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Recap

• Relational model (tables) 

• Relational Algebra (union, product, difference, selection, projection) 

• SQL (SELECT … FROM … WHERE …) 

• RA ≈ basic SQL 

• First-order logic (syntax, semantics) 

• Expressiveness: FO =* RA
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Formulas as queries

!3

   Tables  =  Relations 
    Rows  =  Tuples 
Queries  =  Formulas

[E.F. Codd 1972]

How  = What
RA  =* FO

RA and FO logic have roughly* the same expressive power!

*FO without functions, with equality, on finite domains, …

FO can serve as a declarative query language on relational databases : 
we express the properties of the answer
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• R1 × R2              ⤳   R1(x1, …, xn) ⋀ R2(xn+1, …, xm) 

• R1 ∪ R2              ⤳   R1(x1, …, xn) ∨ R2(x1, …, xn) 

• σ{i1=j1,…,in=jn}(R)   ⤳   R(x1, …, xm) ⋀ (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

) 

• π{i1,…,in}(R)         ⤳   ∃({x1,…,xm} \ {xi1
,…,xin

}). R(x1, …, xm) 

• R1 \ R2              ⤳   R1(x1, …, xn) ⋀ ¬R2(x1, …, xn) 

• …

RA ⊆ FO



Formulas as queries

!5

 does not hold in general! FO ⊆ RA



Formulas as queries

!5

“the complement of R”
∉  RA
∈  FO :  ¬R(x)

 does not hold in general! FO ⊆ RA



Formulas as queries

!5

“the complement of R”
∉  RA
∈  FO :  ¬R(x)

FO ⊆ RA/



Formulas as queries

!5

           ⇝ We restrict variables to range over active domain 

“the complement of R”
∉  RA
∈  FO :  ¬R(x)

FO ⊆ RA/



Formulas as queries

!5

elements in the relations

           ⇝ We restrict variables to range over active domain 

“the complement of R”
∉  RA
∈  FO :  ¬R(x)

FOact  
=  

FO restricted 
to active domain

FO ⊆ RA/
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elements in the relations

           ⇝ We restrict variables to range over active domain 

“the complement of R”
∉  RA
∈  FO :  ¬R(x)

φ1(x)   = ∀y E(y,x) 
φ1(G) = {v2}  

φ2(x,y) = ¬E(x,y) 
φ2(G)   = {(v1,v1),(v3,v1),(v2,v3)}

G = v1

v2

v3v4

FOact  
=  

FO restricted 
to active domain

FO ⊆ RA/
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Formal Semantics of FOact

G ⊧α ∃x φ     iff     for some v ∈ ACT(G) and α' = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α ∀x φ     iff     for every v ∈ ACT(G) and α' = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α φ⋀ψ    iff     G ⊧α φ and G ⊧α ψ 

G ⊧α ¬φ        iff     it is not true that G ⊧α φ 

G ⊧α x=y        iff     α(x)=α(y) 

G ⊧α E(x,y)    iff     (α(x),α(y)) ∈ E

ACT(G) = {v | for some v': (v,v') ∈ E or (v',v) ∈ E}
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FOact ⊆ RA

1. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)  

2. φ has n variables

∃x1 ∃x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)

Assume: 
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FOact ⊆ RA

1. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)  

2. φ has n variables

Adom = RA expression for active domain = “π1(E) ∪ π2(E)” 

• (R(xi1,…,xit))✢ ⤳ R 

• (xi = xj)✢ ⤳  σ{i=j}( Adom × · · · × Adom ) 

• (ψ1 ⋀ ψ2)✢ ⤳ ψ1✢ ∩ ψ2✢ 

• (¬ψ)✢ ⤳ Adom × · · · × Adom  \  ψ✢ 
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FOact ⊆ RA

1. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)  

2. φ has n variables

Adom = RA expression for active domain = “π1(E) ∪ π2(E)” 

• (R(xi1,…,xit))✢ ⤳ R 

• (xi = xj)✢ ⤳  σ{i=j}( Adom × · · · × Adom ) 
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• (¬ψ)✢ ⤳ Adom × · · · × Adom  \  ψ✢ 

•  ( ∃xi φ(xi1,…,xit) )✢ ⤳ π{i1,…,it}\{i}( φ✢ )

