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Recap

e Relational model (tables)

o Relational Algebra (union, product, difference, selection, projection)

e SQL (SELECT ... FROM ... WHERE ...)
e RA = basic SQL

o First-order logic (syntax, semantics)



Formulas as queries

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Tables = Relations
Rows = Tuples

Queries = Formulas

[E.E. Codd 1972]
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Formulas as queries

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Tables = Relations RA = FO

Rows = Tuples
Queries = Formulas How = What

[RA and FO logic have roughly* the same expressive power! J
[E.E. Codd 1972]

*FO without functions, with equality, on finite domains, ...



Formulas as queries

RACFO|
e R; xRy ~ Ri(x1, ..o, Xn) A Ra(Xn+1, oor Xm)
e R; UR; ~ Ry(X1 cory Xn) V Ra(X1, oons Xn)
. G{n:jl,...,in:jn}(R) ~ R(X1, ooy Xm) A (xu:le)/\ A (Xlnzxjn)
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Formulas as queries

FO¢RA|

“the complement of R” z le{g . -R(x)

..-> elements in the relations

~» We restrict variables to range over active domain

FQact d1(x) = vy E(y,x) ®
= i 1(G) =1v2
FO restricted Q)= 1wl G = @‘

to active domain d2(x,y) = 7E(x,y)



First-order logic restricted to active domain

Formal Semantics of FOact

GF,3x¢ iff forsomeve ACT(G)anda'=au{x+ v} we have Gk, ¢

Gk, Vx¢ iff foreveryve ACT(G)and o' =a U {x+ v} we have GF, ¢

Gk, oAV iff GE,dand GE,V
GE,¢  iff itis nottrue that Gk, ¢
Gk x=y iff a(x)=a(y)

Gk E(xy) iff (a(x).a(y))€E

ACT(G) ={v | for some v'": (v,v') € E or (viv) € E}



First-order logic restricted to active domain

[FOaCt C RA]
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Assume:
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[FOaCt C RA]

1. ¢ innormal form: (3* (=3)*)* + quantifier-free V(x1,...,Xn)

2. & has n variables
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First-order logic restricted to active domain

[FOaCt C RA]

1. ¢ innormal form: (3* (=3)*)* + quantifier-free V(x1,...,Xn)

2. & has n variables

Assume:

Adom = RA expression for active domain = “m1(E) U m2(E)”
° (R(Xil,...,X' Nt~ R

1t

o (xi=x)* > O'{i:j}( Adom X ... x Ador Adomt if t is the arity of ¥+

o (Y1 A2)T ~ Ut ngnt

o ()T ~ Adom X ... x Adom \ V*

o (Ix C[D(Xil,...,Xit) )+~ T, it}\{i}( C[>+ )

,,,,,



Corollary

[F()aCt is equivalent to RA]




Question 1: How is m2(o1=3(R1 X Ry) expressed in FO?
Remember: Ri,R; are binary

Question 2: How is 3y,z . (Ri(x,y) A Ri(y,z) A x#z ) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

0R1UR2
0R1><R2
e R\ R

- -
° U{ilijl,...,inijn}<R) :={(X1, ..., Xm) € R | (Xilzle)/\ vee A\ (Xinzxjn)}

(x1, ..., Xm) € R}

® ﬂ'{il,...,in}(R) = {(X119'°"Xin)
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Question 1: How is m2(o1=3(R1 X Ry) expressed in FO?
Remember: Ri,R; are binary

Answer: 3x;,X3,X4 (R1 (Xl,Xz) A R2<X3,X4> AX] = X3)

Question 2: How is 3y,z . (Ri(x,y) A Ri(y,z) A x#z ) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

0R1UR2
0R1><R2
e Ri\ R

x *
= G{ilijl,...,in;jn}(R> ‘:{(Xl, cees Xm) e R | (Xi1:Xj1)/\ e A (Xin:Xjn)}

(x1, ..., Xm) € R}

® ﬂ'{il,...,in}(R) = {(Xil""’Xin)

Answer: m1(op2=3124(R1 X R}))
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Algorithmic problems for query languages

Evaluation problem: Given a query Q, a database instance db,

and a tuple t, is t € Q(db) ?

~ How hard is it to retrieve data?
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Algorithmic problems for query languages

Evaluation problem: Given a query Q, a database instance db,
and a tuple t, is t € Q(db) ?

~ How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db

so that Q(db) # @ ?

~ Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem: Given queries Q1, Qa, is

Q1(db) = Q2(db)

for all database instances db?

