
Logical foundations of databases

∀∃¬

ESSLLI 2016
Bolzano, Italy

CNRS LaBRI

Diego Figueira Gabriele Puppis

day 4

Recap

• Conjunctive Queries (correspondence with SQL and Relational Algebra)

• Homomorphisms and canonical structure

• Evaluation of CQ (NP-completeness)

• Containment, Equivalence, Minimisation of CQ (NP-completeness)

• Extension to functional dependencies (chased canonical structure)

• Acyclic Conjunctive Queries

 3

Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

 3

Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

underlying
undirected graph is

acyclic

 3

Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) z t

y

x

underlying
undirected graph is

acyclic

 3

Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) z t

y

x

underlying
undirected graph is

acyclic

acyclic

 3

Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) z t

y

x

underlying
undirected graph is

acyclic

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) ∧ E(x,y) z t

y

x

acyclic

 3

Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) z t

y

x

underlying
undirected graph is

acyclic

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) ∧ E(x,y) z t

y

x

acyclic

non acyclic

 4

Acyclic CQ’s

On graphs: CQ φ is acyclic if Gφ is tree-like

 4

Acyclic CQ’s

On graphs: CQ φ is acyclic if Gφ is tree-like

On general structures: a CQ φ is acyclic if it has a join tree

φ(ȳ) = ∃z̄ . R1(z̄1) ⋀ … ⋀ Rm(z̄m)

 4

Acyclic CQ’s

On graphs: CQ φ is acyclic if Gφ is tree-like

On general structures: a CQ φ is acyclic if it has a join tree

φ(ȳ) = ∃z̄ . R1(z̄1) ⋀ … ⋀ Rm(z̄m)

A join tree is a tree T st:
• nodes are the atoms Ri(z̄i)
• for every variable x of φ the set of Ri(z̄i)’s with x ∈ z̄i forms a subtree of T

 4

Acyclic CQ’s

On graphs: CQ φ is acyclic if Gφ is tree-like

On general structures: a CQ φ is acyclic if it has a join tree

φ(ȳ) = ∃z̄ . R1(z̄1) ⋀ … ⋀ Rm(z̄m)

A join tree is a tree T st:
• nodes are the atoms Ri(z̄i)
• for every variable x of φ the set of Ri(z̄i)’s with x ∈ z̄i forms a subtree of T

If x occurs in
two nodes, then it occurs in

the path linking the two
nodes.

 4

Acyclic CQ’s

On graphs: CQ φ is acyclic if Gφ is tree-like

On general structures: a CQ φ is acyclic if it has a join tree

φ(ȳ) = ∃z̄ . R1(z̄1) ⋀ … ⋀ Rm(z̄m)

A join tree is a tree T st:
• nodes are the atoms Ri(z̄i)
• for every variable x of φ the set of Ri(z̄i)’s with x ∈ z̄i forms a subtree of T

If x occurs in
two nodes, then it occurs in

the path linking the two
nodes.

Alternatively, if its
canonical hyper-graph is

α-acyclic.

 5

Acyclic CQ’s

 φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) E(x,z)

E(z,t)E(y,z)

join tree

S(z,t)

S(x,z)

R(x,y,z) T(z)

T(x)

S(z,t)

S(x,z)

R(x,y,z) T(z)

T(x)

not a join tree a join tree

 φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

 6

Acyclic CQ’s

join tree? φ1 = R(x1,x2,x3) ⋀ R(x1,x6,x5) ⋀ R(x3,x4,x5)

 6

Acyclic CQ’s

join tree? φ1 = R(x1,x2,x3) ⋀ R(x1,x6,x5) ⋀ R(x3,x4,x5)

R(x3,x4,x5) R(x1,x2,x3) R(x1,x6,x5) ?

 6

Acyclic CQ’s

join tree? φ1 = R(x1,x2,x3) ⋀ R(x1,x6,x5) ⋀ R(x3,x4,x5)

R(x3,x4,x5) R(x1,x2,x3) R(x1,x6,x5) ?

R(x3,x4,x5) ?R(x1,x2,x3) R(x1,x6,x5)

 6

Acyclic CQ’s

join tree? φ1 = R(x1,x2,x3) ⋀ R(x1,x6,x5) ⋀ R(x3,x4,x5)

join tree? φ2 = R(x1,x2,x3) ⋀ R(x1,x6,x5) ⋀ R(x3,x4,x5) ∧ R(x1,x3,x5)

R(x3,x4,x5) R(x1,x2,x3) R(x1,x6,x5) ?