∃x1 ∃x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)

Tr
an

sla
tio

n
Assume: 

π{1,…,n}(σ{i1=n+1,…,it=n+t} (Adomn × R)) 
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FOact ⊆ RA

1. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)  

2. φ has n variables

Adom = RA expression for active domain = “π1(E) ∪ π2(E)” 
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Adomn
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FOact ⊆ RA

1. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)  

2. φ has n variables

Adom = RA expression for active domain = “π1(E) ∪ π2(E)” 

• (R(xi1,…,xit))✢ ⤳ R 

• (xi = xj)✢ ⤳  σ{i=j}( Adom × · · · × Adom ) 

• (ψ1 ⋀ ψ2)✢ ⤳ ψ1✢ ∩ ψ2✢ 

• (¬ψ)✢ ⤳ Adom × · · · × Adom  \  ψ✢ 

•  ( ∃xi φ(xi1,…,xit) )✢ ⤳ π{i1,…,it}\{i}( φ✢ )

∃x1 ∃x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)

A∩B = ((A∪B) \ (A \ B)) 
                      \ (B \ A)

Tr
an

sla
tio

n
Assume: 
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FOact ⊆ RA

1. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)  

2. φ has n variables

Adom = RA expression for active domain = “π1(E) ∪ π2(E)” 

• (R(xi1,…,xit))✢ ⤳ R 

• (xi = xj)✢ ⤳  σ{i=j}( Adom × · · · × Adom ) 

• (ψ1 ⋀ ψ2)✢ ⤳ ψ1✢ ∩ ψ2✢ 

• (¬ψ)✢ ⤳ Adom × · · · × Adom  \  ψ✢ 

•  ( ∃xi φ(xi1,…,xit) )✢ ⤳ π{i1,…,it}\{i}( φ✢ )

∃x1 ∃x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)

Tr
an

sla
tio

n
Assume: 

Adomt if t is the arity of ψ✢
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FOact is equivalent to RA
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Question 1: How is π2(σ1=3(R1 × R2) expressed in FO? 
Remember: R1,R2 are binary

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀  x≠z ) expressed in RA? 
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2 

• R1 × R2 

• R1 \ R2 

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)} 

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠
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Question 1: How is π2(σ1=3(R1 × R2) expressed in FO? 
Remember: R1,R2 are binary

Answer: ∃x1,x3,x4 (R1(x1,x2) ⋀ R2(x3,x4) ∧ x1 = x3)
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Question 1: How is π2(σ1=3(R1 × R2) expressed in FO? 
Remember: R1,R2 are binary

Answer: ∃x1,x3,x4 (R1(x1,x2) ⋀ R2(x3,x4) ∧ x1 = x3)

Answer:  π1(σ{2=3,1≠4}(R1 × R1))

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀  x≠z ) expressed in RA? 
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2 

• R1 × R2 

• R1 \ R2 

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)} 

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠
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Logic Algebra Programming 
language

= =FO RA SQL
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Logic Algebra Programming 
language

= =FO RA SQL

very basic
on finite 
domains

over 
active domain
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⇝ How hard is it to retrieve data?
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Evaluation problem:  Given a query Q, a database instance db, 
                                  and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?

Emptiness problem:  Given a query Q, is there a database instance db 
                                  so that Q(db) ≠ ∅ ?

⇝ Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem:  Given queries Q1, Q2, is 
                                                   Q1(db) = Q2(db) 
                                    for all database instances db?

⇝ Can we safely replace a query with another? (Query optimization)
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  What can be mechanized?    ⤳ decidable/undecidable 

How hard is it to mechanise?  ⤳ complexity classes

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ · · ·

Alg

f

ti
m

e

input size

usage of resources:   • time 
                               • memory

Algorithm Alg is TIME-bounded  

by a function f : N ⟶ N if 

Alg(input) uses less than f (|input|) units of TIME.

SPACE-bounded by log(n)

TIME-bounded by a polynomial

SPACE-bounded by a polynomial

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE
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Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                              a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                         G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem
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[Trakhtenbrot ’50]

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite
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Proof: By reduction from the Domino (aka Tiling) problem.

