) ”
 that returns the truth value of P'(x).

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

The (undecidable) Domino problem

Input: 4-sided dominos:

 Domino

The (undecidable) Domino problem

Input: 4-sided dominos:

Output: Is it possible to form a white-bordered rectangle? (of any size)

. . .

. . .

. . .

.

 Domino

The (undecidable) Domino problem

Input: 4-sided dominos:

Rules: sides must match, 
 you can’t rotate the dominos, but you can ‘clone’ them.

Output: Is it possible to form a white-bordered rectangle? (of any size)

. . .

. . .

. . .

.

 Domino

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

1
l

(head is here, symbol is 
 rewritten, head moves left)

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

1
l

(head is here, symbol is 
 rewritten, head moves left)

s 0 0 0
(initial configuration)

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

1
l

(head is here, symbol is 
 rewritten, head moves left)

s 0 0 0
(initial configuration)

h 0 0 0

. . .

(halting configuration)

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

H
V

∀

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

H

V

∃

H
V

∀

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

. . .

. .
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V
H

V

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

. . .

. .
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V

2. Assign one domino to each node:

 a unary relation 

 
 
 
 for each domino

D (x)
H

V

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

3. Match the sides ∀x,y

 if H(x,y), then Da(x) ⋀ Db(y)

 for some dominos a,b that ‘match’ 
 horizontally (Idem vertically)

. . .

. .
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V

2. Assign one domino to each node:

 a unary relation 

 
 
 
 for each domino

D (x)
H

V

Domino ⇝ Sat-FO (domino has a solution iff φ satisfiable)

1. There is a grid: H(,) and V(,) are relations representing bijections such that…

3. Match the sides ∀x,y

 if H(x,y), then Da(x) ⋀ Db(y)

 for some dominos a,b that ‘match’ 
 horizontally (Idem vertically)

. . .

. .
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

4. Borders are white.

H

V

2. Assign one domino to each node:

 a unary relation 

 
 
 
 for each domino

D (x)
H

V

Algorithmic problems for FO

!18

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem

Algorithmic problems for FO

!19

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction from the satisfiability problem

Algorithmic problems for FO

!19

φ is satisfiable iff φ is not equivalent to ⊥

Satisfiability problem undecidable ⇝ Equivalence problem undecidable

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction from the satisfiability problem

Algorithmic problems for FO

!19

φ is satisfiable iff φ is not equivalent to ⊥

Satisfiability problem undecidable ⇝ Equivalence problem undecidable

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction from the satisfiability problem

Actually, there are reductions in both senses:

φ(x1,…,xn) and ψ(y1,…,ym) are equivalent iff

 • n=m

 • (x1=y1) ⋀ ··· ⋀ (xn=yn) ⋀ φ(x1,…,xn) ⋀ ¬ψ(y1,…,yn) is unsatisfiable

 • (x1=y1) ⋀ ··· ⋀ (xn=yn) ⋀ ψ(x1,…,xn) ⋀ ¬φ(y1,…,yn) is unsatisfiable

Algorithmic problems for FO

!20

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ iff G ⊧αψ
 for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem

Evaluation problem for FO

!21

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:

Evaluation problem for FO

!21

Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|),
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:

Evaluation problem for FO

!21

Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|),
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)

Encoding of α = {x1,…,xn} ⟶ V

• each node is coded with a bit string of size log(|V|),

Cost of coding: ||α|| = n·log(|V|)

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:

Evaluation problem for FO

!22

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:

Evaluation problem for FO

!22

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

Evaluation problem for FO

Question: 
How much space 
does it take? !22

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

Evaluation problem for FO

Question: 
How much space 
does it take? !22

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers ⇝ LOGSPACE

Evaluation problem for FO

Question: 
How much space 
does it take? !22

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers ⇝ LOGSPACE

⇝ MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

Evaluation problem for FO

Question: 
How much space 
does it take? !22

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers ⇝ LOGSPACE

⇝ MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

⇝ SPACE(G ⊧α ψ))

Evaluation problem for FO

Question: 
How much space 
does it take? !22

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers ⇝ LOGSPACE

⇝ MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

⇝ SPACE(G ⊧α ψ))

⇝ 2·log(|G|) + SPACE(G ⊧α' ψ)

Evaluation problem for FO

Question: 
How much space 
does it take? !22

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?

