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Recap

o Active domain semantics and expressiveness: FQOat =*RA
e Undecidable problems (Halting < Domino < FO-Satisfiability < FO-Equivalence)

o Data complexity / Combined complexity

e Evaluation problem for FO: in PSPACE (combined comp.)
in PSPACE (query comp.)
in LOGSPACE  (data comp.)

o Positive FO: evaluation in NP (combined comp.)



Conjunctive %eries

Def. o :
CQ = FO without v,—,V

Eg:  &(x,y) = 3z. (Parent(x, z) A Parent(z, y))

Usual notation: “Grandparent(X,Y) : — Parent(X,Z), Parent(Z,Y)”
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Conjunctive (&eries

Def.
CQ = FO without v,—,V

b

Normal form: “3x1, ..., x,. d(x1, ..o X)

Eg:  &(x,y) = 3 z. (Parent(x, z) A Parent(z, y))

Usual notation: “Grandparent(X,Y) : — Parent(X,Z), Parent(Z,Y)”

It corresponds to positive :
“SELECT-FROM-WHERE” SQL queries :
Select ... f
From ... : wx(oz(Ry XX Ry))

Where Z : g
*...... no negation or disjunction

It corresponds to “m-g-x” RA queries

I no negation



Homomorphisms

Homomorphism between structures S=(V,R1,...,R,) and S'=(V"Ri,....,R,)

isa function h:} — ' such that
(X1, ..y x) € R; implies (h(x1),....h(x»)) € R;
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Homomorphism between structures S=(V,R1,...,R,) and S'=(V"Ri,....,R,)

isa function h:}V — V' such that
(X1, .esx) € R; implies (h(x1),...,h(x,)) € R/
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Canonical structure Gy ofa Conjunctive Query ¢ has
e variables as nodes
o tuples (x1,...,x,) € R
for all atomic sub-formulas R; (x1,...,x,) of ¢
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Canonical structures

Canonical structure Gy ofa Conjunctive Query ¢ has
e variables as nodes
o tuples (x1,....,x,) € R;
for all atomic sub-formulas R;(x1,...,x,) of ¢
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Canonical structures

Canonical structure Gy ofa Conjunctive Query ¢ has
e variables as nodes
o tuples (x1,....,x,) € R;
for all atomic sub-formulas R;(x1,...,x,) of ¢

Fact 3:
Fact 11 ch = q) G”|= ¢ IH’ = h: Gq; o Gn Fact 22 h(Gq)) = q)
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Evaluation via homomorphisms

-

Lemma. The evaluation ofa CQ ¢(x1, ...,x,) on S’ returns the set

8(8") = { (h(x1), . h(x)) | h: Gy — 87}
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Evaluation via homomorphisms

Lemma. The evaluation ofa CQ &(x1, ..., x») on S’ returns the set

8(8") = { (h(x1), b)) | h: Gy — 87}

homomorphisms Gg— G’ ?

What is the result of ¢(G") 2




Evaluation via homomorphisms

[ Theorem. Evaluation of CQ isin NP (combined complexity) ]

-“
.

G'=(V,E)

Input: A CQ &(x1,...,x,), agraph G, atuple (ai,...,42,)
Output: Is (a1,...,4,) € $(G) ?
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[ Theorem. Evaluation of CQ isin NP (combined complexity) ]
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Evaluation via homomorphisms

[ Theorem. Evaluation of CQ isin NP (combined complexity) ]

Input: A CQ ¢(x1,....x4), agraph G, atuple (a1,....41)  [deas? :
Output: Is (a1,...,2,) € $(G) ?

1. Guess h: Go— G

2. Check that it is a homomorphism

3. Output YES if (h(x1),....h(x,)) = (a1, ...,4,); NO otherwise.



Evaluation via homomorphisms

[ Theorem. Evaluation of CQ is NP-complete (combined complexity)]
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[ Theorem. Evaluation of CQ is NP-complete (combined complexity)]

NP-complete problem: 3-COLORABILITY
Input: A graph G

Output: Can we assign a colour from {R,G,B} to each node

so that adjacent nodes have always different colours ?

_ K3

Is there a homomorphism from G to K3? %A/'Q




Evaluation via homomorphisms

[ Theorem. Evaluation of CQ is NP-complete (combined complexity)]

NP-complete problem: 3-COLORABILITY
Input: A graph G

Output: Can we assign a colour from {R,G,B} to each node

so that adjacent nodes have always different colours ?

