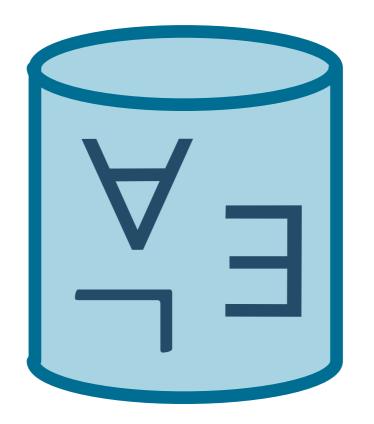
day 5



Logical foundations of databases

Diego Figueira

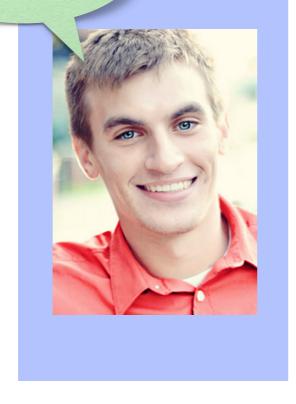
Gabriele Puppis

CNRS LaBRI

Recap

- Acyclic Conjunctive Queries
- Join Trees
- Evaluation of ACQ (LOGCFL-complete)
- Ears, GYO algorithm for testing acyclicity
- Tree decomposition, tree-width of CQ
- Evaluation of bounded tree-width CQs (LOGCFL-complete)
- Bounded variable fragment of FO, evaluation in PTIME
- Acyclic Conjunctive Queries

S₁ and S₂ are *n*-equivalent!



Duplicator

Spoiler

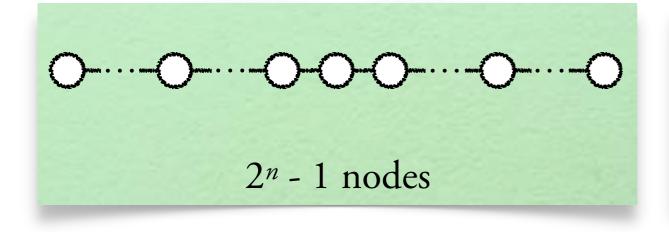
They play for n rounds on the board (S_1, S_2) .

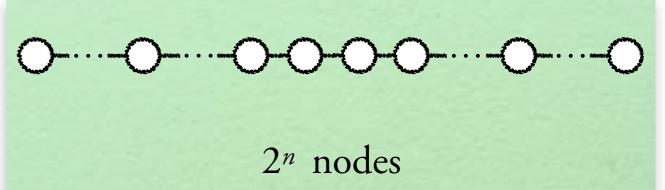
At each round i: Spoiler chooses a node x_i from S_1 (resp. y_i from S_2)

Duplicator answers with a node y_i from S_2 (resp. x_i from S_1) trying to maintain an isomorphism between $S_1 \mid \{x_i\}_i$ and $S_2 \mid \{y_i\}_i$

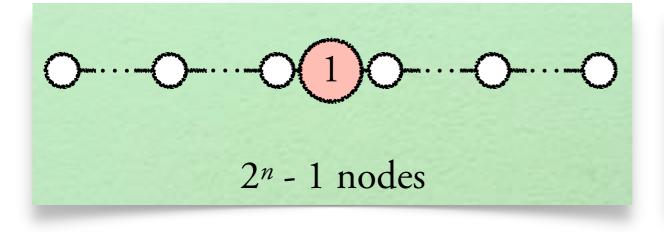
On non-isomorphic finite structures, Spoiler wins eventually... Why?

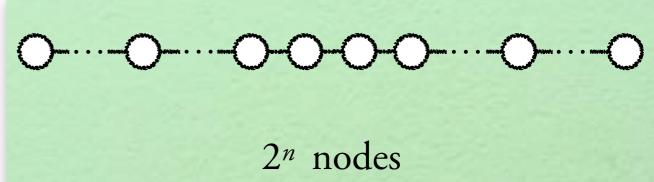
On non-isomorphic *finite* structures, Spoiler wins eventually... Why?



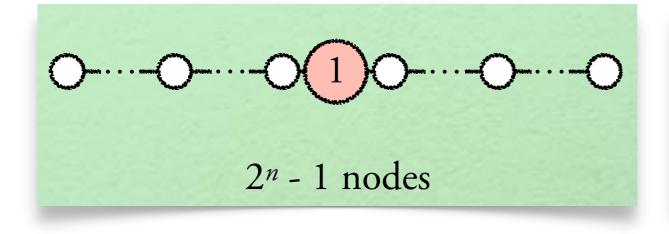


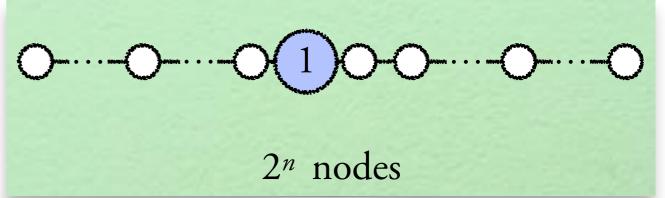
On non-isomorphic *finite* structures, Spoiler wins eventually... Why?



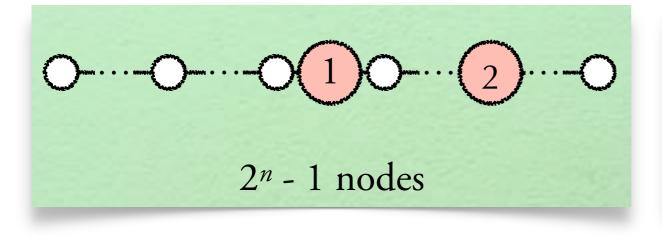


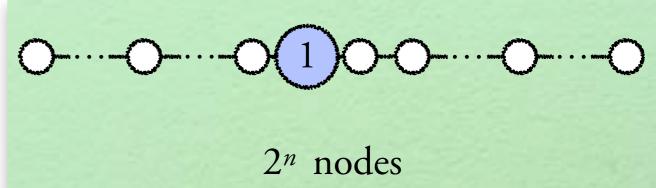
On non-isomorphic *finite* structures, Spoiler wins eventually... Why?



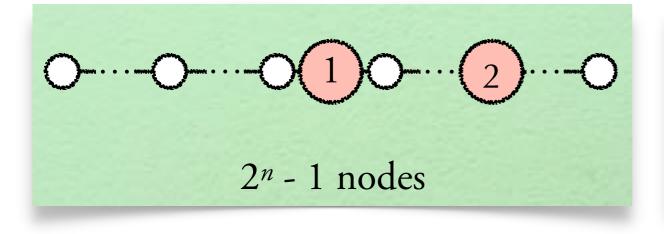


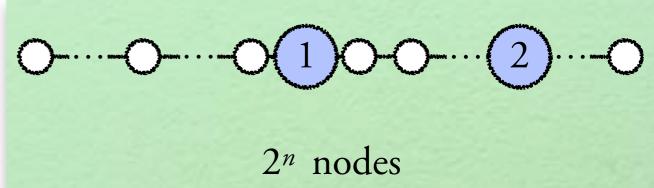
On non-isomorphic *finite* structures, Spoiler wins eventually... Why?





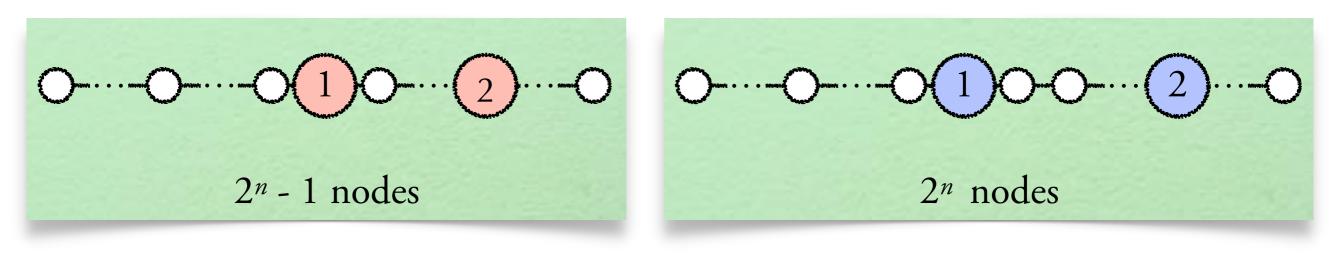
On non-isomorphic *finite* structures, Spoiler wins eventually... Why?





On non-isomorphic *finite* structures, Spoiler wins eventually... Why?

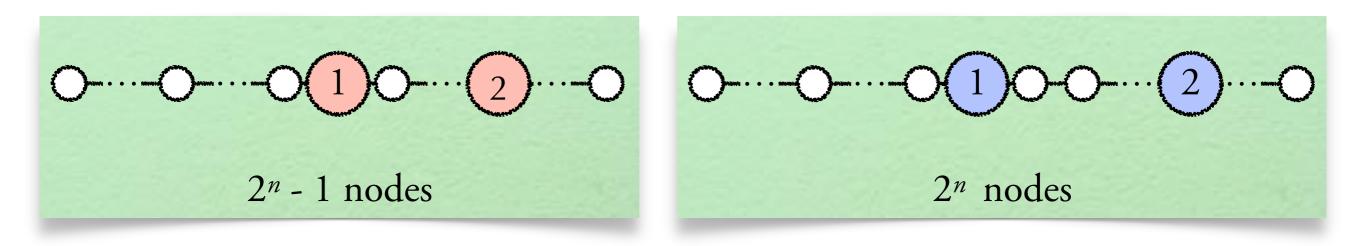
...and he often wins very quickly:

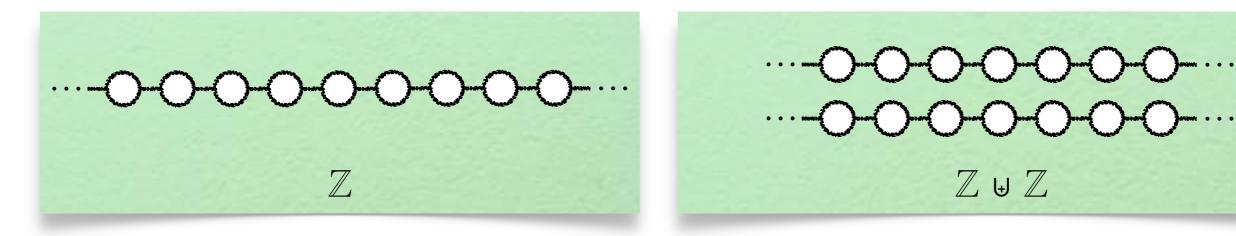


But there are non-isomorphic *infinite* structures where Duplicator can survive for *arbitrarily many rounds* (not necessarily forever!)

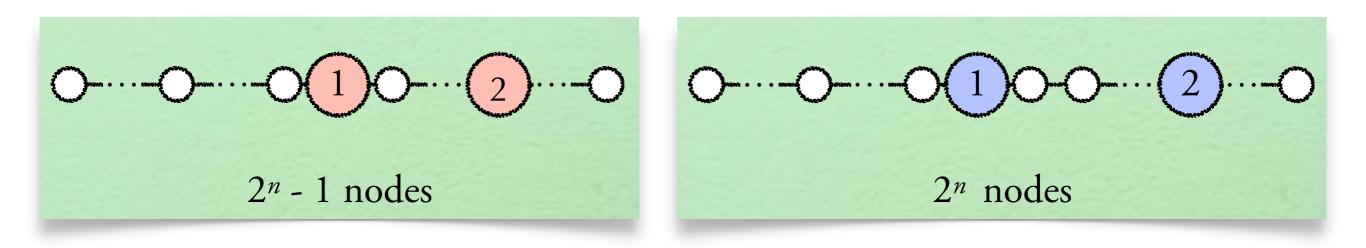
Any idea?