R(x3,x4,x5) ?R(x1,x2,x3) R(x1,x6,x5)

 6

Acyclic CQ’s

join tree? φ1 = R(x1,x2,x3) ⋀ R(x1,x6,x5) ⋀ R(x3,x4,x5)

join tree? φ2 = R(x1,x2,x3) ⋀ R(x1,x6,x5) ⋀ R(x3,x4,x5) ∧ R(x1,x3,x5)

R(x3,x4,x5)

R(x1,x2,x3)

R(x1,x3,x5)

R(x1,x6,x5)

R(x3,x4,x5) R(x1,x2,x3) R(x1,x6,x5) ?

R(x3,x4,x5) ?R(x1,x2,x3) R(x1,x6,x5)

 7

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

The semi-join

R ⋉{i1=j1,…,in=jn} S = { (x1,…,xn) ∈ R | there is (y1,…,ym) ∈ S
 where xik = yjk for all k}

Note: R ⋉{i1=j1,…,in=jn} S ⊆ R

 8

Acyclic CQ’s

1. Compute the join tree T for φ

2. Populate the nodes of T with corresponding relations of D

3. For every leaf S(x1,…,xn) with parent R(y1,…,ym) perform  
 
and delete the leaf S(x1,…,xn).

4. Repeat until we are left with one node. If it contains a non-empty

relation, then D satisfies φ, otherwise it does not.

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

R ⋉{i=j |xi = yj} S

 8

Acyclic CQ’s

1. Compute the join tree T for φ

2. Populate the nodes of T with corresponding relations of D

3. For every leaf S(x1,…,xn) with parent R(y1,…,ym) perform  
 
and delete the leaf S(x1,…,xn).

4. Repeat until we are left with one node. If it contains a non-empty

relation, then D satisfies φ, otherwise it does not.

in linear time

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

R ⋉{i=j |xi = yj} S

 8

Acyclic CQ’s

1. Compute the join tree T for φ

2. Populate the nodes of T with corresponding relations of D

3. For every leaf S(x1,…,xn) with parent R(y1,…,ym) perform  
 
and delete the leaf S(x1,…,xn).

4. Repeat until we are left with one node. If it contains a non-empty

relation, then D satisfies φ, otherwise it does not.

in linear time

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

R ⋉{i=j |xi = yj} S

remove all the
tuples from the parent

that do not match a tuple
from the child

 8

Acyclic CQ’s

1. Compute the join tree T for φ

2. Populate the nodes of T with corresponding relations of D

3. For every leaf S(x1,…,xn) with parent R(y1,…,ym) perform  
 
and delete the leaf S(x1,…,xn).

4. Repeat until we are left with one node. If it contains a non-empty

relation, then D satisfies φ, otherwise it does not.

in linear time

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

R ⋉{i=j |xi = yj} S

 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

 φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

R={(1,4,4),(4,1,4)}
S={(4,5),(5,2),(4,4)}
T={1,2,3,4}

(combined c.)

 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

 φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)}

R={(1,4,4),(4,1,4)}
S={(4,5),(5,2),(4,4)}
T={1,2,3,4}

(combined c.)

 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

 φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)}

R={(1,4,4),(4,1,4)}
S={(4,5),(5,2),(4,4)}
T={1,2,3,4}

(combined c.)

 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

 φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)}

R={(1,4,4),(4,1,4)}
S={(4,5),(5,2),(4,4)}
T={1,2,3,4}

(combined c.)

 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

 φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)}

R={(1,4,4),(4,1,4)}
S={(4,5),(5,2),(4,4)}
T={1,2,3,4}

(combined c.)

 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

 φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)}

R={(1,4,4),(4,1,4)}
S={(4,5),(5,2),(4,4)}
T={1,2,3,4}

(combined c.)

 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

 φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)} ≠ ∅

R={(1,4,4),(4,1,4)}
S={(4,5),(5,2),(4,4)}
T={1,2,3,4}

(combined c.)

 10

Acyclic CQ’s
How to compute a join tree?

GYO reducts [Graham, Yu, Ozsoyoglu]

x4

An ear of a hypergraph (V,E) is a hyperedge e in E such that one of the
following conditions holds:
 (1) There is a witness e' in E, such that e' ≠ e and each
 vertex from e is either
 (a) only in e or
 (b) in e'; or
 (2) e has no intersection with any other hyperedge.

x1x2

x5

x6
x7

x3

ears?

 11

Ears?

x1x2

x3 x4

x1

x2

x5

x6

x3

 12

Ears!

Definition: The GYO reduct of a hyper-graph is the result of

 removing ears until no more ears are left.

 12

Ears!

Definition: The GYO reduct of a hyper-graph is the result of

 removing ears until no more ears are left.

Theorem: TFAE

 • The GYO reduct of a hyper graph G is empty

 • A CQ φ having G as underlying canonical hyper-graph is acyclic

 • The hyper graph G is α-acyclic

 12

Ears!