_ K3

Is there a homomorphism from G to K3? %}Q

Reduction 3COL ~ CQ-EVAL: 1. Given G, build a CQ ¢ such that Gy = G.
2. Testif () € d(K3).
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Lemma. Every CQ is monotone:
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Monotonicity and preservation theorems

[ Lemma. Every CQ is monotone: :
. §C§' implies ¢(S) € &(S")
Proof
&(S) = {(h(x1), .. h(x,)) | h: Gy — S}
C {(h'(x1), ... h"(xs)) | h": Gy — §"}
= $(8")

@ “The relation R has at most 2 elements” ¢ CQ

@ “The radius of the graph is 5" ¢ CQ

@ “There is a node connected to every other node” ¢ CQ

10
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Theorem. Ifan FO query ¢ is monotone

then ¢ € UCQ |[Rossman 'OS]J
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Monotonicity and preservation theorems

4 )
Theorem. Ifan FO query ¢ is monotone

then ¢ € UCQ |[Rossman '08]j

Finite unions of CQs

~ 3 AV fragment of FO

Equally expressive, but
UCQ are less succinct

4//7

e One example of the few properties which still hold on finite structures.

e Proof in the finite is difhicult and independent.



Static analysis with CQs

The satisfiability problem for CQ is decidable...
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Static analysis with CQs

problem: CQ-CONTAINMENT

Input: Two CQs ¢,V
Output: Does ¢(S5) € V(S) holds for every structure S ?

Theorem. The containment problem for CQ is NP-complete

d(x1, ..., X) is contained in V(y1, ..., ym) ff 1. z=m
2. Thereis g: Gy —> Gy

Why?
3. g(yi)) =x; forall:

Question: Is this combined or data complexity? Answer: None!

13
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Static analysis with CQs

&(x1, ..., X5) is contained in Y(y1,....ym) iff 1. z=m
2. Thereis g: Gy —> Gy
o 3. g(yi) =x; forall:

L(g0n)s e gn)) | g: Gy — S}
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Static analysis with CQs

&(X1, ..., Xn) is contained in V(y1, ..., ) ff 1. 2 =m

2. Thereis g: Gy —> Gy

< 3. g(yi) =x; forall:
(=] Suppose VS d(S) € US)
If there is h: G, — S {(g0n), - g0m) | g: Gy — S}

Then there is g: Gy — § such that h(xi,...,x,) = g(y1, ..., yn)

14



Static analysis with CQs

&(X1, ..., Xn) is contained in V(y1, ..., ) ff 1. 2 =m

2. Thereis g: Gy —> Gy

p—— 3. g(y:) =x; forall;
(=] Suppose VS d(S) € US)

~

If there is h: G, — S {(g0n), - g0m) | g: Gy — S}

Then there is g: Gy — § such that h(xi,...,x,) = g(y1, ..., yn)
Take §= Gy and h = identity.
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Static analysis with CQs

d(x1, ... X) is contained in V(y1, .0, ym) iff 1. 2=m
2. Thereis g: Gy —> Gy
B 3. g(y;) =x; foralli

(=] Suppose VS d(S) € US)
It thereis h: Gy — § {01 gl) | 8: Gy — 8§
Then there is g: Gy — § such that h(xi,...,x,) = g(y1, ..., yn)
Take §= Gy and h = identity.
[<=] Consider S and (v1,...,v») € &(S).
Then, (v1,...,v») = (h(x1), ..., h(xn)) for some h: Gy — S.
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Static analysis with CQs

&(x1, ...r Xn) is contained in V(y1, ..., ym) iff 1. 2 =m

2. Thereis g: Gy — Gy
{ (h(x1), ... h(x,)) | h: Gy — S}
o - 3. g(yi) =x; forall:

(=] Suppose VS d(S) € US)

It thereis h: Gy — § W

Then there is g: Gy — § such that h(xi,...,x,) = g(y1, ..., yn)
Take §= Gy and h = identity.

[<=] Consider S and (v1,...,v») € &(S).
Then, (v1,...,v») = (h(x1), ..., h(xn)) for some h: Gy — S.
Since g(y1, ..s¥n) = (X1, .., X5), then (v1,...,v,) = h(x1, ..., x0) = h(gy1, -0 9))-
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Static analysis with CQs
&(x1, ...r Xn) is contained in V(y1, ..., ym) iff 1. 2 =m
2. Thereis g: Gy —> Gy

. G 3. g(yi) =x; forall:
(=] Suppose VS d(S) € US)

[f there is h: Gy —> S g0 - g0n)) | 8: Gy — 5}

Then there is g: Gy — § such that h(Xl\Xn) = g1 ee0s V)

Take §= Gy and h = identity.