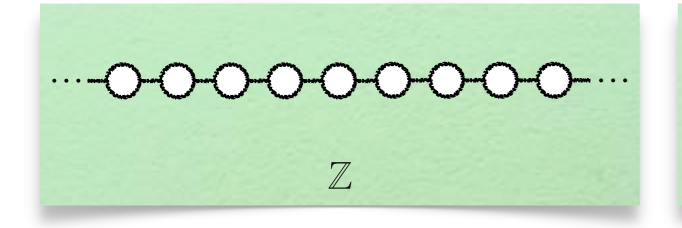
On non-isomorphic *finite* structures, Spoiler wins eventually... Why? ...and he often wins very quickly:

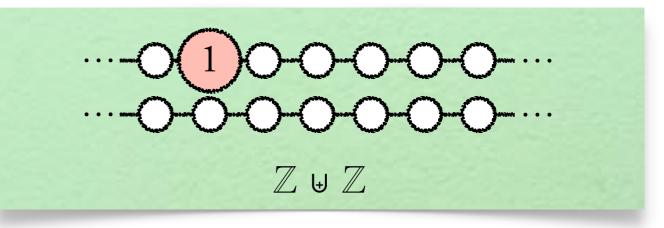




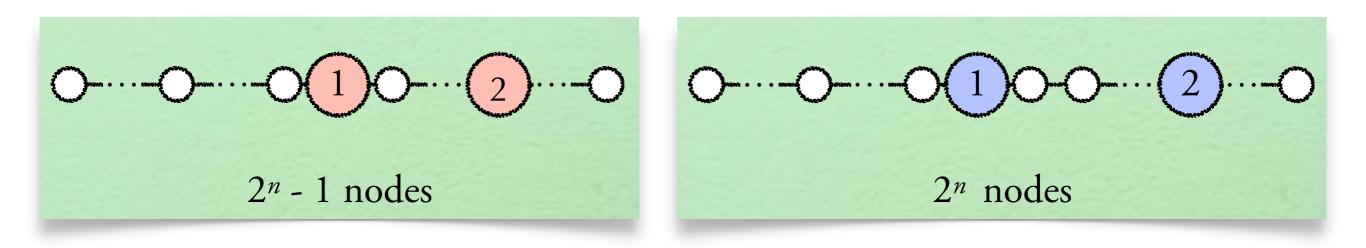
On non-isomorphic *finite* structures, Spoiler wins eventually... Why? ...and he often wins very quickly:

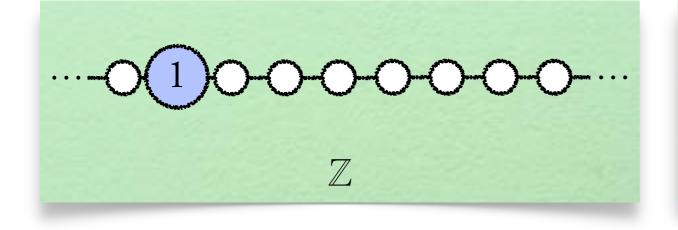


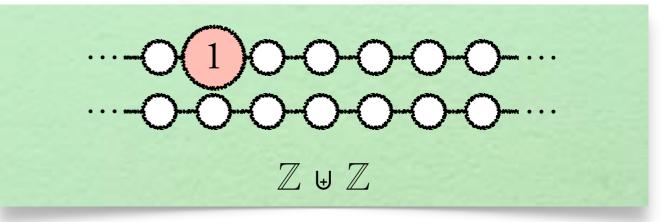




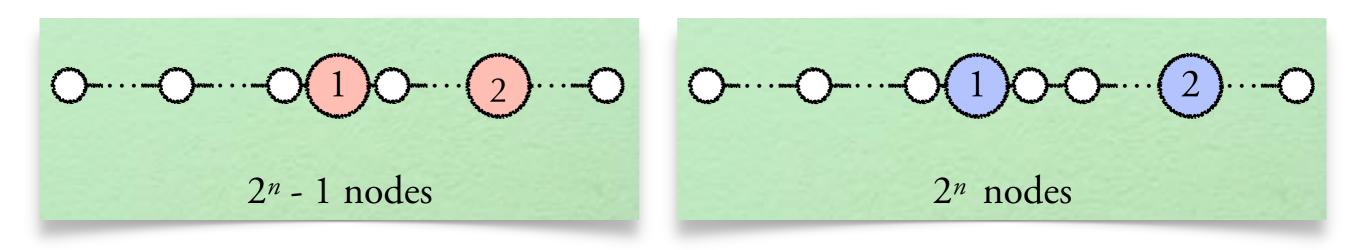
On non-isomorphic *finite* structures, Spoiler wins eventually... Why? ...and he often wins very quickly:

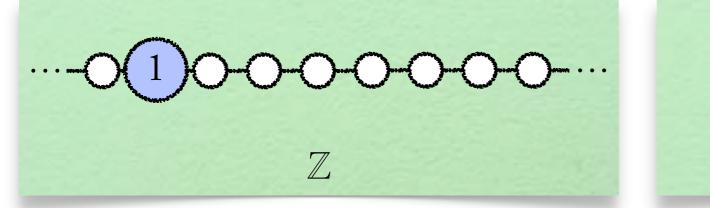


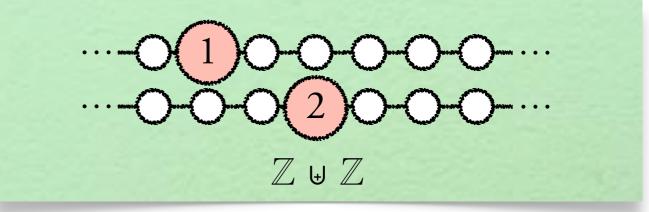




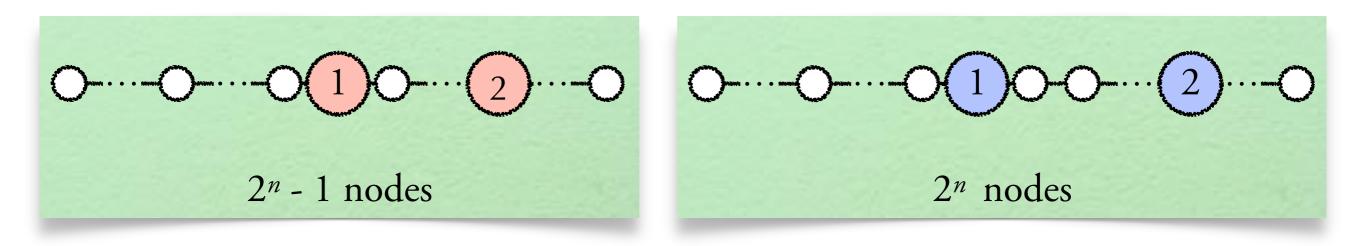
On non-isomorphic *finite* structures, Spoiler wins eventually... Why? ...and he often wins very quickly:

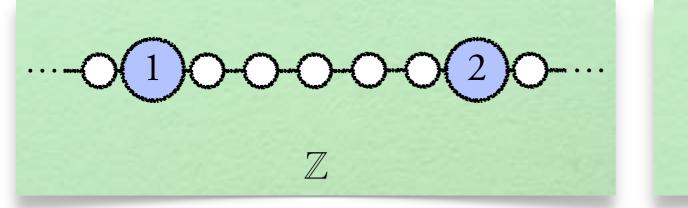


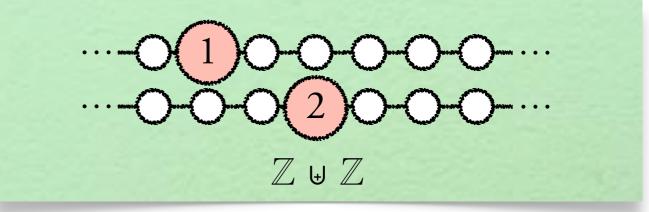




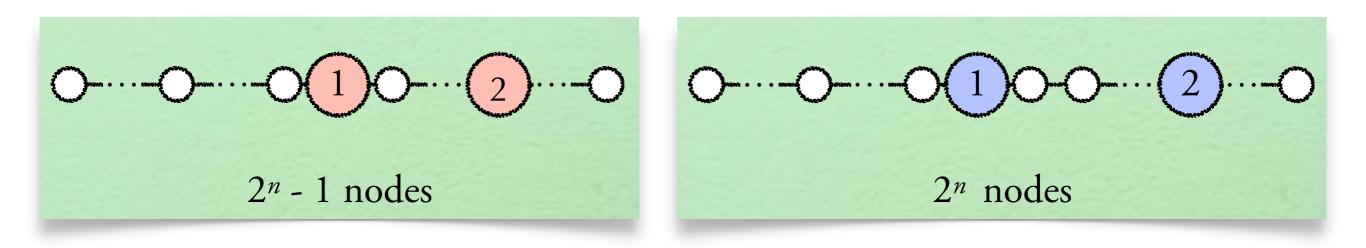
On non-isomorphic *finite* structures, Spoiler wins eventually... Why? ...and he often wins very quickly:

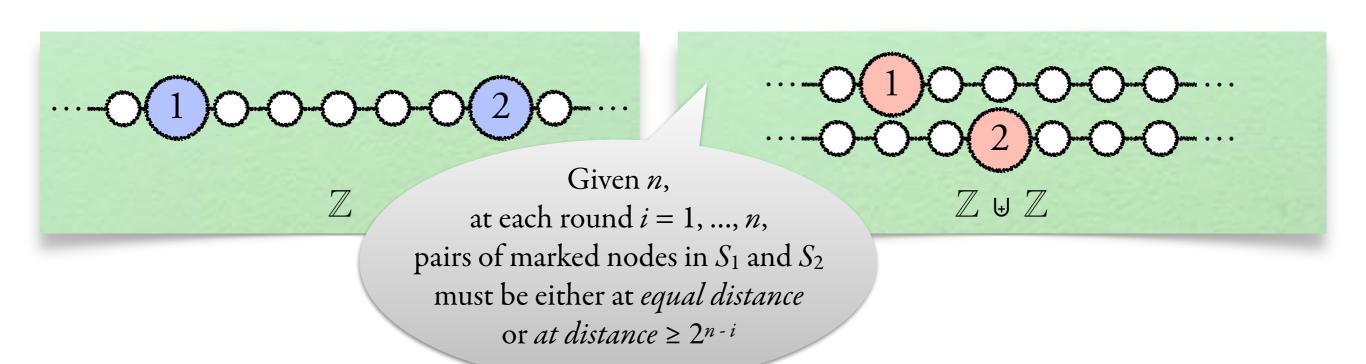






On non-isomorphic *finite* structures, Spoiler wins eventually... Why? ...and he often wins very quickly:





```
Theorem. S_1 and S_2 are n-equivalent
```

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

Suppose $S_1 \vDash \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

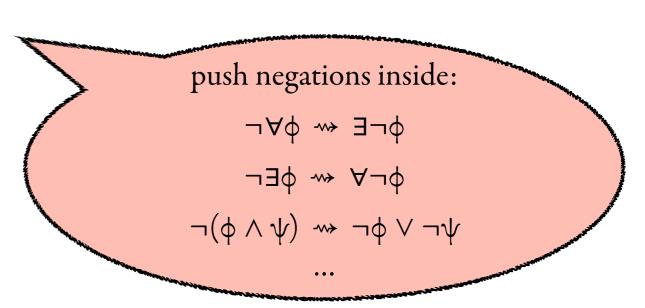
Consider ϕ with quantifier rank n.