Definition: The GYO reduct of a hyper-graph is the result of

 removing ears until no more ears are left.

Theorem: TFAE

 • The GYO reduct of a hyper graph G is empty

 • A CQ φ having G as underlying canonical hyper-graph is acyclic

 • The hyper graph G is α-acyclic

We can test acyclicity by
computing the GYO reduct!

 13

Acyclic CQ’s

How to compute a join tree?

Given the query φ = R1(X1) ∧ · · · ∧ Rn(Xn)
Consider its canonical structure Gφ
 For Ri(Xi) an ear with witness Rj(Yj)
 Put an edge between Ri(Xi) and Rj(Xj), and remove Ri from φ.
 Repeat.

GYO algorithm [Graham, Yu, Ozsoyoglu]

 13

Acyclic CQ’s

How to compute a join tree?

Given the query φ = R1(X1) ∧ · · · ∧ Rn(Xn)
Consider its canonical structure Gφ
 For Ri(Xi) an ear with witness Rj(Yj)
 Put an edge between Ri(Xi) and Rj(Xj), and remove Ri from φ.
 Repeat.

E.g.
R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)

GYO algorithm [Graham, Yu, Ozsoyoglu]

 13

Acyclic CQ’s

How to compute a join tree?

Given the query φ = R1(X1) ∧ · · · ∧ Rn(Xn)
Consider its canonical structure Gφ
 For Ri(Xi) an ear with witness Rj(Yj)
 Put an edge between Ri(Xi) and Rj(Xj), and remove Ri from φ.
 Repeat.

E.g.
R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)

S(x,y)

R(x,y,z)

T(x,x)

R(x,x,y) T(y,y)

GYO algorithm [Graham, Yu, Ozsoyoglu]

 13

Acyclic CQ’s

How to compute a join tree?

Given the query φ = R1(X1) ∧ · · · ∧ Rn(Xn)
Consider its canonical structure Gφ
 For Ri(Xi) an ear with witness Rj(Yj)
 Put an edge between Ri(Xi) and Rj(Xj), and remove Ri from φ.
 Repeat.

E.g.
R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)

S(x,y)

R(x,y,z)

T(x,x)

R(x,x,y) T(y,y)

GYO algorithm [Graham, Yu, Ozsoyoglu]

 13

Acyclic CQ’s

How to compute a join tree?

Given the query φ = R1(X1) ∧ · · · ∧ Rn(Xn)
Consider its canonical structure Gφ
 For Ri(Xi) an ear with witness Rj(Yj)
 Put an edge between Ri(Xi) and Rj(Xj), and remove Ri from φ.
 Repeat.

E.g.
R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)

S(x,y)

R(x,y,z)

T(x,x)

R(x,x,y) T(y,y)

GYO algorithm [Graham, Yu, Ozsoyoglu]

 13

Acyclic CQ’s

How to compute a join tree?

Given the query φ = R1(X1) ∧ · · · ∧ Rn(Xn)
Consider its canonical structure Gφ
 For Ri(Xi) an ear with witness Rj(Yj)
 Put an edge between Ri(Xi) and Rj(Xj), and remove Ri from φ.
 Repeat.

E.g.
R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)

S(x,y)

R(x,y,z)

T(x,x)

R(x,x,y) T(y,y)

GYO algorithm [Graham, Yu, Ozsoyoglu]

 13

Acyclic CQ’s

How to compute a join tree?

Given the query φ = R1(X1) ∧ · · · ∧ Rn(Xn)
Consider its canonical structure Gφ
 For Ri(Xi) an ear with witness Rj(Yj)
 Put an edge between Ri(Xi) and Rj(Xj), and remove Ri from φ.
 Repeat.

E.g.
R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)

S(x,y)

R(x,y,z)

T(x,x)

R(x,x,y) T(y,y)

GYO algorithm [Graham, Yu, Ozsoyoglu]

 13

Acyclic CQ’s

How to compute a join tree?

Given the query φ = R1(X1) ∧ · · · ∧ Rn(Xn)
Consider its canonical structure Gφ
 For Ri(Xi) an ear with witness Rj(Yj)
 Put an edge between Ri(Xi) and Rj(Xj), and remove Ri from φ.
 Repeat.

E.g.
R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)

S(x,y)

R(x,y,z)

T(x,x)

R(x,x,y) T(y,y)

Remove ears
until you’re left
with only one!

GYO algorithm [Graham, Yu, Ozsoyoglu]

 14

Acyclic CQ’s

• Evaluation problem for boolean ACQ’s is LOGCFL-complete

• NL ⊆ LOGCFL ⊆ AC1 ⊆ NC2 ⊆ P

[Gottlob, Leone, Scarcello]

the class of problems
logspace-reducible to

a context-free language

 15

Beyond acyclic CQ’s

Treewidth = a measure of the cyclicity of (hyper-)graphs
tw : CQ ⟶ N

Idea: the lower tw(φ), the more φ resembles a tree

For a fixed k,  
 the evaluation pb for queries of tw ≤k
can be done in polynomial time.