~» Can we safely replace a query with another? (Query optimization)

11



Complexity theory

What can be mechanized? ~ decidable/undecidable

How hard is it to mechanise? ~ complexity classes
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* memory

 Algorithm Alg is TIME-bounded
by a function f: N — N if
-~ Alg(input) uses less than £ (|input|) units of TIME.
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Complexity theory H’s 10th pep

Domino
K
What can be mechanized? ~ decidable/undecidable :
How hard is it to mechanise? ~ complexity classes
T » usage of resources: ® time
* memory

- Algorithm Alg is [1:4+=bounded
by a function f: N — N if SPACE. -E Alg
- Alg(inpuz) uses less than f (|imput|) units of FHVIE. — -

f—> TIME-bounded by a polynomial

LOGSPACE < PTIME < PSPACE < EXPTIME ¢ . ..

\ N~ -+ SPACE-bounded by a polynomial
SPACE-bounded by log(n)

12



Algorithmic problems for FO

Evaluation problem:  Given a FO formula ¢(xi, ..., xn),

a graph G, and a binding &, does G F, ¢ ?

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k. ?

Equivalence problem: Given FO formulae ¢,V is
Gk it GEV
for all graphs G and bindings «?
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DECIDABLE w foundations of the database industry

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k. ?

°* UNDECIDABLE ~ both for k and Egnice

Equivalence problem: Given FO formulae ¢,V is
Gk it GEV
for all graphs G and bindings «?

** UNDECIDABLE «» by reduction to the satisfiability problem
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Satisfiability problem: Given a FO formula ¢, is there a graph G
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Algorithmic problems for FO

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k¢ ?

** UNDECIDABLE w both for k and Egnje [ Trakhtenbrot ’50]

Proof: By reduction from the Domino (aka Tiling) problem.

Reduction from P to P': Algorithm that solves P using a O(1) procedure
. (44 P'(X> »
that returns the truth value of P'(x).
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The (undecidable) Domino problem

Domino

Input: 4-sided dominos:

Output: s it possible to form a white-bordered rectangle? (of any size)

Rules: sides must match,
you can't rotate the dominos, but you can ‘clone’ them.



The (undecidable) Domino problem

Domino - Why is it undecidable?

[t can easily encode halting computations of Turing machines:
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The (undecidable) Domino problem

Domino - Why is it undecidable?

[t can easily encode halting computations of Turing machines:

W (head is elsewhere,

symbol is not modified)

(head is here, symbol is

rewritten, head moves right)

4 (head is here, symbol is

rewritten, head moves left)

% % (initial configuration)

>4 P4 B4 B4
X




The (undecidable) Domino problem

Domino - Why is it undecidable?

[t can easily encode halting computations of Turing machines:

7 (head is elsewhere,
/Nl L\ symbol is not modified)
N4

(head is here, symbol is
rewritten, head moves right)

4 (head is here, symbol is

rewritten, head moves left)

XD D B
X
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1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...
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Domino + Sat-FO (domino has a solution iff ¢ satisfiable)

1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...

U H, 2. Assign one domino to each node:
vl a unary relation
A5 D
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L for each domino
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1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...

.. H-»O 2. Assign one domino to each node:
vl a unary relation
H D X
.
7

X
for each domino

¢I

O=O=CF

3. Match the sides VX,y
if H(x,y), then D,(x) A Dy(y)

for some dominos a,b that ‘match’
horizontally  (Idem vertically)



Domino + Sat-FO (domino has a solution iff ¢ satisfiable)

1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...

.. H-»O 2. Assign one domino to each node:
vl a unary relation
H D X
.
7

X
for each domino

¢I

O=O=CF

3. Match the sides VX,y
if H(x,y), then D,(x) A Dy(y)

for some dominos a,b that ‘match’

horizontally ~ (Idem vertically)
4. Borders are white.
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Algorithmic problems for FO

¢ is satisfiable iff ¢ is not equivalent to L

Satistiability problem undecidable «» Equivalence problem undecidable

Actually, there are reductions in both senses:

&(x1,....Xn) and W(y1s...,ym) are equivalent iff
e N=m
o (x1=y1) A e+ A (Xa=Yn) A &(X1,...,Xn) A TV(Y1,...,yn) is unsatisfiable
o (x1=y1) A v+ A (Xa=Yn) A V(X15e.0Xn) A 1B(Y1s...,yn) is unsatisfiable

Equlvalence problem: Given FO formulae ¢,V is
Gk it GEY
for all graphs G and bindings «?

** UNDECIDABLE « by reduction from the satisfiability problem
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Algorithmic problems for FO

Evaluation problem:  Given a FO formula ¢(x1, ..., xn),

a graph G, and a binding &, does G F, ¢ ?

DECIDABLE w foundations of the database industry

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k¢ ?