Suppose $S_1 \vDash \phi$ and Duplicator survives *n* rounds on S_1 , S_2 . We need to prove that $S_2 \vDash \phi$.

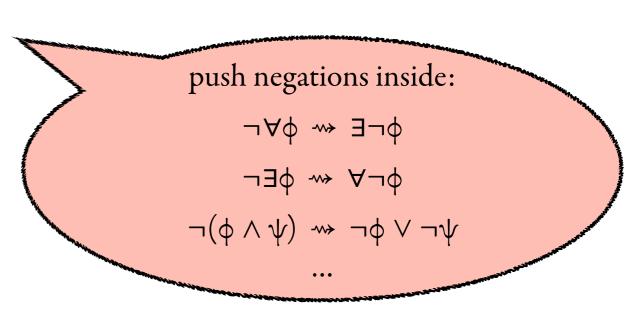
A new game to evaluate formulas....

Assume w.l.o.g. that ϕ is in negation normal form.

Assume w.l.o.g. that ϕ is in **negation normal form.**



Assume w.l.o.g. that ϕ is in negation normal form.

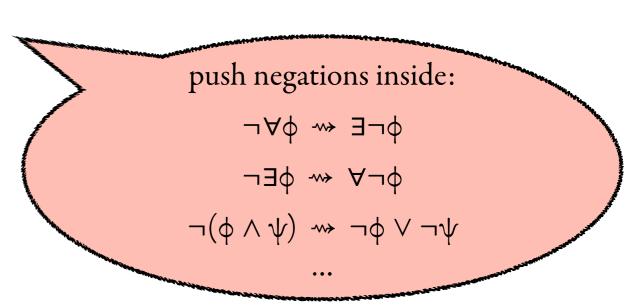


Whether $S \models \varphi$ can be decided by a *new game* between two players, True and False:

- $\phi = E(x,y)$ \rightarrow True wins if nodes marked x and y are connected by an edge, otherwise he loses
- $\phi = \exists x \phi'(x) \rightarrow \text{True moves by marking a node } x \text{ in } S \text{, the game continues with } \phi'$
- $\phi = \forall y \phi'(y) \rightarrow$ False moves by marking a node y in S, the game continues with ϕ'
- $\phi = \phi_1 \lor \phi_2$ \rightarrow True moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose
- $\phi = \phi_1 \wedge \phi_2$ \rightarrow False moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose

• ...

Assume w.l.o.g. that ϕ is in **negation normal form.**



Whether $S \models \phi$ can be decided by a *new game* between two players, True and False:

- $\phi = E(x,y)$ \rightarrow True wins if nodes marked x and y are connected by an edge, otherwise he loses
- $\phi = \exists x \phi'(x) \rightarrow \text{True moves by marking a node } x \text{ in } S \text{, the game continues with } \phi'$
- $\phi = \forall y \phi'(y) \rightarrow$ False moves by marking a node y in S, the game continues with ϕ'
- $\phi = \phi_1 \lor \phi_2$ \rightarrow True moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose
- $\phi = \phi_1 \wedge \phi_2$ \rightarrow False moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose

• ...

Lemma. $S \models \phi$ iff **True** wins the semantics game.

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

Suppose $S_1 \models \varphi$ and Duplicator survives *n* rounds on S_1 , S_2 .

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

True wins the game on S_1

Consider ϕ with quantifier rank n.

Suppose $S_1 \vDash \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .

We need to prove that $S_2 \models \phi$.

True wins the game on S_2

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

True wins the game on S_1

Consider ϕ with quantifier rank n.

Suppose $S_1 \models \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .

We need to prove that $S_2 \models \phi$.

True wins the game on S_2

Turn winning strategy for True in S_1 into winning strategy for True in S_2

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

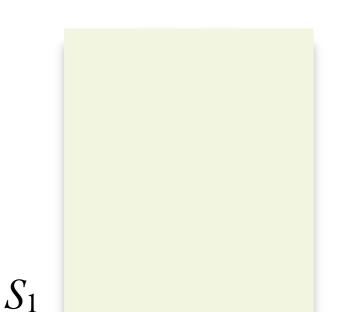
iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

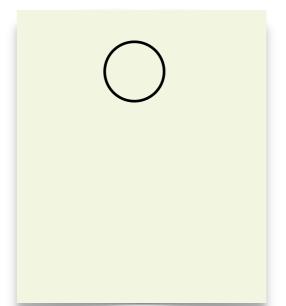
Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

True wins the game on S_1

Suppose $S_1 \vDash \phi$ and Duplicator survives *n* rounds on S_1 , S_2 . We need to prove that $S_2 \vDash \phi$.





 S_2

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

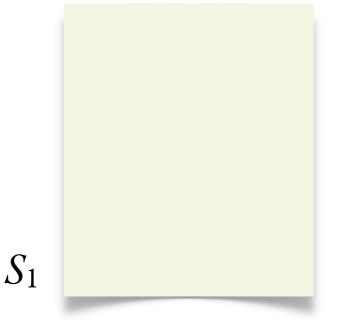
Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

True wins the game on S_1

Suppose $S_1 \vDash \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .

We need to prove that $S_2 \models \phi$.



 S_2

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

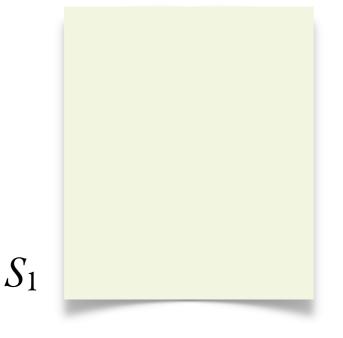
Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

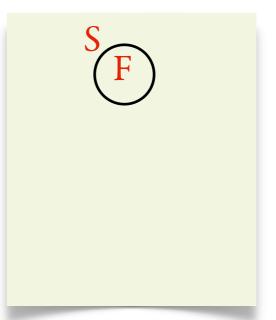
Consider ϕ with quantifier rank n.

True wins the game on S_1

Suppose $S_1 \vDash \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .

We need to prove that $S_2 \models \phi$.





 S_2

Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

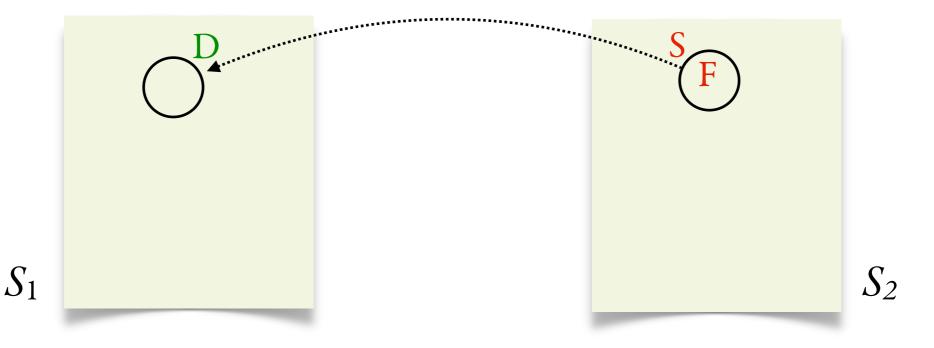
iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

True wins the game on S_1

Suppose $S_1 \models \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .



Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

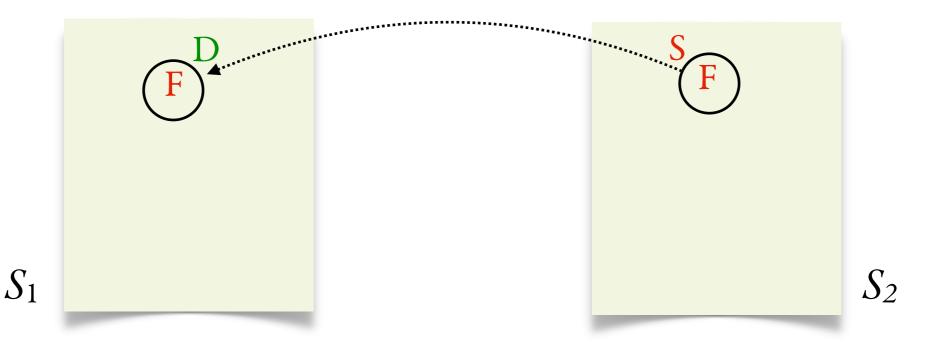
iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

True wins the game on S_1

Suppose $S_1 \models \varphi$ and Duplicator survives *n* rounds on S_1 , S_2 .



Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

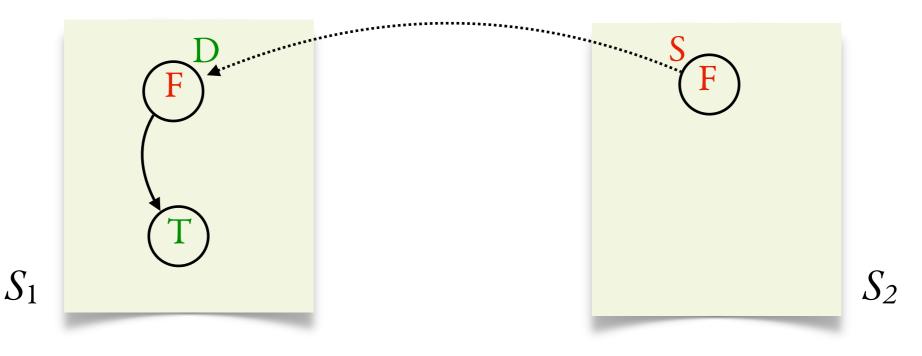
iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

True wins the game on S_1

Suppose $S_1 \models \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .



Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

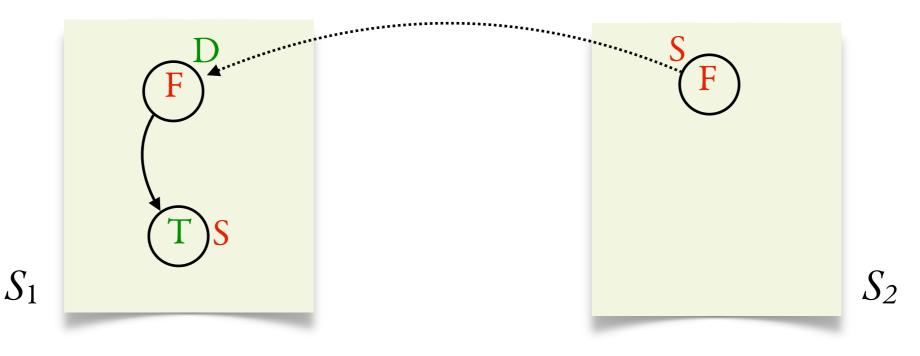
iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

True wins the game on S_1

Suppose $S_1 \models \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .



Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

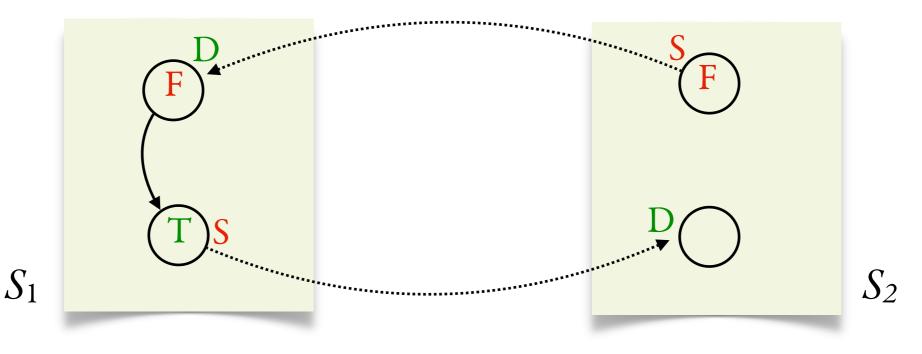
iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

True wins the game on S_1

Suppose $S_1 \models \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .



Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

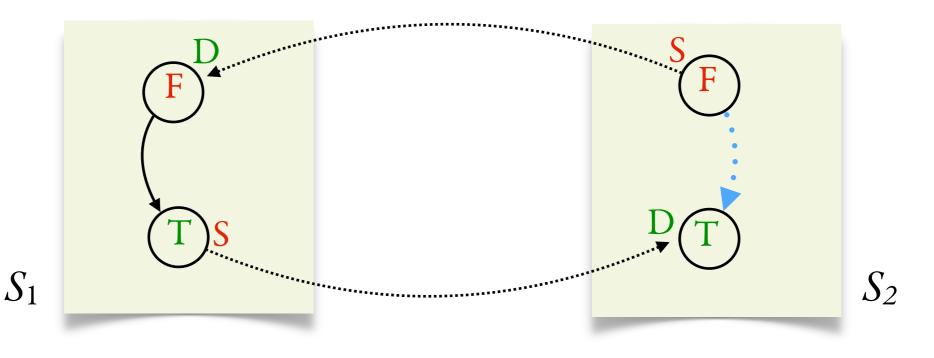
iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank n.

True wins the game on S_1

Suppose $S_1 \models \phi$ and Duplicator survives *n* rounds on S_1 , S_2 .



Theorem. S_1 and S_2 are n-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Corollary. A property P is not definable in FO

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .

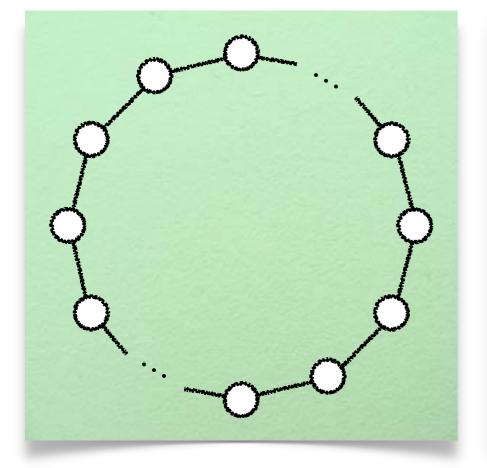
Theorem. S_1 and S_2 are n-equivalent

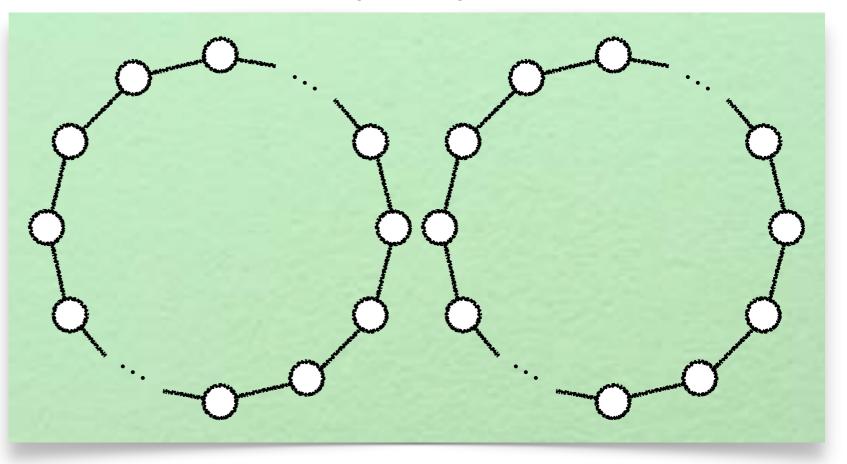
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Corollary. A property P is not definable in FO

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .





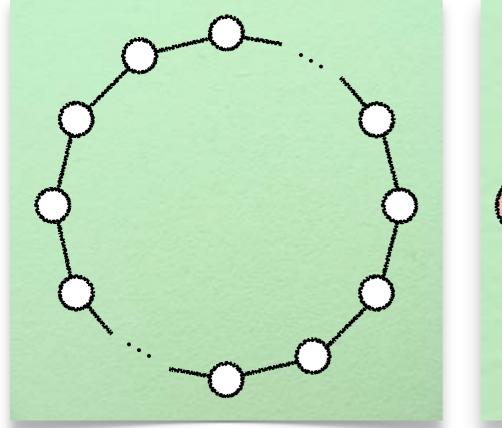
Theorem. S_1 and S_2 are n-equivalent

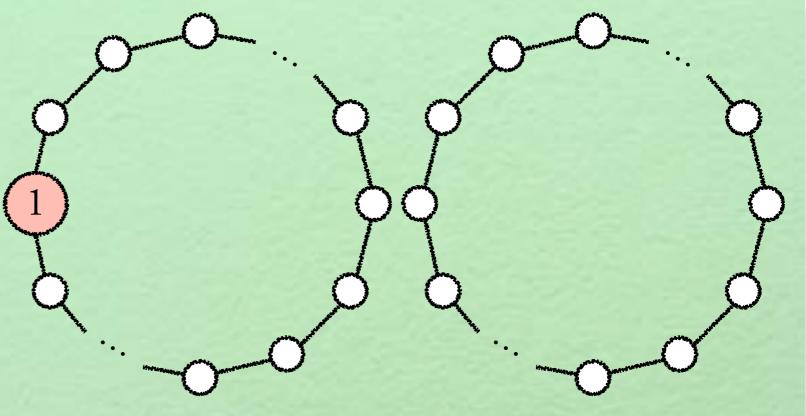
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Corollary. A property P is not definable in FO

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .





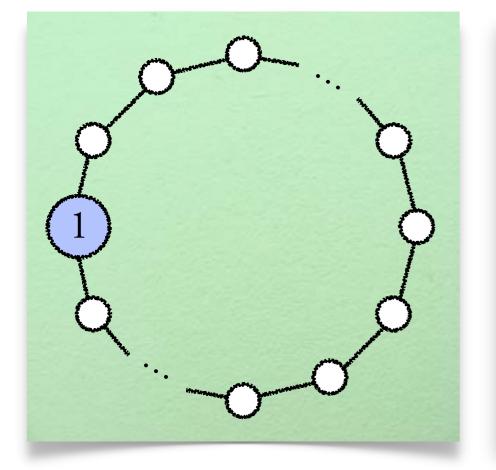
Theorem. S_1 and S_2 are n-equivalent

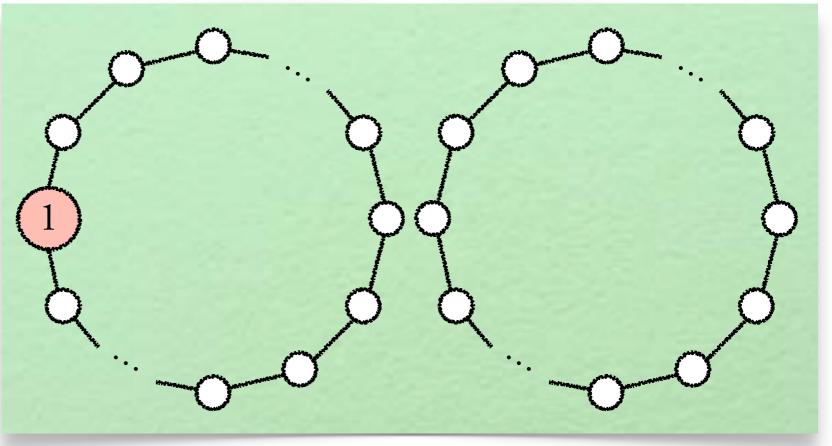
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Corollary. A property P is not definable in FO

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .





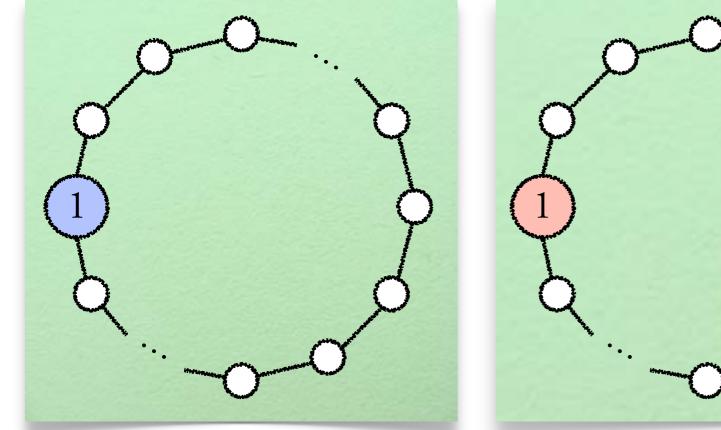
Theorem. S_1 and S_2 are n-equivalent

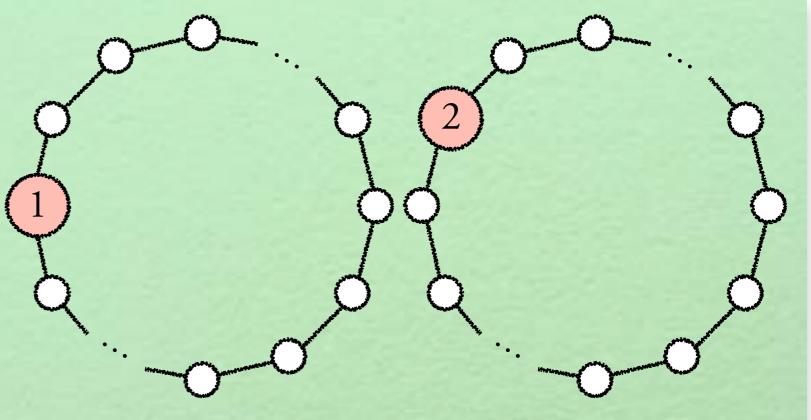
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Corollary. A property P is not definable in FO

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .





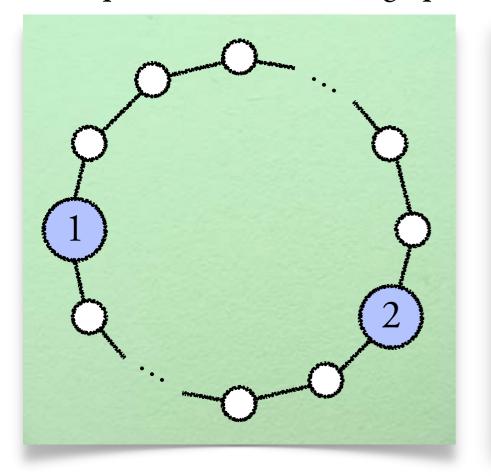
Theorem. S_1 and S_2 are n-equivalent

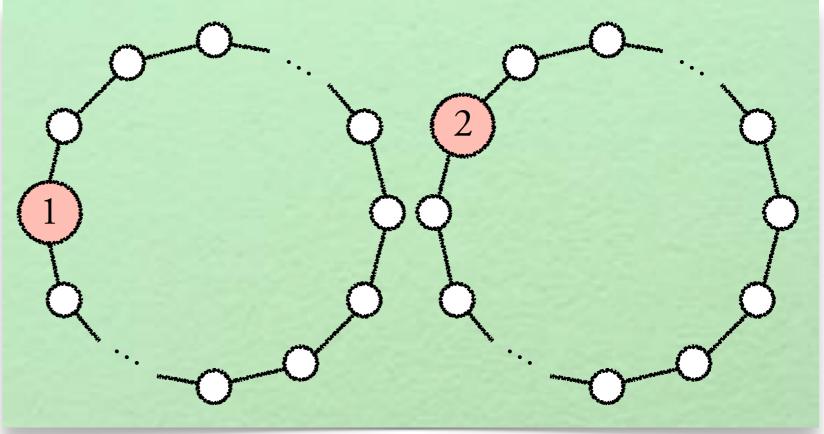
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Corollary. A property P is not definable in FO

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .





Several properties can be proved to be not FO-definable:

connectivity (previous slide)

Several properties can be proved to be *not FO-definable*:

• connectivity (previous slide)

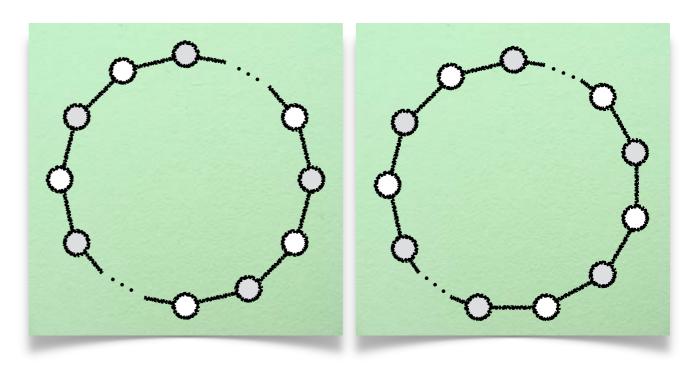
• even / odd size Your turn now! ...given n, take $S_1 = \text{large even structure}$ $S_2 = \text{large odd structure...}$

Several properties can be proved to be *not FO-definable*:

• connectivity (previous slide)

• even / odd size Your turn now! ...given n, take $S_1 = \text{large even structure}$ $S_2 = \text{large odd structure...}$

• 2-colorability Given n, take $S_1 = \text{large even cycle}$ $S_2 = \text{large odd cycle}$



Several properties can be proved to be *not FO-definable*:

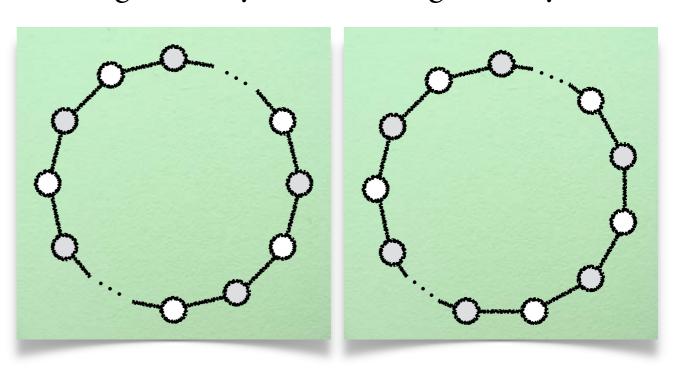
• connectivity (previous slide)

• even / odd size Your turn now! ...given n, take $S_1 = \text{large even structure}$ $S_2 = \text{large odd structure...}$

• 2-colorability Given n, take $S_1 = \text{large even cycle}$ $S_2 = \text{large odd cycle}$

• finiteness

acyclicity



• • •

A different perspective: a coarser view on expressiveness...

A different perspective: a coarser view on expressiveness...

What percentage of graphs verify a given FO sentence?

 $\mu_n(\mathbf{P})$ = "probability that property \mathbf{P} holds in a random graph with n nodes"

 $\mu_n(\mathbf{P})$ = "probability that property \mathbf{P} holds in a random graph with \mathbf{n} nodes"

Uniform distribution

(each pair of nodes has an edge with probability ½)

 $\mu_n(\mathbf{P})$ = "probability that property \mathbf{P} holds in a random graph with n nodes"

 $C_n = \{ \text{ graphs with } n \text{ nodes } \}$

$$\mu_{\mathbf{n}}(\mathbf{P}) = \frac{|\{G \in \mathbf{C}_n \mid G \models \mathbf{P}\}|}{|\mathbf{C}_n|}$$

Uniform distribution

(each pair of nodes has an edge with probability ½)

 $\mu_n(\mathbf{P})$ = "probability that property \mathbf{P} holds in a random graph with n nodes"

 $C_n = \{ \text{ graphs with } n \text{ nodes } \}$

Uniform distribution
(each pair of nodes has an edge with probability ½)

$$\mu_{\mathbf{n}}(\mathbf{P}) = \frac{\left| \left\{ G \in \mathbf{C}_n \mid G \models \mathbf{P} \right\} \right|}{\left| \mathbf{C}_n \right|}$$

E.g. for P = "the graph is complete"

$$\mu_3(\mathbf{P}) = \frac{1}{|\mathbf{C}_3|} = \frac{1}{2^{3^2}}$$

 $\mu_n(\mathbf{P})$ = "probability that property \mathbf{P} holds in a random graph with n nodes"

 $C_n = \{ \text{ graphs with } n \text{ nodes } \}$

Uniform distribution
(each pair of nodes has an edge with probability ½)

$$\mu_{\mathbf{n}}(\mathbf{P}) = \frac{\left| \left\{ G \in \mathbf{C}_n \mid G \models \mathbf{P} \right\} \right|}{\left| \mathbf{C}_n \right|}$$

E.g. for P = "the graph is complete"

$$\mu_3(\mathbf{P}) = \frac{1}{|\mathbf{C}_3|} = \frac{1}{2^{3^2}}$$

$$\mu_{\infty}(\mathbf{P}) = \lim_{n \to \infty} \mu_{n}(\mathbf{P})$$

Theorem.

[Glebskii et al. '69, Fagin '76]

Theorem.

[Glebskii et al. '69, Fagin '76]

For every FO sentence ϕ , $\mu_{\infty}(\phi)$ is either 0 or 1.

Examples:

• ϕ = "there is a triangle"

$$\mu_3(\varphi) = 1/|C_3| \quad \mu_{3n}(\varphi) \ge 1 - (1 - 1/|C_3|)^n \to 1$$

Theorem.

[Glebskii et al. '69, Fagin '76]

For every FO sentence ϕ , $\mu_{\infty}(\phi)$ is either 0 or 1.

Examples:

• ϕ = "there is a triangle"

$$\mu_3(\varphi) = 1/|C_3| \quad \mu_{3n}(\varphi) \ge 1 - (1 - 1/|C_3|)^n \to 1$$

• ϕ_H = "there is an occurrence of H as induced sub-graph"

$$\mu_{\infty}(\phi_H)=1$$

Theorem.

[Glebskii et al. '69, Fagin '76]

For every FO sentence ϕ , $\mu_{\infty}(\phi)$ is either 0 or 1.

Examples:

•
$$\phi$$
 = "there is a triangle"

$$\mu_3(\varphi) = 1/|C_3| \quad \mu_{3n}(\varphi) \ge 1 - (1 - 1/|C_3|)^n \to 1$$

• ϕ_H = "there is an occurrence of H as induced sub-graph"

$$\mu_{\infty}(\phi_H)=1$$

• ϕ = "there no 5-clique"

$$\mu_{\infty}(\varphi) = 0$$

Theorem.

[Glebskii et al. '69, Fagin '76]

For every FO sentence ϕ , $\mu_{\infty}(\phi)$ is either 0 or 1.

Examples:

•
$$\phi$$
 = "there is a triangle"

$$\mu_3(\phi) = \frac{1}{|C_3|} \quad \mu_{3n}(\phi) \ge 1 - \left(1 - \frac{1}{|C_3|}\right)^n \to 1$$

• ϕ_H = "there is an occurrence of H as induced sub-graph"

$$\mu_{\infty}(\phi_H)=1$$

• ϕ = "there no 5-clique"

$$\mu_{\infty}(\phi) = 0$$

• ϕ = "even number of edges"

• ϕ = "even number of nodes"

Your turn!

Theorem.

[Glebskii et al. '69, Fagin '76]

For every *FO sentence* ϕ , $\mu_{\infty}(\phi)$ is either 0 or 1.

Examples:

•
$$\phi$$
 = "there is a triangle"

$$\mu_3(\varphi) = \frac{1}{|C_3|} \quad \mu_{3n}(\varphi) \ge 1 - \left(1 - \frac{1}{|C_3|}\right)^n \to 1$$

• ϕ_H = "there is an occurrence of H as induced sub-graph"

$$\mu_{\infty}(\phi_H)=1$$

• ϕ = "there no 5-clique"

$$\mu_{\infty}(\phi) = 0$$

• ϕ = "even number of edges"

•
$$\phi$$
 = "even number of nodes"

Your turn!

$$\mu_{\infty}(\varphi) = 1/2$$

 $\mu_{\infty}(\phi)$ not even defined

Theorem.

[Glebskii et al. '69, Fagin '76]

For every FO sentence ϕ , $\mu_{\infty}(\phi)$ is either 0 or 1.

Examples:

•
$$\phi$$
 = "there is a triangle"

$$\mu_3(\varphi) = \frac{1}{|C_3|} \quad \mu_{3n}(\varphi) \ge 1 - \left(1 - \frac{1}{|C_3|}\right)^n \to 1$$

• ϕ_H = "there is an occurrence of H as induced sub-graph"

$$\mu_{\infty}(\phi_H)=1$$

• ϕ = "there no 5-clique"

$$\mu_{\infty}(\phi) = 0$$

• ϕ = "even number of edges"

•
$$\phi$$
 = "even number of nodes"

• ϕ = "more edges than nodes"

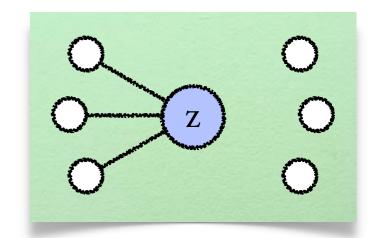
$$\mu_{\infty}(\varphi) = 1/2$$

 $\mu_{\infty}(\phi)$ not even defined

$$\mu_{\infty}(\phi) = 1$$
(yet not FO-definable!)

Let
$$k = \text{quantifier rank of } \varphi$$

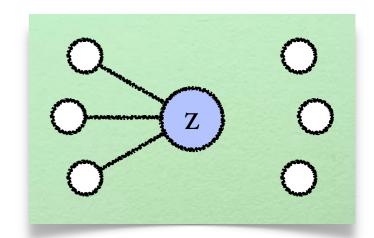
$$\delta_k = \forall x_1, ..., x_k \ \forall y_1, ..., y_k \ \exists z \ \land_{i,j} x_i \neq y_j \land E(x_i, z) \land \neg E(y_j, z)$$
 (Extension Formula/Axiom)



For every FO sentence ϕ , $\mu_{\infty}(\phi)$ is either 0 or 1.