[Trakhtenbrot ’50]

Reduction from P to P':   Algorithm that solves P using a O(1) procedure  
                                                                              “  P'(x) ” 
                                                 that returns the truth value of P'(x).

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite
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The (undecidable) Domino problem

Input:  4-sided dominos:

Rules:  sides must match, 
            you can’t rotate the dominos,  but you can ‘clone’ them.

Output:  Is it possible to form a white-bordered rectangle? (of any size)

. . .

. . .

. . .

. . .. . .

 Domino 
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The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino  -  Why is it undecidable? 

i
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 symbol is not modified)
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 rewritten, head moves left)

s 0 0 0
(initial configuration)
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l l

q q

. . 
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino  -  Why is it undecidable? 

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

1
l

(head is here, symbol is 
 rewritten, head moves left)

s 0 0 0
(initial configuration)

h 0 0 0

. . .

(halting configuration)
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Domino ⇝ Sat-FO  (domino has a solution iff φ satisfiable)

1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…
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H
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V V V V

V V V V
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V
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1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…
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H

H

H

H

H

H H H H

H H H H
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V V V V

V V V V

V V V V
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H
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2. Assign one domino to each node: 

    a unary relation 

 
 
 
    for each domino

D ( x )
H

V
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1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…

3. Match the sides             ∀x,y 

    if H(x,y), then Da(x) ⋀ Db(y)  

    for some dominos a,b that ‘match’ 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. . .

. . 
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V

2. Assign one domino to each node: 

    a unary relation 

 
 
 
    for each domino

D ( x )
H

V



Domino ⇝ Sat-FO  (domino has a solution iff φ satisfiable)

1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…

3. Match the sides             ∀x,y 

    if H(x,y), then Da(x) ⋀ Db(y)  

    for some dominos a,b that ‘match’ 
    horizontally         (Idem vertically)

. . .

. . 
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

4. Borders are white.

H

V

2. Assign one domino to each node: 

    a unary relation 

 
 
 
    for each domino

D ( x )
H

V



Algorithmic problems for FO
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Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                              a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem
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φ is satisfiable  iff  φ is not equivalent to ⊥

Satisfiability problem undecidable  ⇝  Equivalence problem undecidable

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction from the satisfiability problem

Actually, there are reductions in both senses: 

φ(x1,…,xn) and ψ(y1,…,ym) are  equivalent  iff  

   •  n=m 

   •  (x1=y1) ⋀ ··· ⋀ (xn=yn) ⋀ φ(x1,…,xn) ⋀ ¬ψ(y1,…,yn) is unsatisfiable 

   •  (x1=y1) ⋀ ··· ⋀ (xn=yn) ⋀ ψ(x1,…,xn) ⋀ ¬φ(y1,…,yn) is unsatisfiable
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Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                      a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                      and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
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💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem
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φ(x1,…,xn) 

G = (V,E) 

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:
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Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|), 
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)
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• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …
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Encoding of α = {x1,…,xn} ⟶ V

• each node is coded with a bit string of size log(|V|),

Cost of coding: ||α|| = n·log(|V|)
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α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:
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φ(x1,…,xn) 

G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  iff  (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES  iff  G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO  iff  G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES  iff  for some v ∈ V and α'= α ∪ {y↦v} 
                         we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:
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               let ψ'(x) be the replacement  
               of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element 
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Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
               let ψ'(x) be the replacement  
               of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element 
graph  iff  ψ is QBF-satisfiable

3. Test if  G ⊧∅ ψ'  for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q)    where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 

ψ'(x)=∃p ∀q . ( (p=x) ⋁ ¬(q=x) )

∃x ∃p ∀q . ( (p=x) ⋁ ¬(q=x) )
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A database of size 106

A query of size 100
Problem: Usual scenario in database
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A database of size 106

A query of size 100
Problem: Usual scenario in database
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Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

database

!24

query +Input:

TIME(2|query| + |data|)

TIME(|query| + 2|data|)
But we don’t distinguish this in the analysis: =



Combined, Query, and Data complexities 

!25

Separation of concerns:    How the resources grow with respect to 

                                                 • the size of the data 

                                                 • the query size

Query and data play very different roles.