[«—] Consider Sand (01,....5,) € &(S).

Then, (01,...,vn) — (h(x1), ..., h(xs)) for some h: Gs —> .

Since g(y1, ..o, V1) = (X1, e0r %) then (01, .0y ) = h(X1, o0 %) = h(g(H1, 000 90)).
hog isa homomorphism from GytoS. Hence, (v1,...,v,) € U(S).

14



Static analysis with CQs

problem: CQ-EQUIVALENCE

Input: Two CQs ¢,V
Output: Does ¢(S) =V(S) holds for every S ?

(we write “o={”)
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[ Theorem. The equivalence problem for CQ is NP-complete ]

l. n=m
2a. Thereis g: Gy —> Gy
b=\ ift 2b. Thereis h: Gy — Gy

3a. g(y;) =x; forall;
3b. h(x;) =y; forall:
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Static analysis with CQs

problem: CQ-EQUIVALENCE

Input: Two CQs ¢,V
Output: Does ¢(S) =W(S) holds forevery §2  (we write “¢o={”)

[ Theorem. The equivalence problem for CQ is NP-complete ]

l. n=m
2a. Thereis g: Gy —> Gy
b=\ ift 2b. Thereis h: Gy — Gy

3a. g(y;) =x; forall;
3b. h(x;) =y; forall:

Amounts to testing if Ggand Gy are hom-equivalent
(homomorphisms in both senses)

15



Static analysis with CQs

Query optimisation: Can I simplify the query?
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Static analysis with CQs

Query optimisation: Can I simplify the query?

problem: CQ-MINIMIZATION

Input: A CQ ¢
Output: Is there a smaller CQ  such that y=¢ 2

smaller = with less number of atoms

16
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Input: A CQ ¢
Output: Is there a smaller CQ WV such that y=¢ 2
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Static analysis with CQs

problem: CQ-MINIMIZATION

Input: A CQ ¢
Output: Is there a smaller CQ WV such that y=¢ 2

[ Theorem. The minimization problem for CQ is NP-complete ]

Amounts to testing if there is a smaller structure hom-equivalent to Gg

~ testing if there is 2 non-injective endomorphism
g: Go —> Gy

The smallest structure hom-equivalent to S is called the core of S, and

1t 1S unique.

N _/

17
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Static analysis with CQs

Question: o Is ¢ = Ix,y,z R(x,y) A R(x,2) A S(z,2) A S(z,y) minimal?

e What is its minimal equivalent query?

Answer:
““““““ S S
R ) . T~ R
W 2 e W a—
R ., S i iaaeaas ....' et et
T e
Gy core(Gy)

No! Vv =3x,z R(x,z) A S(z,z) is the minimal query s.t. ¢ =V



Adding functional dependencies
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Adding functional dependencies

.2
key constraints like

‘column SSN determines column Name in the table Employees”

(component 7) (componentj)  (relation)

19



Adding functional dependencies

A unary functional dependency is a sentence of the form
V X15eesXnY IoeeosYn « R(X1yee0Xn) A R(Y15e00¥0) A (X = i) = (x5 =)

"R[i—>j]" : in relation R the i-th component determines the j-th component
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Adding functional dependencies

A unary functional dependency is a sentence of the form
V X1yee0sXn,Y 1eeosYn - R(X1ye0sXn) A R(V15057n) A (xi = y1) = (%=

"R[i—>j]" : in relation R the i-th component determines the j-th component

Example: In the following relation we may enforce the functional dependency

Y = Vx,0,2 59,2 Rx%2) ARxY,2)A(x=x") = (y=y)

Agent Name Drives
007 James Bond Aston Martin
200 Mr Smith Cadillac
207 Mrs Smith Mercedes

3 Jason Bourne BMW

20
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A unary functional dependency is a sentence of the form
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Adding functional dependencies

A unary functional dependency is a sentence of the form
V X15eesXnY IoeeosYn « R(X1yee0Xn) A R(Y15e00¥0) A (X = i) = (x5 =)

"R[i—>j]" : in relation R the i-th component determines the j-th component

A structure S verifies a set of UFD {d1,...,¢n} if SE 1A+ A n.
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Adding functional dependencies

A unary functional dependency is a sentence of the form
V X1yee0sXn,Y 1eeosYn - R(X1ye0sXn) A R(V15057n) A (xi = y1) = (%=