[Chekuri, Rajaraman]

 16

A tree decomposition of a graph G:
A bunch of graphs with a special edge "· · · ·" between their nodes so that

1) they have a tree shape and

2) collapsing "· · · ·" edges ⤳ G

Tree-width, definition

 16

A tree decomposition of a graph G:
A bunch of graphs with a special edge "· · · ·" between their nodes so that

1) they have a tree shape and

2) collapsing "· · · ·" edges ⤳ G

G

Tree-width, definition

 16

A tree decomposition of a graph G:
A bunch of graphs with a special edge "· · · ·" between their nodes so that

1) they have a tree shape and

2) collapsing "· · · ·" edges ⤳ G

G

Tree-width, definition

tree decomposition of G

 16

A tree decomposition of a graph G:
A bunch of graphs with a special edge "· · · ·" between their nodes so that

1) they have a tree shape and

2) collapsing "· · · ·" edges ⤳ G

G

Tree-width, definition

tree decomposition of G

 16

A tree decomposition of a graph G:
A bunch of graphs with a special edge "· · · ·" between their nodes so that

1) they have a tree shape and

2) collapsing "· · · ·" edges ⤳ G

G

Tree-width, definition

tree decomposition of G

 16

A tree decomposition of a graph G:
A bunch of graphs with a special edge "· · · ·" between their nodes so that

1) they have a tree shape and

2) collapsing "· · · ·" edges ⤳ G

G

width of decomposition = maximum size of graphs –1

Tree-width, definition

tree decomposition of G

 16

A tree decomposition of a graph G:
A bunch of graphs with a special edge "· · · ·" between their nodes so that

1) they have a tree shape and

2) collapsing "· · · ·" edges ⤳ G

G

width of decomposition = maximum size of graphs –1
tree-width of G = minimum width of decomposition of G

Tree-width, definition

tree decomposition of G

 17

tree-width 2 tree-width n–1tree-width 1

(a tree)

Tree-width, examples

 17

tree-width 2 tree-width 4 tree-width n

tree-width 2 tree-width n–1tree-width 1

(a tree)

Tree-width, examples

 18

tree-width of CQ = tree-width of its canonical structure
tree-width of structure = tree-width of Gaifman graph

Tree-width of structures, queries

 18

tree-width of CQ = tree-width of its canonical structure
tree-width of structure = tree-width of Gaifman graph

Tree-width of structures, queries

tree-width(∃ x1,x2,x3 R(x1,x2) ∧ S(x1,x3) ∧ S(x2,x3))
e.g.

 18

tree-width of CQ = tree-width of its canonical structure
tree-width of structure = tree-width of Gaifman graph

x1 x3

x2

S

SR
tree-width()

=

Tree-width of structures, queries

tree-width(∃ x1,x2,x3 R(x1,x2) ∧ S(x1,x3) ∧ S(x2,x3))
e.g.

 18

tree-width of CQ = tree-width of its canonical structure
tree-width of structure = tree-width of Gaifman graph

x1 x3

x2

S

SR
tree-width()

=
tree-width() = 2

=

Tree-width of structures, queries

tree-width(∃ x1,x2,x3 R(x1,x2) ∧ S(x1,x3) ∧ S(x2,x3))
e.g.

 19

Beyond acyclic CQ’s

For a fixed k,  
 - computing whether φ∈CQ has tw ≤k 
 - calculating a tree decomposition 
can be done in linear time.

[Bodlaender]

 20

Tree-width vs. Acyclicity

ACQ TWk

unbounded arity

ACQ

TWk–1

k-bounded arity

 21

Beyond acyclic CQ’s

CQ’s with bounded treewidth can be evaluated in PTIME

[Chekuri, Rajaraman, Gottlob, Leone, Scarcello]

 21

Beyond acyclic CQ’s

CQ’s with bounded treewidth can be evaluated in PTIME

CQ’s can be evaluated in PTIME iff they have bounded tree width!

[Grohe, Schwentick, Segoufin]

[Chekuri, Rajaraman, Gottlob, Leone, Scarcello]

 22

Querying with semi-joins

The semi-join
R ⋉{i1=j1,…,in=jn} S = { (x1,…,xn) ∈ R | there is (y1,…,ym) ∈ S
 where xik = yjk for all k}

The semi-join algebra (SA): variant of RA with operations:

 ⋉, ∪, π, σ, \, dupcol

Output at most linear in the database. Further,

The evaluation problem for SA is in O(|φ|.|D|)

Logical characterisation: “stored-tuples guarded fragment of FO”

 23

Acyclic CQs:

 • every intermediate relation is linear in |D|

 • we apply |φ| semi-joins

⤳ What if we allow intermediate relations to be polynomial in |D|?

