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Recap

• Conjunctive Queries  (correspondence with SQL and Relational Algebra) 

• Homomorphisms and canonical structure 

• Evaluation of CQ  (NP-completeness) 

• Containment, Equivalence, Minimisation of CQ  (NP-completeness) 

• Extension to functional dependencies  (chased canonical structure) 

• Acyclic Conjunctive Queries
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Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like
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Acyclic CQ’s : Definition

On graphs: CQ φ is acyclic if Gφ is tree-like

   φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) z t

y

x

underlying 
undirected graph is 

acyclic

   φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) ∧ E(x,y) z t
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x
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Acyclic CQ’s

On graphs: CQ φ is acyclic if Gφ is tree-like

On general structures: a CQ φ is acyclic if it has a join tree

φ(ȳ) = ∃z̄ . R1(z̄1) ⋀ … ⋀ Rm(z̄m)

A join tree is a tree T st: 
• nodes are the atoms Ri(z̄i) 
• for every variable x of φ the set of  Ri(z̄i)’s with x ∈ z̄i forms a subtree of T

If x occurs in 
two nodes, then it occurs in 

the path linking the two 
nodes.

Alternatively, if its 
canonical hyper-graph is 

α-acyclic.
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Acyclic CQ’s

   φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) E(x,z)

E(z,t)E(y,z)

join tree

S(z,t)

S(x,z)

R(x,y,z) T(z)

T(x)

S(z,t)

S(x,z)

R(x,y,z) T(z)

T(x)

not a join tree a join tree

   φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)
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Acyclic CQ’s

join tree?   φ1 = R(x1,x2,x3) ⋀ R(x1,x6,x5) ⋀ R(x3,x4,x5) 
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Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

The semi-join

R ⋉{i1=j1,…,in=jn} S = { (x1,…,xn) ∈ R | there is (y1,…,ym) ∈ S 
                                                                    where xik = yjk for all k} 

Note:  R ⋉{i1=j1,…,in=jn} S   ⊆   R
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Acyclic CQ’s

1. Compute the join tree T for φ 

2. Populate the nodes of T with corresponding relations of D 

3. For every leaf S(x1,…,xn) with parent R(y1,…,ym) perform  
 
and delete the leaf S(x1,…,xn). 

4. Repeat until we are left with one node. If it contains a non-empty 

relation, then D satisfies φ, otherwise it does not.

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

R ⋉{i=j |xi = yj} S
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Acyclic CQ’s

1. Compute the join tree T for φ 

2. Populate the nodes of T with corresponding relations of D 

3. For every leaf S(x1,…,xn) with parent R(y1,…,ym) perform  
 
and delete the leaf S(x1,…,xn). 

4. Repeat until we are left with one node. If it contains a non-empty 

relation, then D satisfies φ, otherwise it does not.

in linear time

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

R ⋉{i=j |xi = yj} S

remove all the 
tuples from the  parent 

that do not match a tuple 
from the child
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Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

   φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

R={(1,4,4),(4,1,4)} 
S={(4,5),(5,2),(4,4)} 
T={1,2,3,4}

(combined c.)



 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

   φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)}

R={(1,4,4),(4,1,4)} 
S={(4,5),(5,2),(4,4)} 
T={1,2,3,4}

(combined c.)



 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

   φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)}

R={(1,4,4),(4,1,4)} 
S={(4,5),(5,2),(4,4)} 
T={1,2,3,4}

(combined c.)



 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

   φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)}

R={(1,4,4),(4,1,4)} 
S={(4,5),(5,2),(4,4)} 
T={1,2,3,4}

(combined c.)



 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

   φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)}

R={(1,4,4),(4,1,4)} 
S={(4,5),(5,2),(4,4)} 
T={1,2,3,4}

(combined c.)



 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

   φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)}

R={(1,4,4),(4,1,4)} 
S={(4,5),(5,2),(4,4)} 
T={1,2,3,4}

(combined c.)



 9

Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

   φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)} ≠ ∅

R={(1,4,4),(4,1,4)} 
S={(4,5),(5,2),(4,4)} 
T={1,2,3,4}

(combined c.)
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Acyclic CQ’s
How to compute a join tree?