2·log(|G|) + ··· + 2·log(|G|) + k·log(|α|+|G|) space

≤ |φ| times

Input: Output:

use 4 pointers ⇝ LOGSPACE

⇝ MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

⇝ SPACE(G ⊧α ψ))

⇝ 2·log(|G|) + SPACE(G ⊧α' ψ)

Evaluation problem for FO

Question: 
How much space 
does it take? !22

φ(x1,…,xn)

G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES iff (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES iff G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO iff G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES iff for some v ∈ V and α'= α ∪ {y↦v} 
 we have G ⊧α' ψ.

G ⊧α φ ?

2·log(|G|) + ··· + 2·log(|G|) + k·log(|α|+|G|) space

≤ |φ| times

Input: Output:

use 4 pointers ⇝ LOGSPACE

⇝ MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

⇝ SPACE(G ⊧α ψ))

⇝ 2·log(|G|) + SPACE(G ⊧α' ψ)

in PSPACE

Evaluation pb for FO is PSPACE-complete

!23

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of Quantified Boolean Formulas)
 PSPACE-complete problem: QBF

Evaluation pb for FO is PSPACE-complete

!23

∃p ∀q . (p ⋁ ¬q) where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of Quantified Boolean Formulas)
 PSPACE-complete problem: QBF

Evaluation pb for FO is PSPACE-complete

!23

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q) where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of Quantified Boolean Formulas)
 PSPACE-complete problem: QBF

Evaluation pb for FO is PSPACE-complete

!23

Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
 let ψ'(x) be the replacement  
 of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element
graph iff ψ is QBF-satisfiable

3. Test if G ⊧∅ ψ' for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q) where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of Quantified Boolean Formulas)
 PSPACE-complete problem: QBF

Evaluation pb for FO is PSPACE-complete

!23

Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
 let ψ'(x) be the replacement  
 of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element
graph iff ψ is QBF-satisfiable

3. Test if G ⊧∅ ψ' for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q) where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of Quantified Boolean Formulas)
 PSPACE-complete problem: QBF

ψ'(x)=∃p ∀q . ((p=x) ⋁ ¬(q=x))

Evaluation pb for FO is PSPACE-complete

!23

Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
 let ψ'(x) be the replacement  
 of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element
graph iff ψ is QBF-satisfiable

3. Test if G ⊧∅ ψ' for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q) where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of Quantified Boolean Formulas)
 PSPACE-complete problem: QBF

ψ'(x)=∃p ∀q . ((p=x) ⋁ ¬(q=x))

∃x ∃p ∀q . ((p=x) ⋁ ¬(q=x))

Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

!24

Input:

Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

!24

query +Input:

Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

database

!24

query +Input:

Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

database

!24

query +Input:

TIME(2|query| + |data|)

TIME(|query| + 2|data|)
But we don’t distinguish this in the analysis: =

Combined, Query, and Data complexities

!25

Separation of concerns: How the resources grow with respect to

 • the size of the data

 • the query size

Query and data play very different roles.

[Vardi, 1982]

Combined, Query, and Data complexities

!26

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

Combined, Query, and Data complexities

!26

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

O(2|query| + |data|) is

O(|query| + 2|data|) is

exponential in combined complexity
exponential in query complexity
linear in data complexity

exponential in combined complexity
linear in query complexity
exponential in data complexity

!27

Question

What is the data, query and combined complexity
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space

!27

Question

What is the data, query and combined complexity
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space

dataquery

O(log(|data|)·|query|) space PSPACE combined and query complexity

LOGSPACE data complexity

Recap

!28
LOGSPACEPSPACEUNDECIDABLE

Domino

Eval-FO
(combined)

Eval-FO
(data)

Sat-FO

Equivalence-FO

Equivalence-SQL

Equivalence-RA

QBF

 29

Trading expressiveness for efficiency

expressiveness efficiency

Alternation of quantifiers significantly affects complexity
(recall that evaluation of QBF is PSPACE-complete: ∀x ∃y ∀z ∃w … φ).
 