Def.

 24

Bounded variable FO

FOk = The fragment of FO restricted to k variable names

φ(x) = “Every neighbour of x has an outgoing path of length 2”

 = ∀y. (E(x, y) ⟹ ∃z ∃w (E(y, z) ⋀ E(z, w))) ∈ FO4

Def.

 24

Bounded variable FO

FOk = The fragment of FO restricted to k variable names

G

φ(x) = “Every neighbour of x has an outgoing path of length 2”

 = ∀y. (E(x, y) ⟹ ∃z ∃w (E(y, z) ⋀ E(z, w))) ∈ FO4

Def.

 24

Bounded variable FO

FOk = The fragment of FO restricted to k variable names

Question: in FO2 ?

G

φ(x) = “Every neighbour of x has an outgoing path of length 2”

 = ∀y. (E(x, y) ⟹ ∃z ∃w (E(y, z) ⋀ E(z, w))) ∈ FO4

Def.

 24

Bounded variable FO

FOk = The fragment of FO restricted to k variable names

 = ∀y. (E(x, y) ⟹ ∃x (E(y, x) ⋀ ∃y E(x, y))) ∈ FO2

G

φ(x) = “Every neighbour of x has an outgoing path of length 2”

 = ∀y. (E(x, y) ⟹ ∃z ∃w (E(y, z) ⋀ E(z, w))) ∈ FO4

Def.

 24

PTIME

Bounded variable FO

FOk = The fragment of FO restricted to k variable names

 = ∀y. (E(x, y) ⟹ ∃x (E(y, x) ⋀ ∃y E(x, y))) ∈ FO2

G

φ(x) = “Every neighbour of x has an outgoing path of length 2”

 = ∀y. (E(x, y) ⟹ ∃z ∃w (E(y, z) ⋀ E(z, w))) ∈ FO4

Def.

 24

PTIME

PTIME

Bounded variable FO

FOk = The fragment of FO restricted to k variable names

 = ∀y. (E(x, y) ⟹ ∃x (E(y, x) ⋀ ∃y E(x, y))) ∈ FO2

G

φ(x) = “Every neighbour of x has an outgoing path of length 2”

 = ∀y. (E(x, y) ⟹ ∃z ∃w (E(y, z) ⋀ E(z, w))) ∈ FO4

Def.

 24

PTIME

Bounded variable FO

FOk = The fragment of FO restricted to k variable names

 = ∀y. (E(x, y) ⟹ ∃x (E(y, x) ⋀ ∃y E(x, y))) ∈ FO2

G

φ(x) = “Every neighbour of x has an outgoing path of length 2”

 = ∀y. (E(x, y) ⟹ ∃z ∃w (E(y, z) ⋀ E(z, w))) ∈ FO4

Def.

 24

PTIME

PTIME

Bounded variable FO

FOk = The fragment of FO restricted to k variable names

 = ∀y. (E(x, y) ⟹ ∃x (E(y, x) ⋀ ∃y E(x, y))) ∈ FO2

G

φ(x) = “Every neighbour of x has an outgoing path of length 2”

 = ∀y. (E(x, y) ⟹ ∃z ∃w (E(y, z) ⋀ E(z, w))) ∈ FO4

Def.

 24

PTIME

PTIME

Bounded variable FO

FOk = The fragment of FO restricted to k variable names

 = ∀y. (E(x, y) ⟹ ∃x (E(y, x) ⋀ ∃y E(x, y))) ∈ FO2

The evaluation problem for FOk is in PTIME (combined c.)

G

 25

Bounded variable FO

Algorithm for a FOk formula ψ of quantifier rank r:

The evaluation problem for FOk is in PTIME (combined c.)

 25

Bounded variable FO

Algorithm for a FOk formula ψ of quantifier rank r:

Maximum number of nested quantifiers “∃x(… ∀y(… ∃x(… ∃z(…))))”
qr 0

The evaluation problem for FOk is in PTIME (combined c.)

 25

Bounded variable FO

Algorithm for a FOk formula ψ of quantifier rank r:

Maximum number of nested quantifiers “∃x(… ∀y(… ∃x(… ∃z(…))))”
qr 0

qr 1

The evaluation problem for FOk is in PTIME (combined c.)

 25

Bounded variable FO

Algorithm for a FOk formula ψ of quantifier rank r:

Maximum number of nested quantifiers “∃x(… ∀y(… ∃x(… ∃z(…))))”
qr 0

qr 1
qr 2 . . .