"R[i—>j]" : in relation R the i-th component determines the j-th component

All the previous problems:

e CQ-CONTAINMENT
« CQ-EQUIVALENCE
« CQ-MINIMIZATION

remain in NP if we further restrict finite structures
so as to satisfy any set of functional dependencies
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Adding functional dependencies

A unary functional dependency is a sentence of the form
V X1yee0sXn,Y 1eeosYn - R(X1ye0sXn) A R(V15057n) A (xi = y1) = (%=

"R[i—>j]" : in relation R the i-th component determines the j-th component

N

All the previous problems: v Modity the canonical structure Gy ...

e CQ-CONTAINMENT
« CQ-EQUIVALENCE
« CQ-MINIMIZATION

remain in NP if we further restrict finite structures
so as to satisfy any set of functional dependencies

22



Adding functional dependencies

CQ ¢ = Rix,9,2) A Ro(x,7,2") A Ri(z,w) A Ri(z,w")

under functional dependencies F={ Ri[1—2], R»: [1—3] }
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Adding functional dependencies

under functional dependencies F={ Ri[1—2], R [1—3] }

(=

'.X',

o chaser(Gy) isunique and

can be constructed in polynomial time

) = chaser(Gy) (the chased canonical structure)

23



Adding functional dependencies

C chase
S = e

24



Adding functional dependencies

C chase
S = e

The static analysis problems restricted to FD's can now be also shown in NP
e CQ-Containment ¢ CrV iff chaser(d) C chaser(V)

o CQ—Equivalence ¢=rV iff chaser(¢) = chaser(V)

. is minimal wrt
e CQ-Minimization ® is minimal w iff chaser(¢) is minimal

structures verifying F

24



Acyclic CQ’s : Definition

On graphs: CQ ¢ is acyclic it Gy is tree-like
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Acyclic CQ’s : Definition

underlying
undirected graph is

On graphs: CQ ¢ is acyclic it Gy is tree-like /\acy_chc/,
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Acyclic CQ’s

On graphs: CQ ¢ is acyclic it Gy is tree-like
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Acyclic CQ’s

On graphs: CQ ¢ is acyclic it Gy is tree-like

On general structures: a CQ ¢ is acyclic if it has a join tree

¢(y) =3Z.Ri(Z1) A ... A Rn(Zm)
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Acyclic CQ’s

On graphs: CQ ¢ is acyclic it Gy is tree-like

On general structures: a CQ ¢ is acyclic if it has a join tree

¢(y) =3Z.Ri(Z1) A ... A Rn(Zm)

Ajoin tree is a tree T st:
e nodes are the atoms R;(Z;)

o for every variable x of ¢ the set of Ri(Zi)’s with x € Z; forms a subtree of T
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Acyclic CQ’s

On graphs: CQ ¢ is acyclic it Gy is tree-like

On general structures: a CQ ¢ is acyclic if it has a join tree

¢(}—’) =137Z.R1(Z1) A ... ARu(Zm) If x occurs in

two nodes, then it occurs in
the path linking the two

Ajoin tree is a tree T st: nodes.

e nodes are the atoms R;(Z;)

o for every variable x of ¢ the set of Ri(Zi)’s with x € Z; forms a subtree of T
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Acyclic CQ’s

On graphs: CQ ¢ is acyclic it Gy is tree-like

Alternatively, if its
canonical hyper-graph is

a-acyclic.

On general structures: a CQ ¢ is acyclic if it has a join tree

CP(}—’) =137Z.R1(Z1) A ... ARu(Zm) If x occurs in

two nodes, then it occurs in
the path linking the two

Ajoin tree is a tree T st: nodes.

e nodes are the atoms R;(Z;)

o for every variable x of ¢ the set of Ri(Zi)’s with x € Z; forms a subtree of T

26



Acyclic CQ’s

d(x,y) = 3z. E(x,z) A E(z,t) A E(y,2) ;(X’<
E(yz)  E(zY)
join tree
¢ = Axy,z,t . R(x,y2) A S(z,t) A S(x,z) A T(z) A T(x)
S(z S(z,t)
S(x,2) T(x) S(x,2) T(x)

e

not a Jom tree a join tree

X A z) Z R(X,y,z)

27



Acyclic CQ’s

[ The evaluation problem for acyclic CQ sentences is in O(|4|.|D|) ]
| Yannakakis]

,,,,,

,,,,,
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