Let
$$k = \text{quantifier rank of } \varphi$$

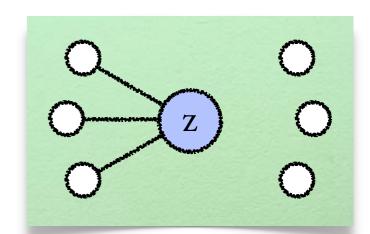
$$\delta_k = \forall x_1, ..., x_k \ \forall y_1, ..., y_k \ \exists z \ \land_{i,j} x_i \neq y_j \land E(x_i, z) \land \neg E(y_j, z)$$
 (Extension Formula/Axiom)



Fact 1: If $G \models \delta_k \land H \models \delta_k$ then Duplicator survives k rounds on G, H

Let
$$k = \text{quantifier rank of } \varphi$$

$$\delta_k = \forall x_1, ..., x_k \ \forall y_1, ..., y_k \ \exists z \ \land_{i,j} x_i \neq y_j \land E(x_i, z) \land \neg E(y_j, z)$$
 (Extension Formula/Axiom)

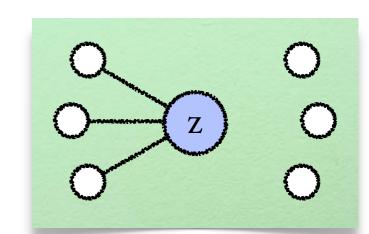


Fact 1: If
$$G \models \delta_k \land H \models \delta_k$$
 then
Duplicator survives k rounds on G, H

Fact 2:
$$\mu_{\infty}(\delta_k) = 1$$
 $(\delta_k \text{ is almost surely true})$

Let
$$k = \text{quantifier rank of } \varphi$$

$$\delta_k = \forall x_1, ..., x_k \ \forall y_1, ..., y_k \ \exists z \ \land_{i,j} x_i \neq y_j \land E(x_i, z) \land \neg E(y_j, z)$$
 (Extension Formula/Axiom)



Fact 1: If
$$G \models \delta_k \land H \models \delta_k$$
 then
Duplicator survives k rounds on G, H

Fact 2:
$$\mu_{\infty}(\delta_k) = 1$$
 $(\delta_k \text{ is almost surely true})$

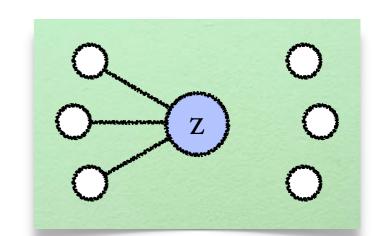
a) There is
$$G : G \models \delta_k \land \varphi \Rightarrow (\text{by Fact 1}) \forall H : \text{If } H \models \delta_k \text{ then } H \models \varphi$$

Thus, $\mu_{\infty}(\delta_k) \leq \mu_{\infty}(\varphi)$

2 cases
$$\Rightarrow (\text{by Fact 2}) \mu_{\infty}(\delta_k) = 1, \text{ hence } \mu_{\infty}(\varphi) = 1$$

Let
$$k = \text{quantifier rank of } \varphi$$

$$\delta_k = \forall x_1, ..., x_k \ \forall y_1, ..., y_k \ \exists z \ \land_{i,j} x_i \neq y_j \land E(x_i, z) \land \neg E(y_j, z)$$
 (Extension Formula/Axiom)



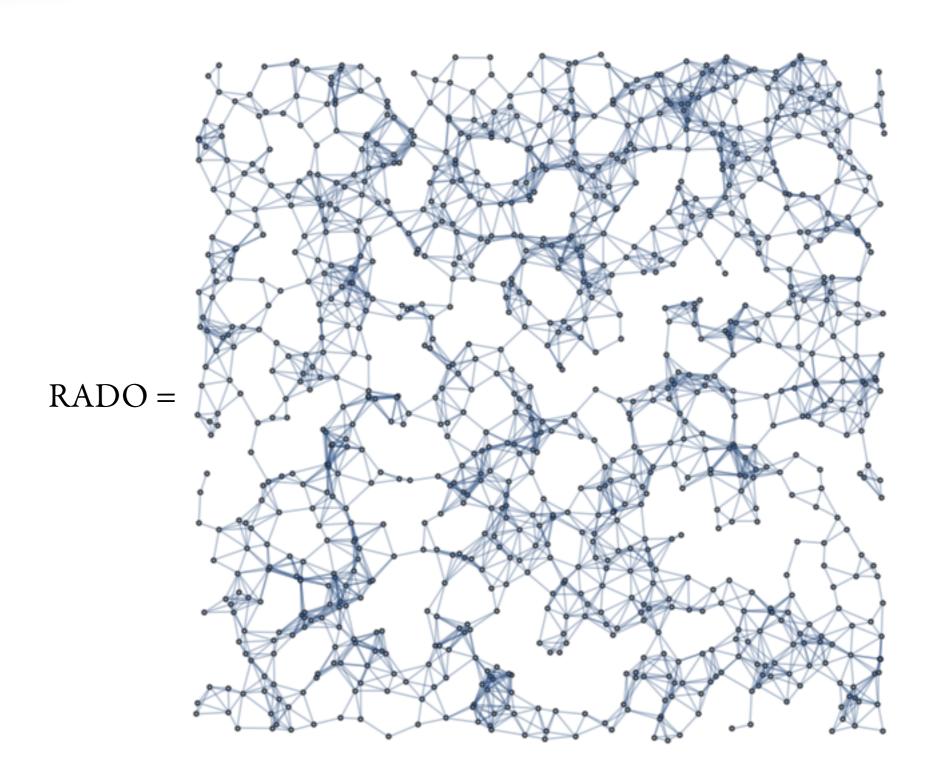
Fact 1: If
$$G \models \delta_k \land H \models \delta_k$$
 then
Duplicator survives k rounds on G, H

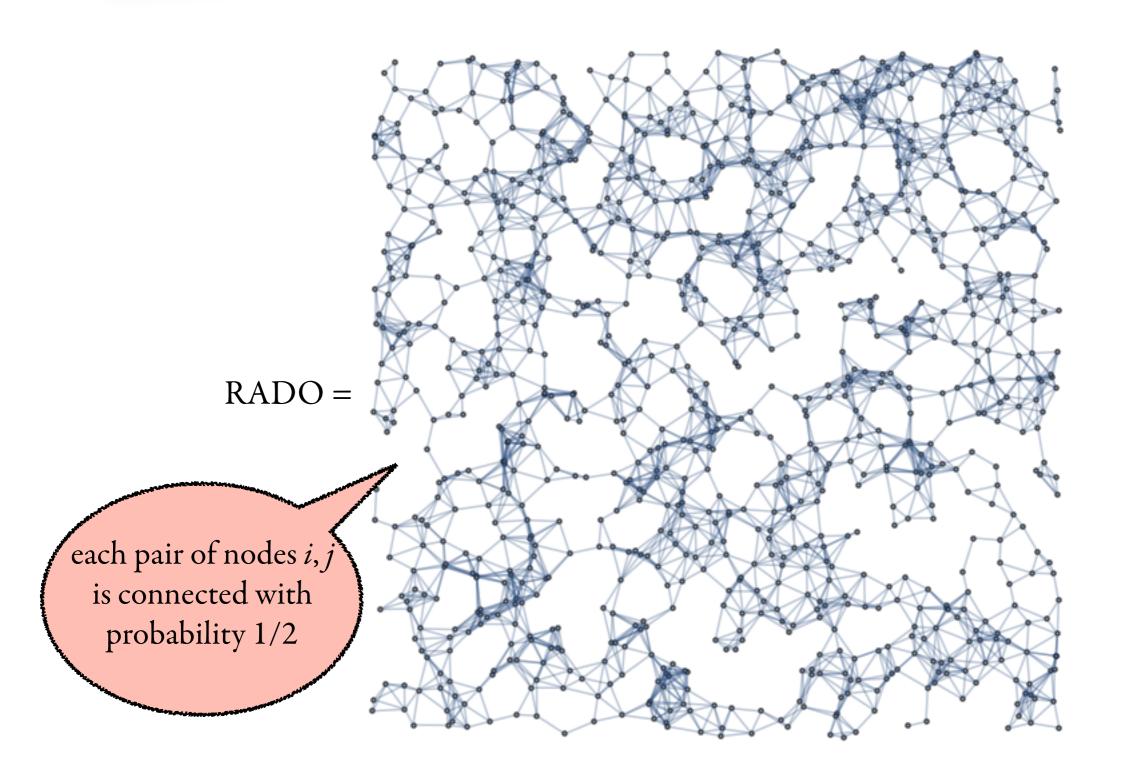
Fact 2:
$$\mu_{\infty}(\delta_k) = 1$$
 $(\delta_k \text{ is almost surely true})$

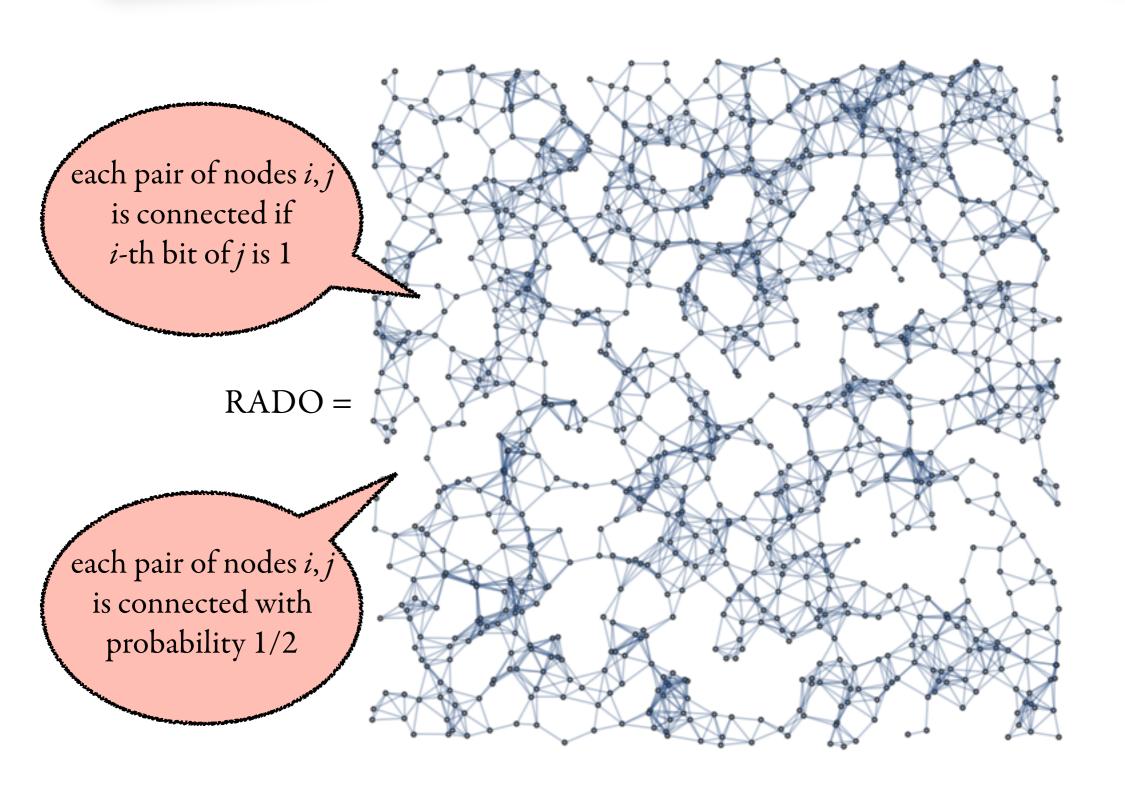
a) There is
$$G : G \models \delta_k \land \varphi \Rightarrow \text{(by Fact 1)} \forall H : \text{If } H \models \delta_k \text{ then } H \models \varphi$$