The evaluation problem for FOk is in PTIME (combined c.)

 25

. . .

1. Evaluate qr=0 subformulas α and output result in relations R0,α

2. Evaluate qr=1 subformulas β based on R0,α and output in R1,β

3. Evaluate qr=2 subformulas γ based on R1,β and output in R1,γ

4. . . .

r. . . .

Bounded variable FO

Algorithm for a FOk formula ψ of quantifier rank r:

Maximum number of nested quantifiers “∃x(… ∀y(… ∃x(… ∃z(…))))”
qr 0

qr 1
qr 2 . . .

The evaluation problem for FOk is in PTIME (combined c.)

 25

. . .

1. Evaluate qr=0 subformulas α and output result in relations R0,α

2. Evaluate qr=1 subformulas β based on R0,α and output in R1,β

3. Evaluate qr=2 subformulas γ based on R1,β and output in R1,γ

4. . . .

r. . . .

Bounded variable FO

Algorithm for a FOk formula ψ of quantifier rank r:

Maximum number of nested quantifiers “∃x(… ∀y(… ∃x(… ∃z(…))))”
qr 0

qr 1
qr 2 . . .

 ⇝ |V|k · (|α| · |G|)p

The evaluation problem for FOk is in PTIME (combined c.)

 25

. . .

1. Evaluate qr=0 subformulas α and output result in relations R0,α

2. Evaluate qr=1 subformulas β based on R0,α and output in R1,β

3. Evaluate qr=2 subformulas γ based on R1,β and output in R1,γ

4. . . .

r. . . .

Bounded variable FO

Algorithm for a FOk formula ψ of quantifier rank r:

Maximum number of nested quantifiers “∃x(… ∀y(… ∃x(… ∃z(…))))”
qr 0

qr 1
qr 2 . . .

 ⇝ |V|k · (|α| · |G|)p

The evaluation problem for FOk is in PTIME (combined c.)

≤|V|k

 ⇝ |V|k · (|β| · (|G|+ |R1|))p

 25

. . .

1. Evaluate qr=0 subformulas α and output result in relations R0,α

2. Evaluate qr=1 subformulas β based on R0,α and output in R1,β

3. Evaluate qr=2 subformulas γ based on R1,β and output in R1,γ

4. . . .

r. . . .

Bounded variable FO

Algorithm for a FOk formula ψ of quantifier rank r:

Maximum number of nested quantifiers “∃x(… ∀y(… ∃x(… ∃z(…))))”
qr 0

qr 1
qr 2 . . .

 ⇝ |V|k · (|α| · |G|)p

≤|V|k

 ⇝ |V|k · (|γ| · (|G|+ |R2|))p

The evaluation problem for FOk is in PTIME (combined c.)

≤|V|k

 ⇝ |V|k · (|β| · (|G|+ |R1|))p

 26

Bounded variable FO

Desirable: 

 • Given k and a FO query φ, is φ in FOk ? ⇝ 💀 Undecidable (even w.o. ¬)

 26

Bounded variable FO

Desirable: 

 • Given k and a FO query φ, is φ in FOk ? ⇝ 💀 Undecidable (even w.o. ¬)

 • Given k and a CQ query φ, is φ in FOk ? ⇝ NP-complete

 26

Bounded variable FO

Desirable: 

 • Given k and a FO query φ, is φ in FOk ? ⇝ 💀 Undecidable (even w.o. ¬)

 • Given k and a CQ query φ, is φ in FOk ? ⇝ NP-complete

 • Satisfiability for FOk ⇝ Undecidable if k≥3 (Domino)

 ⇝ NEXPTIME-complete if k=2

 27

Recap

LOGSPACEPTIMEPSPACEUNDEC.

Domino

Eval-FO
(combined)

Eval-FO
(data)

Sat-FO

Equivalence-FO

Equivalence-SQL

Equivalence-RA

QBF

NP

Cont-CQ

Eval-FOk
(combined)SAT

3COL

Eval-CQ
(combined)

 Acyclic CQ
(combined)

LOGCFL

Definability in FO

Goal: check which properties / queries are expressible in FO

Definability in FO

Goal: check which properties / queries are expressible in FO

 Example. Q (G) = { (u, v) | G contains a path from u to v }  
 
 Is Q expressible as a first-order formula?

Definability in FO

 Definition. Quantifier rank of φ = max number of nested quantifiers in φ.

Definability in FO

 Definition. Quantifier rank of φ = max number of nested quantifiers in φ.

 Example. φ = ∀x∀y (¬E(x,y) ⋁ ∃z ((E(x,z) ⋁ E(z,x)) ⋀ (E(y,z) ⋁ E(z,y))))

 has quantifier rank 3.

Definability in FO

 Definition. Quantifier rank of φ = max number of nested quantifiers in φ.