[Vardi, 1982]



Combined, Query, and Data complexities 
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Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|



Combined, Query, and Data complexities 
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Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

O(2|query| + |data|) is 

O(|query| + 2|data|) is 

exponential in combined complexity 
exponential in query complexity 
linear in data complexity

exponential in combined complexity 
linear in query complexity 
exponential in data complexity
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Question

What is the data, query and combined complexity 
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space



!27

Question

What is the data, query and combined complexity 
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space

dataquery

O(log(|data|)·|query|) space PSPACE combined and query complexity

LOGSPACE data complexity



Recap
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LOGSPACEPSPACEUNDECIDABLE

Domino

Eval-FO 
(combined)

Eval-FO 
(data)

Sat-FO

Equivalence-FO

Equivalence-SQL

Equivalence-RA

QBF
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Trading expressiveness for efficiency

expressiveness efficiency

Alternation of quantifiers significantly affects complexity 
(recall that evaluation of QBF is PSPACE-complete:  ∀x ∃y ∀z ∃w … φ). 
 

What happens if we disallow ∀ and ¬ ? 
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The class NP

⊆ NP ⊆

NP  =  Problems whose solutions can be witnessed by a  certificate  
              to be guessed and checked in polynomial time  (e.g. a colouring)
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The class NP

⊆ NP ⊆

 Examples: 

• 3-COLORABILITY:   Given a graph G, can we assign a colour from {R,G,B} to each node 
                                              so that adjacent nodes have always different colours ?  

• SAT: Given a propositional formula, e.g. (p ⋁ ¬q ⋁ r) ⋀ (¬p ⋁ s ) ⋀ (¬s ⋁ ¬p), 
           can we assign a truth value to each variable so that the formula becomes true ? 

• MONEY-CHANGE: Given an amount of money A and a set of coins {B1, …, Bn}, 
                                            can we find a subset S ⊆ {B1, …, Bn} such that ∑ S = A ?

NP  =  Problems whose solutions can be witnessed by a  certificate  
              to be guessed and checked in polynomial time  (e.g. a colouring)
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              to be guessed and checked in polynomial time  (e.g. a colouring)
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Initial configuration

Final 
configuration
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The class NP

NP  =  Problems whose solutions can be witnessed by a  certificate  
              to be guessed and checked in polynomial time  (e.g. a colouring)

⊆ NP ⊆

Final 
configuration

Final 
configuration

Non-deterministic transitions

A solution exists if there is  
at least a successful path.

Many paths,  each has length 
bounded by a polynomial

Initial configuration

Final 
configuration
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Question

Consider: Positive FO  =  FO without ∀,¬

E.g.   φ = ∃ x ∃ y ∃ z .  (E(x, y) ⋁ E(y, z)) ⋀ ( y=z ⋁ E(x, z))

What is the complexity of evaluating Positive FO on graphs ?
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Question

Consider: Positive FO  =  FO without ∀,¬

E.g.   φ = ∃ x ∃ y ∃ z .  (E(x, y) ⋁ E(y, z)) ⋀ ( y=z ⋁ E(x, z))

What is the complexity of evaluating Positive FO on graphs ?

Solution

This is in NP:    Given φ and G=(V, E) 
                              it suffices to guess a binding α : { x, y, z, … } → V  
                              and then verify that the formula holds.
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Conjunctive Queries

Def.
CQ  =  FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y)  : – Parent(X,Z), Parent(Z,Y)”

Eg:        φ(x, y) =  ∃ z . (Parent(x, z) ⋀ Parent(z, y))
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Normal form:   “ ∃ x1, …, xn . φ(x1, …, xn) ”
quantifier-free and no equalities!
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Conjunctive Queries

Def.
CQ  =  FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y)  : – Parent(X,Z), Parent(Z,Y)”

Eg:        φ(x, y) =  ∃ z . (Parent(x, z) ⋀ Parent(z, y))

Select ... 
From ... 
Where Z

no negation or disjunction

It corresponds to positive  
“SELECT-FROM-WHERE” SQL queries

πX(σZ(R1 ×···× Rn))
no negation

It corresponds to “π-σ-×” RA queries

Normal form:   “ ∃ x1, …, xn . φ(x1, …, xn) ”
quantifier-free and no equalities!
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