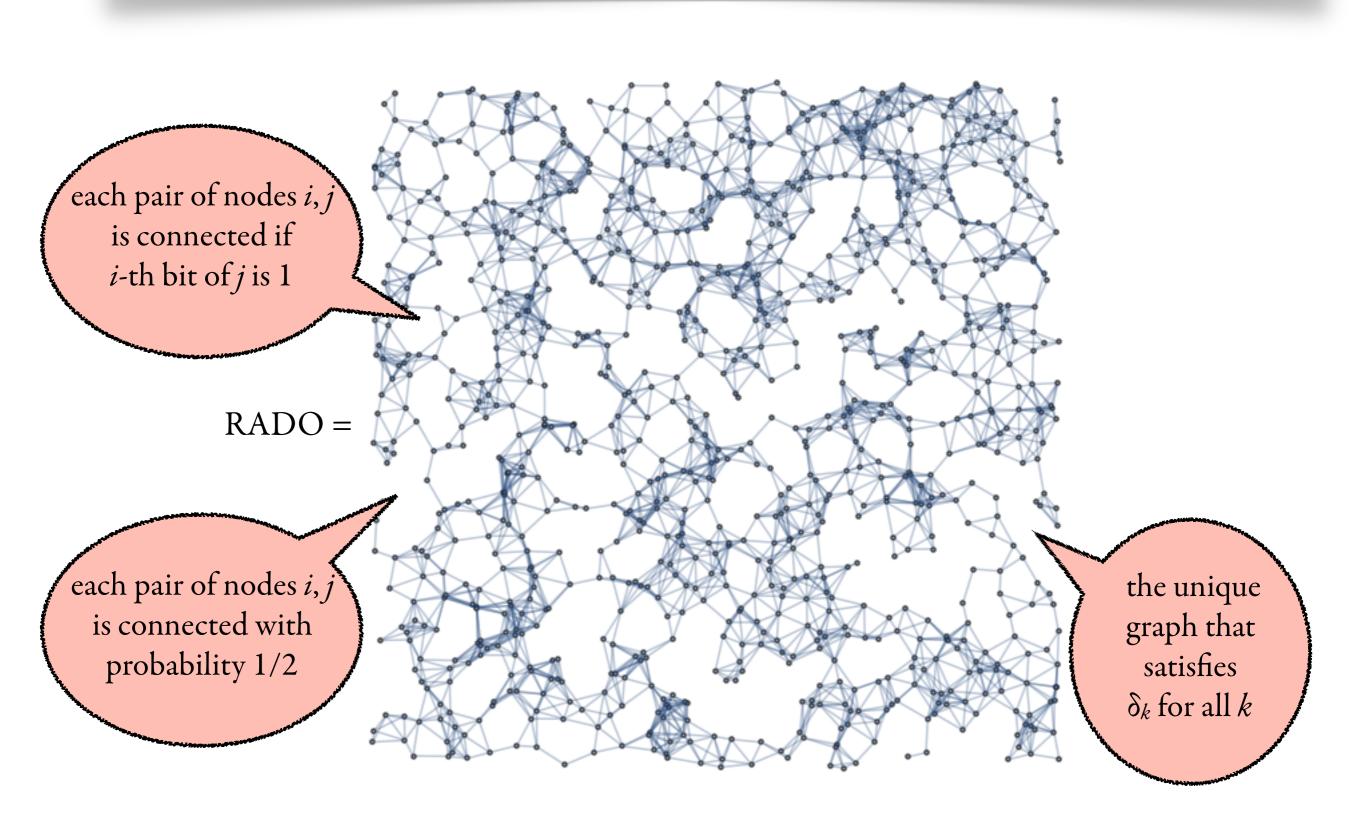
Thus, $\mu_{\infty}(\delta_k) \leq \mu_{\infty}(\varphi)$
 $\Rightarrow \text{(by Fact 2)} \ \mu_{\infty}(\delta_k) = 1, \text{ hence } \mu_{\infty}(\varphi) = 1$

b) There is no $G \models \delta_k \land \varphi \Rightarrow \text{(by Fact 2)} \text{ there is } G \models \delta_k,$
 $\Rightarrow G \models \delta_k \land \neg \varphi \Rightarrow \text{(by case a)} \ \mu_{\infty}(\neg \varphi) = 1$



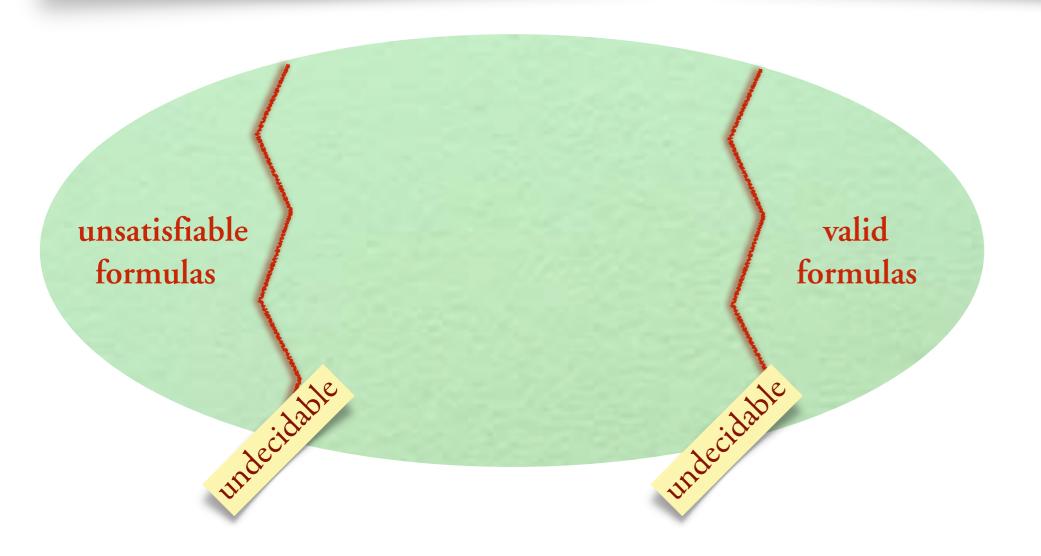




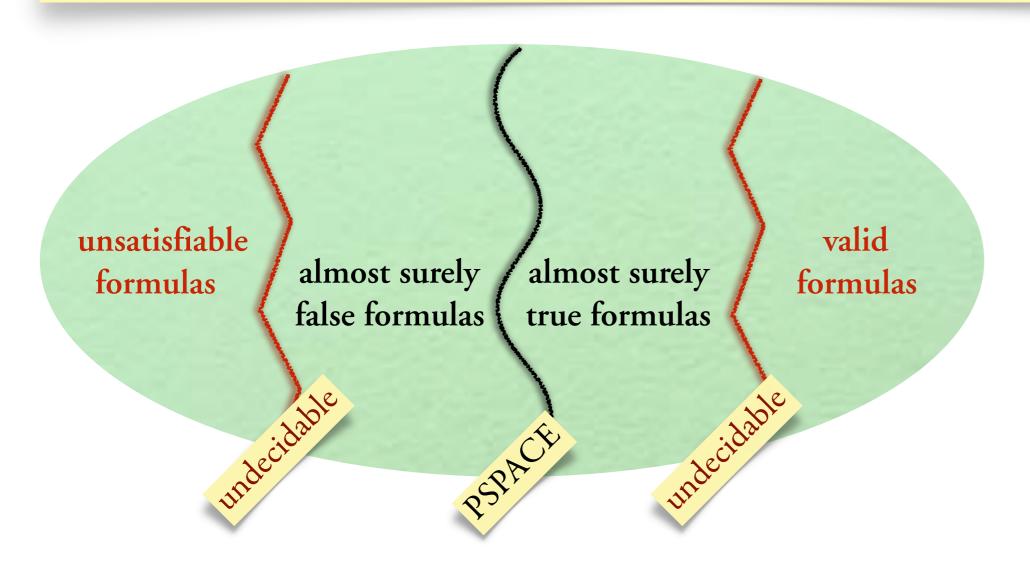


Theorem. The problem of deciding whether an FO sentence is almost surely true ($\mu_{\infty} = 1$) is PSPACE-complete.

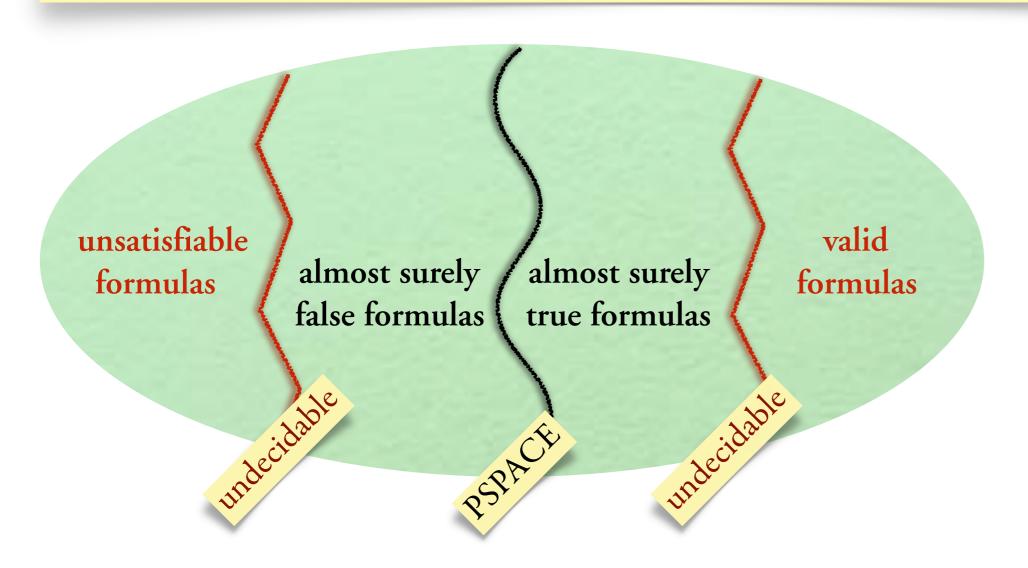
Theorem. The problem of deciding whether an FO sentence is almost surely true ($\mu_{\infty} = 1$) is PSPACE-complete.



Theorem. The problem of deciding whether an FO sentence is almost surely true ($\mu_{\infty} = 1$) is PSPACE-complete.



Theorem. The problem of deciding whether an FO sentence is almost surely true ($\mu_{\infty} = 1$) is PSPACE-complete.