** UNDECIDABLE ~ both for F and Efnjce

Equivalence problem: Given FO formulae ¢,V is
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Evaluation problem for FO

¢(X1,...,Xn)
Input: ( G = (VE)

Output: GE, ¢ ?
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S(X1,0+05Xn)
Input: G = (V.E) Output: GE, ¢ ?

= {X1,e.Xn} — V

Encoding of G = (V, E)

o each node is coded with a bit string of size log(|V]),
o edge set is encoded by its tuples, e.g. (100,101), (010, 010), ...

Cost of coding: ||G]| = |E|-2-log(|V]) = |V| (mod a polynomial)
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Evaluation problem for FO

S(X1,0+05Xn)
Input: G = (V.E) Output: GE, ¢ ?

= 1{X1,.0,Xn} — V

Encoding of G = (V, E)

o each node is coded with a bit string of size log(|V]),
o edge set is encoded by its tuples, e.g. (100,101), (010, 010), ...

Cost of coding: ||G]| = |E|-2-log(|V]) = |V| (mod a polynomial)

Encoding of & = {x1,....xn} — V

o cach node is coded with a bit string of size log(|V]),

Cost of coding: ||a|| = n-log(|V])

21



Evaluation problem for FO

¢(X1,...,Xn)
Input: ( G = (V.E)

Output:

Gy 2
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Evaluation problem for FO

¢(X1,...,Xn)
G =(ViE) Output: Gk, ¢ ?

= 1{X1,.0,Xn} — V

Input:

o Ifd(x1,....xn) = E(x5,xj):
answer YES iff (a(xi),a(x)) € E

o Ifd(x1.00xn) = V(X1,00Xn) A V'(X1,0005Xn):
answer YES ift GE,Vand Gk, V'

. Ifq)(XL...,Xn) = _I'\l/(Xl,...,Xn)I
answer NO ift Gk, ¥

o Ifd(x1,.0sXn) = Iy . V(X100 XnyY):

answer YES iff for somev e Vand a'=au{y-v}
we have G kg V.
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G = (V.E) Output: GF, 9?2
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does it take? < |¢| times 2
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o Ifd(x1.00xn) = V(X1,00Xn) A V'(X1,0005Xn):
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Evaluation pb for FO is PSPACE-complete

PSPACE-complete problem: QBF

(satistaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)
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Evaluation pb for FO is PSPACE-complete

PSPACE-complete problem: QBF

(satistaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

[Theorem: Evaluation for FO is PSPACE-complete (combined c)]

Polynomial reduction QBF ~ FO: 1. Givenv € QBF,

let V'(x) be the replacement
V'(x)=3p vq. ((p=x) V =(q=x) ) of each p’ with ‘p=x"in .
OSSOSO | 2. Note: Ix ' holds in a 2-element

- Ix 3p vq. ((p=x) V =(q=x) ) graph ift V is QBF-satisfiable

3. Testif GEgV' for G=({vv'},{})
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Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106
Problem: Usual scenario in database

A query of size 100

Input:
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Combined, Query, and Data comy

Problem: Usual sce

— database



Combined, Query, and Data co

Problem: Usual sce

— database

TIME(2laueryl + |datal)
But we don’t distinguish this in the analysis: =

TIME(|query]| + 2ldatal)



Combined, Query, and Data complexities [Vardi, 1982]

Separation of concerns:

Query and data play very different roles.

How the resources grow with respect to
* the size of the data

* the query size

25



Combined, Query, and Data complexities

Combined complexity: input size is |query| + |data]
Query complexity (|data| fixed): input size is |query]|

Data complexity (|query| fixed): input size is |data]
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Combined, Query, and Data complexities

Combined complexity: input size is |query| + |data]
Query complexity (|data| fixed): input size is |query]|

Data complexity (|query| fixed): input size is |data]

exponential in combined complexity

O(2laueryl + |datal) is exponential in query complexity
linear in data complexity

exponential in combined complexity
O(|query| + 2ldatal) is  linear in query complexity
exponential in data complexity

26



Question

What is the data, query and combined complexity
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query]|

combined complexity, input size: |data| + |query|

] - 2 - log(|G|) + k-log(|e|+|G|) space



Question

What is the data, query and combined complexity
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query]|

combined complexity, input size: |data| + |query|

4] -2 - log(|G|) + k-log(|ae|+|G|) space

query ‘J \/ data

PSPACE combined and query complexity

O(log(|datal)-|query]) space
LOGSPACE data complexity



Eval-FO
(data)

LOGSPACE



Trading expressiveness for efhciency

expressiveness efficiency

Alternation of quantifiers significantly affects complexity

(recall that evaluation of QBF is PSPACE-complete: Vx 3y Vz Jw ... ).

What happens if we disallow V and = ?