GYO reducts [Graham, Yu, Ozsoyoglu] 

x4

An ear of a hypergraph (V,E) is a hyperedge e in E such that one of the 
following conditions holds: 
     (1) There is a witness e' in E, such that e' ≠ e and each 
             vertex from e is either  
                   (a) only in e or  
                   (b) in e'; or 
     (2) e has no intersection with any other hyperedge.

x1x2

x5

x6
x7

x3

ears?
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Ears?

x1x2

x3 x4

x1

x2

x5

x6

x3
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Ears!

Definition: The GYO reduct of a hyper-graph is the result of  

                       removing ears until no more ears are left.
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Ears!

Definition: The GYO reduct of a hyper-graph is the result of  

                       removing ears until no more ears are left.

Theorem: TFAE 

                    • The GYO reduct of a hyper graph G is empty 

                    • A CQ φ having G as underlying canonical hyper-graph is acyclic 

                    • The hyper graph G is α-acyclic

We can test acyclicity by 
computing the GYO reduct!
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Acyclic CQ’s

How to compute a join tree?

Given the query φ = R1(X1) ∧ · · · ∧ Rn(Xn) 
Consider its canonical structure Gφ 
   For Ri(Xi) an ear with witness Rj(Yj) 
   Put an edge between Ri(Xi) and Rj(Xj), and remove Ri from φ. 
   Repeat.

GYO algorithm [Graham, Yu, Ozsoyoglu]
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Acyclic CQ’s

How to compute a join tree?

Given the query φ = R1(X1) ∧ · · · ∧ Rn(Xn) 
Consider its canonical structure Gφ 
   For Ri(Xi) an ear with witness Rj(Yj) 
   Put an edge between Ri(Xi) and Rj(Xj), and remove Ri from φ. 
   Repeat.

E.g. 
R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)

S(x,y)

R(x,y,z)

T(x,x)

R(x,x,y) T(y,y)

Remove ears 
until you’re left 
with only one!

GYO algorithm [Graham, Yu, Ozsoyoglu]
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Acyclic CQ’s

• Evaluation problem for boolean ACQ’s is LOGCFL-complete 

• NL ⊆ LOGCFL ⊆ AC1 ⊆ NC2 ⊆ P

[Gottlob, Leone, Scarcello]

the class of problems 
logspace-reducible to  

a context-free language
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Beyond acyclic CQ’s

Treewidth = a measure of the cyclicity of (hyper-)graphs
tw : CQ ⟶ N

Idea: the lower tw(φ), the more φ resembles a tree

For a fixed k,  
     the evaluation pb for queries of tw ≤k 
can be done in polynomial time.

[Chekuri, Rajaraman]
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A tree decomposition of a graph G: 
A bunch of graphs with a special edge "· · · ·" between their nodes so that  

1) they have a tree shape and   

2) collapsing "· · · ·" edges ⤳ G

Tree-width, definition
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A tree decomposition of a graph G: 
A bunch of graphs with a special edge "· · · ·" between their nodes so that  

1) they have a tree shape and   

2) collapsing "· · · ·" edges ⤳ G

G

width of decomposition = maximum size of graphs –1
tree-width of G = minimum width of decomposition of G

Tree-width, definition

tree decomposition of G
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tree-width 2 tree-width n–1tree-width 1

(a tree)

Tree-width, examples
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tree-width 2 tree-width 4 tree-width n

tree-width 2 tree-width n–1tree-width 1

(a tree)

Tree-width, examples
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tree-width of CQ = tree-width of its canonical structure  
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Tree-width of structures, queries
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tree-width of CQ = tree-width of its canonical structure  
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tree-width(∃ x1,x2,x3 R(x1,x2) ∧ S(x1,x3) ∧ S(x2,x3))
e.g.
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tree-width of CQ = tree-width of its canonical structure  
tree-width of structure = tree-width of Gaifman graph

x1 x3

x2

S

SR
tree-width(                                        )

=

Tree-width of structures, queries

tree-width(∃ x1,x2,x3 R(x1,x2) ∧ S(x1,x3) ∧ S(x2,x3))
e.g.
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tree-width of CQ = tree-width of its canonical structure  
tree-width of structure = tree-width of Gaifman graph

x1 x3

x2

S

SR
tree-width(                                        )

=
tree-width(                                        ) = 2

=

Tree-width of structures, queries

tree-width(∃ x1,x2,x3 R(x1,x2) ∧ S(x1,x3) ∧ S(x2,x3))
e.g.
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Beyond acyclic CQ’s

For a fixed k,  
       - computing whether φ∈CQ has tw ≤k 
       - calculating a tree decomposition 
can be done in linear time.