What happens if we disallow ∀ and ¬ ?

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

 30

The class NP

⊆

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

 30

The class NP

⊆ NP ⊆

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

 30

The class NP

⊆ NP ⊆

 Examples:

• 3-COLORABILITY: Given a graph G, can we assign a colour from {R,G,B} to each node 
 so that adjacent nodes have always different colours ?  

• SAT: Given a propositional formula, e.g. (p ⋁ ¬q ⋁ r) ⋀ (¬p ⋁ s) ⋀ (¬s ⋁ ¬p), 
 can we assign a truth value to each variable so that the formula becomes true ? 

• MONEY-CHANGE: Given an amount of money A and a set of coins {B1, …, Bn}, 
 can we find a subset S ⊆ {B1, …, Bn} such that ∑ S = A ?

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

 31

The class NP

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

⊆ NP ⊆

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

 31

The class NP

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

⊆ NP ⊆

Initial configuration

Final 
configuration

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

 31

The class NP

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

⊆ NP ⊆

Final 
configuration

Final 
configuration

Initial configuration

Final 
configuration

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

 31

The class NP

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

⊆ NP ⊆

Final 
configuration

Final 
configuration

Non-deterministic transitions

Initial configuration

Final 
configuration

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

 31

The class NP

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

⊆ NP ⊆

Final 
configuration

Final 
configuration

Non-deterministic transitions

Many paths, each has length 
bounded by a polynomial

Initial configuration

Final 
configuration

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

 31

The class NP

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

⊆ NP ⊆

Final 
configuration

Final 
configuration

Non-deterministic transitions

A solution exists if there is
at least a successful path.

Many paths, each has length 
bounded by a polynomial

Initial configuration

Final 
configuration

!32

Question

Consider: Positive FO = FO without ∀,¬

E.g. φ = ∃ x ∃ y ∃ z . (E(x, y) ⋁ E(y, z)) ⋀ (y=z ⋁ E(x, z))

What is the complexity of evaluating Positive FO on graphs ?

!32

Question

Consider: Positive FO = FO without ∀,¬

E.g. φ = ∃ x ∃ y ∃ z . (E(x, y) ⋁ E(y, z)) ⋀ (y=z ⋁ E(x, z))

What is the complexity of evaluating Positive FO on graphs ?

Solution

This is in NP: Given φ and G=(V, E)
 it suffices to guess a binding α : { x, y, z, … } → V  
 and then verify that the formula holds.

 33

Conjunctive Queries

Def.
CQ = FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y) : – Parent(X,Z), Parent(Z,Y)”

Eg: φ(x, y) = ∃ z . (Parent(x, z) ⋀ Parent(z, y))

 33

Conjunctive Queries

Def.
CQ = FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y) : – Parent(X,Z), Parent(Z,Y)”

Eg: φ(x, y) = ∃ z . (Parent(x, z) ⋀ Parent(z, y))

Normal form: “ ∃ x1, …, xn . φ(x1, …, xn) ”
quantifier-free and no equalities!

 33

Conjunctive Queries

Def.
CQ = FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y) : – Parent(X,Z), Parent(Z,Y)”

Eg: φ(x, y) = ∃ z . (Parent(x, z) ⋀ Parent(z, y))

Select ...
From ...
Where Z

no negation or disjunction

It corresponds to positive
“SELECT-FROM-WHERE” SQL queries

πX(σZ(R1 ×···× Rn))
no negation

It corresponds to “π-σ-×” RA queries

Normal form: “ ∃ x1, …, xn . φ(x1, …, xn) ”
quantifier-free and no equalities!

Bibliography

!34

Abiteboul, Hull, Vianu, “Foundations of Databases”, Addison-Wesley, 1995.

(freely available at http://webdam.inria.fr/Alice/)

Chapters 1, 2, 3

http://webdam.inria.fr/Alice/