 Example. φ = ∀x∀y (¬E(x,y) ⋁ ∃z ((E(x,z) ⋁ E(z,x)) ⋀ (E(y,z) ⋁ E(z,y))))

 has quantifier rank 3.

Quantifier rank ≠ quantity of quantifiers

Definability in FO

 Definition. Quantifier rank of φ = max number of nested quantifiers in φ.

 Example. φ = ∀x∀y (¬E(x,y) ⋁ ∃z ((E(x,z) ⋁ E(z,x)) ⋀ (E(y,z) ⋁ E(z,y))))

 has quantifier rank 3.

 Eg, in φ0(x, y) = E(x, y), and  
 φk(x,y) = ∃z (φk−1(x, z) ∧ φk−1(z, y))

 qr(φk) = k but # quantifiers of φk is 2k

Quantifier rank ≠ quantity of quantifiers

Definability in FO

 Definition. Quantifier rank of φ = max number of nested quantifiers in φ.

 Example. φ = ∀x∀y (¬E(x,y) ⋁ ∃z ((E(x,z) ⋁ E(z,x)) ⋀ (E(y,z) ⋁ E(z,y))))

 has quantifier rank 3.

 Eg, in φ0(x, y) = E(x, y), and  
 φk(x,y) = ∃z (φk−1(x, z) ∧ φk−1(z, y))

 qr(φk) = k but # quantifiers of φk is 2k

What does it
define?

Quantifier rank ≠ quantity of quantifiers

Definability in FO

 Definition. Quantifier rank of φ = max number of nested quantifiers in φ.

 Example. φ = ∀x∀y (¬E(x,y) ⋁ ∃z ((E(x,z) ⋁ E(z,x)) ⋀ (E(y,z) ⋁ E(z,y))))

 has quantifier rank 3.

 Eg, in φ0(x, y) = E(x, y), and  
 φk(x,y) = ∃z (φk−1(x, z) ∧ φk−1(z, y))

 qr(φk) = k but # quantifiers of φk is 2k

What does it
define?

Quantifier rank ≠ quantity of quantifiers

Quantifier rank is a measure of complexity of a formula

Definability in FO

Sub-goal: Given a property P and a number n,  
 tell whether P is expressible by a sentence of quantifier rank at most n.

 Definition. Quantifier rank of φ = max number of nested quantifiers in φ.

 Example. φ = ∀x∀y (¬E(x,y) ⋁ ∃z ((E(x,z) ⋁ E(z,x)) ⋀ (E(y,z) ⋁ E(z,y))))

 has quantifier rank 3.

 Eg, in φ0(x, y) = E(x, y), and  
 φk(x,y) = ∃z (φk−1(x, z) ∧ φk−1(z, y))

 qr(φk) = k but # quantifiers of φk is 2k

What does it
define?

Quantifier rank ≠ quantity of quantifiers

Quantifier rank is a measure of complexity of a formula

Definability in FO

 Definition. Two structures S1 and S2 are n-equivalent 
 iff  
 they satisfy the same FO sentences of quantifier rank ≤ n  
 (i.e. S1 ⊨ φ iff S2 ⊨ φ for all φ∈FO with qr(φ)≤n)

[Tarski ’30]

Definability in FO

Consider a property (i.e. a set of structures) P.

Suppose that there are S1 ∈ P, S2 ∉ P s.t.

 S1 and S2 are n - equivalent.

Then P is not expressible by any sentence of quantifier rank n.

 Definition. Two structures S1 and S2 are n-equivalent 
 iff  
 they satisfy the same FO sentences of quantifier rank ≤ n  
 (i.e. S1 ⊨ φ iff S2 ⊨ φ for all φ∈FO with qr(φ)≤n)

[Tarski ’30]

Definability in FO

Consider a property (i.e. a set of structures) P.

Suppose that there are S1 ∈ P, S2 ∉ P s.t.

 S1 and S2 are n - equivalent.

Then P is not expressible by any sentence of quantifier rank n.

 Definition. Two structures S1 and S2 are n-equivalent 
 iff  
 they satisfy the same FO sentences of quantifier rank ≤ n  
 (i.e. S1 ⊨ φ iff S2 ⊨ φ for all φ∈FO with qr(φ)≤n)

[Tarski ’30]

Note: if the above happens
∀ n, then P is not

expressible by any FO
sentence.

Definability in FO

Consider a property (i.e. a set of structures) P.

Suppose that there are S1 ∈ P, S2 ∉ P s.t.

 S1 and S2 are n - equivalent.

Then P is not expressible by any sentence of quantifier rank n.