[Bodlaender]
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Tree-width vs. Acyclicity

ACQ TWk

unbounded arity

ACQ

TWk–1

k-bounded arity
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Beyond acyclic CQ’s

CQ’s with bounded treewidth can be evaluated in PTIME

[Chekuri, Rajaraman, Gottlob, Leone, Scarcello]
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Beyond acyclic CQ’s

CQ’s with bounded treewidth can be evaluated in PTIME

CQ’s can be evaluated in PTIME iff they have bounded tree width!

[Grohe, Schwentick, Segoufin]

[Chekuri, Rajaraman, Gottlob, Leone, Scarcello]
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Querying with semi-joins

The semi-join
R ⋉{i1=j1,…,in=jn} S = { (x1,…,xn) ∈ R | there is (y1,…,ym) ∈ S 
                                                                    where xik = yjk for all k}

The semi-join algebra (SA): variant of RA with operations:  
                                    
                                        ⋉, ∪, π, σ, \, dupcol

Output at most linear in the database. Further,

The evaluation problem for SA is in O(|φ|.|D|)

Logical characterisation: “stored-tuples guarded fragment of FO”
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Acyclic CQs: 

     • every intermediate relation is linear in |D| 

     • we apply |φ| semi-joins

⤳ What if we allow intermediate relations to be polynomial in |D|?



Def.
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Bounded variable FO

Algorithm for a FOk formula ψ of quantifier rank r:
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qr 2 . . .
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The evaluation problem for FOk is in PTIME (combined c.)
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Bounded variable FO

Desirable: 

    • Given k  and a FO query φ,  is φ in FOk ?      ⇝ 💀 Undecidable (even w.o. ¬) 

    • Given k  and a CQ query φ,  is φ in FOk ?     ⇝ NP-complete 

    • Satisfiability for FOk                                                                ⇝ Undecidable if  k≥3  (Domino) 

                                                                                         ⇝ NEXPTIME-complete if  k=2
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Goal:   check which  properties / queries  are  expressible in FO 

 Example.   Q (G) = { (u, v)  |  G contains a path from u to v }  
 
                     Is Q expressible as a first-order formula?
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Sub-goal:   Given a property P and a number n,  
                      tell whether P is expressible by a sentence of quantifier rank at most n.
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 Definition.   Two structures S1 and S2 are   n-equivalent 
                                                                       iff    
                          they satisfy the same FO sentences of quantifier rank ≤ n  
                         ( i.e.  S1 ⊨ φ  iff  S2 ⊨ φ for all φ∈FO with qr(φ)≤n)                       

[Tarski ’30]

 Example.   P = { structures of even size }  seems to be not FO-definable. 
 One could then aim at proving that   

                        for all n there are S1 ∈ P  and S2 ∉ P  s.t.   S1 , S2  n-equivalent…

Note:  if the above happens 
∀ n,  then P is not 

expressible by any FO 
sentence.
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Expressive power via games

Characterisation of the expressive power of FO in terms of Games

a player of the game has a winning strategy  

iff  

S,S' are indistinguishable

Idea:   For every two structures (S,S') there is a game where



Ehrenfeucht-Fraïssé games

A game between two players

SpoilerDuplicator

S1 and S2 are  
n-equivalent!

No they’re 
NOT!!!!

One player plays in one structure, the other player answers in the other structure.

If Duplicator can ensure not losing after n rounds:  S1, S2 are n-equivalent

Board:  (S1, S2)
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 Definition.   Partial isomorphism between S1 and S2   =    injective partial map  

                                                                   f :  nodes of S1  ⟶  nodes of S2 

                         so that                             E(x,y)   iff   E( f (x), f (y) )

                           and                               play for  n  rounds on the board S1, S2DuplicatorSpoiler

or 

2.        Spoiler chooses a node  yi  from S2  

            and Duplicator answers with a node  xi  from S1,

At each round  i : 

1.        Spoiler chooses a node  xi  from S1  

            and Duplicator answers with a node  yi  from S2,

or           Spoiler wins  if  { xi ↦ yi  | 1 ≤ i ≤ n}  is not a partial isomorphism between S1 and S2.
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