29



The class NP

LOGSPACE < PTIME <  PSPACE < EXPTIME



The class NP

LOGSPACE < PTIME € NP € PSPACE ¢ EXPTIME

NP = Problems whose solutions can be witnessed by a certificate
to be guessed and checked in polynomial time (e.g.a colouring)
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The class NP

LOGSPACE < PTIME € NP € PSPACE ¢ EXPTIME

NP = Problems whose solutions can be witnessed by a certificate
to be guessed and checked in polynomial time (e.g.a colouring)

Examples:

¢ 3-COLORABILITY: Given a graph G, can we assign a colour from {R,G,B} to each node

so that adjacent nodes have always different colours ?

o SAT: Given a propositional formula, e.g. (p Vq V) A(mp Vs) A (as V ap),
can we assign a truth value to each variable so that the formula becomes true ?

e MONEY-CHANGE: Given an amount of money A and a set of coins { By, ..., B,},
can we find a subset § C {Bjy, ..., B,} such that Y S =4 ?
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The class NP

LOGSPACE < PTIME € NP € PSPACE ¢ EXPTIME

NP = Problems whose solutions can be witnessed by a certificate
to be guessed and checked in polynomial time (e.g.a colouring)
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The class NP

LOGSPACE < PTIME € NP € PSPACE ¢ EXPTIME

NP = Problems whose solutions can be witnessed by a certificate
to be guessed and checked in polynomial time (e.g.a colouring)

Olalalblblo]o ‘ Initial configuration

90

q

Final

conﬁguration
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The class NP

LOGSPACE < PTIME € NP € PSPACE ¢ EXPTIME

NP = Problems whose solutions can be witnessed by a certificate
to be guessed and checked in polynomial time (e.g.a colouring)

Olalalblblo]o Initial configuration

Non-deterministic transitions

(S () () |0|blalb|b|0|0

[
q1

() O QO () @ Final

configuration

) Final ) O

configuration Final

conﬁguration .



The class NP

LOGSPACE < PTIME € NP € PSPACE ¢ EXPTIME

NP = Problems whose solutions can be witnessed by a certificate
to be guessed and checked in polynomial time (e.g.a colouring)

Olalalplplolo Initial configuration

q0
Non-deterministic transitions

(S () () |0|blalb|b|0|0

qu Many paths, each has length

: bounded by a polynomial
) O QO () @ Final

configuration

() Final () ()

configuration Final

conﬁguration .



The class NP

LOGSPACE < PTIME € NP € PSPACE ¢ EXPTIME

NP = Problems whose solutions can be witnessed by a certificate
to be guessed and checked in polynomial time (e.g.a colouring)

Olalalplplolo Initial configuration

q0
Non-deterministic transitions

( () () |0|blalb|b|0|0

qu Many paths, each has length

: bounded by a polynomial
) O QO () @ Final

. < A solution exists if there is
configuration

at least a successful path.

() Final () ()

configuration Final

conﬁguration
31



Question

Consider:  Positive FO = FO without V,—

Eg ¢=3x3Iy3z. (E(x,y)VE(y,z)) /\(yzz\/E(x,z))

What is the complexity of evaluating Positive FO on graphs ?
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Question

Consider:  Positive FO = FO without V,—

Eg ¢=3x3Iy3z. (E(x,y)VE(y,z)) /\(y=z\/E(x,z))

What is the complexity of evaluating Positive FO on graphs ?

Solution

This is in NP:  Given ¢ and G=(V, E)
it suffices to guess a bindinga: { x, 9,2, ... } > V
and then verity that the formula holds.

32



Conjunctive %eries

Def. o :
CQ = FO without v,—,V

Eg:  &(x,y) = 3z. (Parent(x, z) A Parent(z, y))

Usual notation: “Grandparent(X,Y) : — Parent(X,Z), Parent(Z,Y)”
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Conjunctive (&eries

Def.
CQ = FO without v,—,V

Normal form: “3x1, ..., x5 d(x1, ooy x) 7

Eg:  &(x,y) = 3 z. (Parent(x, z) A Parent(z, y))

Usual notation: “Grandparent(X,Y) : — Parent(X,Z), Parent(Z,Y)”
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Conjunctive (&eries

Def.
CQ = FO without v,—,V

b

Normal form: “3x1, ..., x,. d(x1, ..o X)

Eg:  &(x,y) = 3 z. (Parent(x, z) A Parent(z, y))

Usual notation: “Grandparent(X,Y) : — Parent(X,Z), Parent(Z,Y)”

It corresponds to positive 5
“SELECT-FROM-WHERE” SQL queries :
Select ... :

It corresponds to “m-g-x” RA queries

From ... 7TX(0'2<R1 Xeee X Rn>)
. A
Where % | . . s no negation
...... no negation or disjunction
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