 Definition. Two structures S1 and S2 are n-equivalent 
 iff  
 they satisfy the same FO sentences of quantifier rank ≤ n  
 (i.e. S1 ⊨ φ iff S2 ⊨ φ for all φ∈FO with qr(φ)≤n)

[Tarski ’30]

 Example. P = { structures of even size } seems to be not FO-definable. 
 One could then aim at proving that

 for all n there are S1 ∈ P and S2 ∉ P s.t. S1 , S2 n-equivalent…

Note: if the above happens
∀ n, then P is not

expressible by any FO
sentence.

Expressive power via games

Expressive power via games

Characterisation of the expressive power of FO in terms of Games

Expressive power via games

Characterisation of the expressive power of FO in terms of Games

a player of the game has a winning strategy

iff

S,S' are indistinguishable

Idea: For every two structures (S,S') there is a game where

Ehrenfeucht-Fraïssé games

A game between two players

SpoilerDuplicator

S1 and S2 are  
n-equivalent!

No they’re
NOT!!!!

One player plays in one structure, the other player answers in the other structure.

If Duplicator can ensure not losing after n rounds: S1, S2 are n-equivalent

Board: (S1, S2)

Ehrenfeucht-Fraïssé games

 Definition. Partial isomorphism between S1 and S2 = injective partial map

 f : nodes of S1 ⟶ nodes of S2

 so that E(x,y) iff E(f (x), f (y))

Ehrenfeucht-Fraïssé games

 Definition. Partial isomorphism between S1 and S2 = injective partial map

 f : nodes of S1 ⟶ nodes of S2

 so that E(x,y) iff E(f (x), f (y))

 and play for n rounds on the board S1, S2DuplicatorSpoiler

Ehrenfeucht-Fraïssé games

 Definition. Partial isomorphism between S1 and S2 = injective partial map

 f : nodes of S1 ⟶ nodes of S2

 so that E(x,y) iff E(f (x), f (y))

 and play for n rounds on the board S1, S2DuplicatorSpoiler

At each round i : 

1. Spoiler chooses a node xi from S1

 and Duplicator answers with a node yi from S2,

Ehrenfeucht-Fraïssé games

 Definition. Partial isomorphism between S1 and S2 = injective partial map

 f : nodes of S1 ⟶ nodes of S2

 so that E(x,y) iff E(f (x), f (y))

 and play for n rounds on the board S1, S2DuplicatorSpoiler

or 

2. Spoiler chooses a node yi from S2

 and Duplicator answers with a node xi from S1,

At each round i : 

1. Spoiler chooses a node xi from S1

 and Duplicator answers with a node yi from S2,

Ehrenfeucht-Fraïssé games

 Definition. Partial isomorphism between S1 and S2 = injective partial map

 f : nodes of S1 ⟶ nodes of S2

 so that E(x,y) iff E(f (x), f (y))

 and play for n rounds on the board S1, S2DuplicatorSpoiler

or 

2. Spoiler chooses a node yi from S2

 and Duplicator answers with a node xi from S1,

At each round i : 

1. Spoiler chooses a node xi from S1

 and Duplicator answers with a node yi from S2,

or Spoiler wins if { xi ↦ yi | 1 ≤ i ≤ n} is not a partial isomorphism between S1 and S2.

Ehrenfeucht-Fraïssé games

S1 S2

= Spoiler

= Duplicator

Ehrenfeucht-Fraïssé games

1
S1 S2

= Spoiler

= Duplicator

Ehrenfeucht-Fraïssé games

11
S1 S2

= Spoiler

= Duplicator

Ehrenfeucht-Fraïssé games

2

11
S1 S2

= Spoiler

= Duplicator

Ehrenfeucht-Fraïssé games

2

1

2

1
S1 S2

= Spoiler

= Duplicator

Ehrenfeucht-Fraïssé games

2

1 3

2

1
S1 S2

= Spoiler

= Duplicator

Ehrenfeucht-Fraïssé games

S1 S2

= Spoiler

= Duplicator

Question: Can Spoiler win in 3 rounds ?

Ehrenfeucht-Fraïssé games

S1 S2

= Spoiler

= Duplicator

Question: Can Spoiler win in 3 rounds ?

1

Ehrenfeucht-Fraïssé games

S1 S2

= Spoiler

= Duplicator

Question: Can Spoiler win in 3 rounds ?

1 1

Ehrenfeucht-Fraïssé games

S1 S2

= Spoiler

= Duplicator

Question: Can Spoiler win in 3 rounds ?

1 1

2

Ehrenfeucht-Fraïssé games

S1 S2

= Spoiler

= Duplicator

Question: Can Spoiler win in 3 rounds ?

1 1

2 2

Ehrenfeucht-Fraïssé games

S1 S2

= Spoiler

= Duplicator

Question: Can Spoiler win in 3 rounds ?

1 1

2 23