Query evaluation on large databases:

Don't bother evaluating an FO query, it's either *almost surely true* or *almost surely false*!

Does the 0-1 Law apply to real-life databases?

Not quite: database constraints easily spoil Extension Axiom.

Does the 0-1 Law apply to real-life databases?

Not quite: database constraints easily spoil Extension Axiom.

Consider:

- functional constraint $\forall x, x', y, y'$ ($E(x,y) \land E(x,y') \Rightarrow y = y'$) \land (E is a permutation)
- FO query $\phi = \neg \exists x \ E(x,x)$

Does the 0-1 Law apply to real-life databases?

Not quite: database constraints easily spoil Extension Axiom.

Consider:

- functional constraint $\forall x, x, y, y'$ ($E(x,y) \land E(x,y') \Rightarrow y = y'$) \land (E is a permutation)
- FO query $\phi = \neg \exists x \ E(x,x)$

Probability that a permutation E satisfies $\phi = \frac{\ln}{n!} \rightarrow e^{-1} = 0.3679...$

Does the 0-1 Law apply to real-life databases?

Not quite: database constraints easily spoil Extension Axiom.

Consider:

- functional constraint $\forall x, x, y, y'$ ($E(x,y) \land E(x,y') \Rightarrow y = y'$) \land (E is a permutation)
- FO query $\phi = \neg \exists x \ E(x,x)$

Probability that a permutation E satisfies $\phi = \frac{\ln}{n!} \rightarrow e^{-1} = 0.3679...$

0-1 Law only applies to unconstrained databases...

Another technique: Locality

Idea: First order logic can only express "local" properties

Another technique: Locality

Idea: First order logic can only express "local" properties

Local = properties of nodes which are close to one another

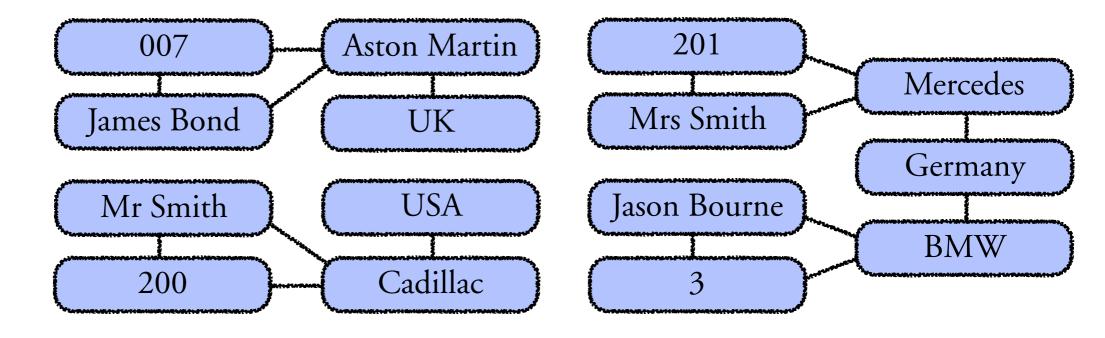


Agent	Name	Drives
007	James Bond	Aston Martin
200	Mr Smith	Cadillac
201	Mrs Smith	Mercedes
3	Jason Bourne	BMW

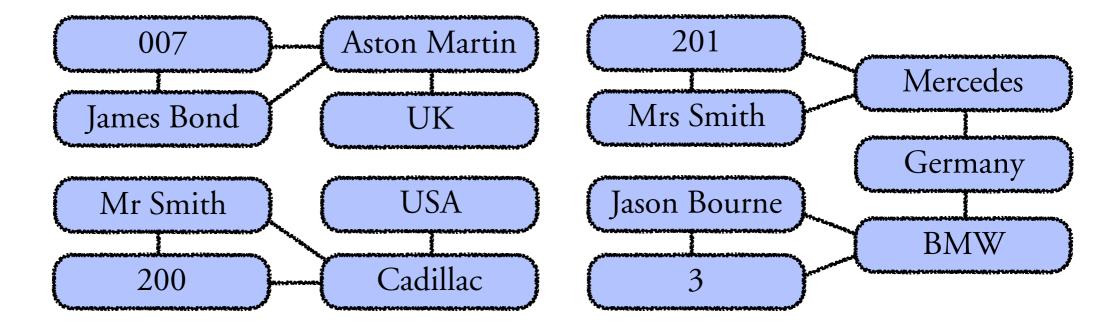
Car	Country
Aston Martin	UK
Cadillac	USA
Mercedes	Germany
BMW	Germany

Agent	Name	Drives
007	James Bond	Aston Martin
200	Mr Smith	Cadillac
201	Mrs Smith	Mercedes
3	Jason Bourne	BMW

Car	Country
Aston Martin	UK
Cadillac	USA
Mercedes	Germany
BMW	Germany



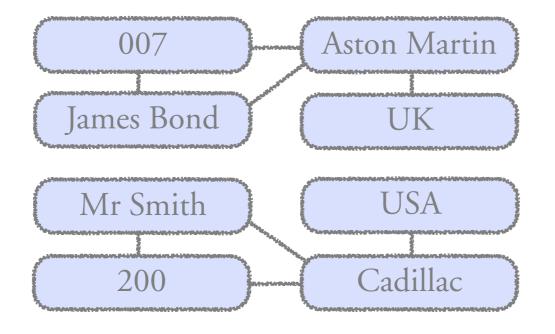
Agent	Name	Drives	Car	Country
007	James Bond	A 1	Gaifman graph of G is the underlying	UK
200	Mr Smith	Cadn. ur	ndirected graph.	USA
201	Mrs Smith	Mercedes	Mercedes	Germany
3	Jason Bourne	BMW	BMW	Germany

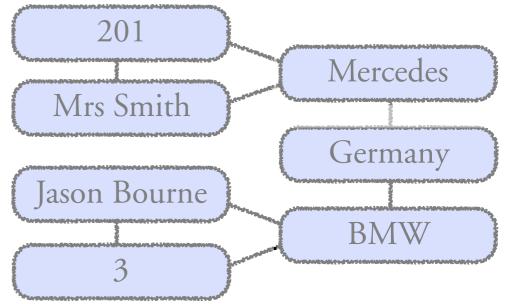


- dist (u, v) = distance between u and v in the Gaifman graph
- $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$

Agent	Name	Drives
007	James Bond	Aston Martin
200	Mr Smith	Cadillac
201	Mrs Smith	Mercedes
3	Jason Bourne	BMW

Car	Country
Aston Martin	UK
Cadillac	USA
Mercedes	Germany
BMW	Germany

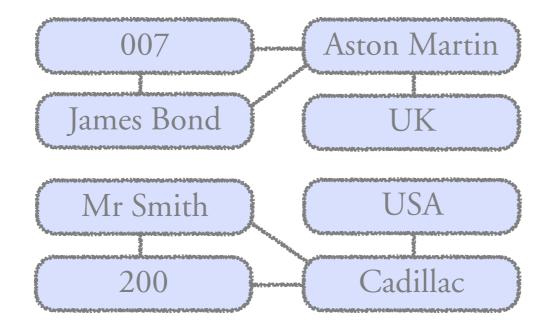


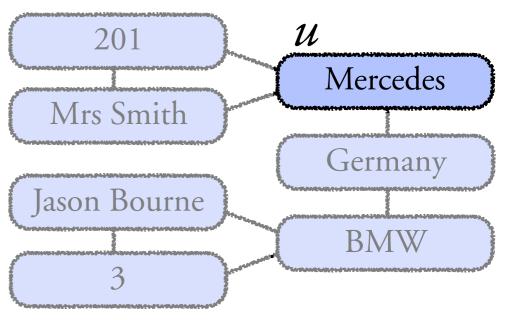


- dist (u, v) = distance between u and v in the Gaifman graph
- $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$

Agent	Name	Drives
007	James Bond	Aston Martin
200	Mr Smith	Cadillac
201	Mrs Smith	Mercedes u
3	Jason Bourne	BMW

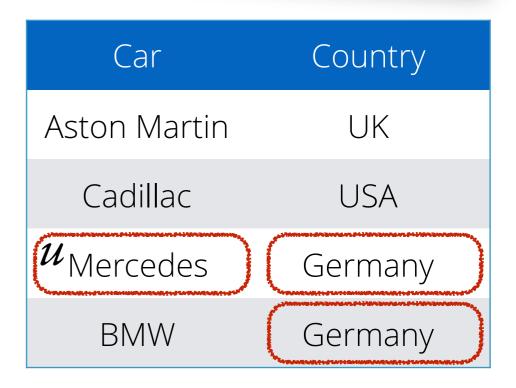
Car	Country
Aston Martin	UK
Cadillac	USA
$u_{Mercedes}$	Germany
BMW	Germany

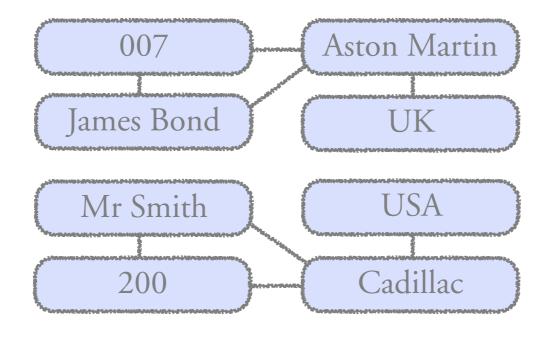


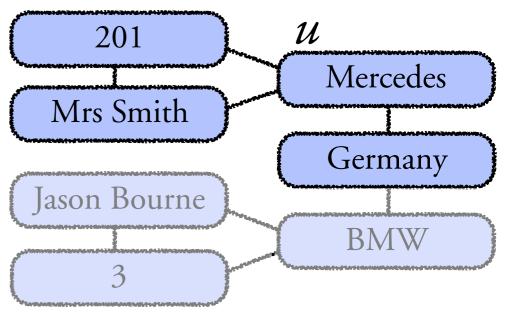


- dist (u, v) = distance between u and v in the Gaifman graph
- $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$

Agent	Name	Drives
007	James Bond	Aston Martin
200	Mr Smith	Cadillac
201	Mrs Smith	Mercedes u
3	Jason Bourne	BMW

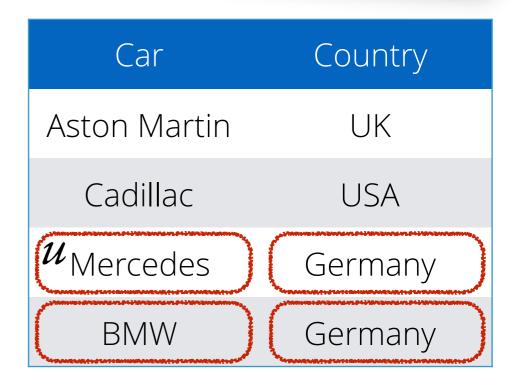


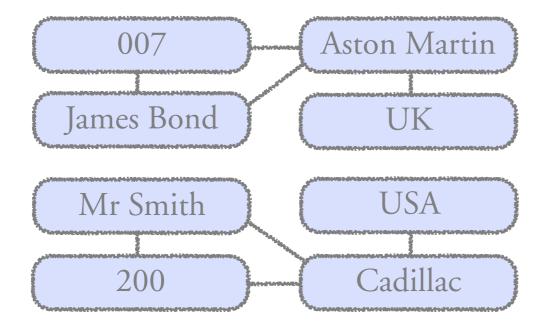




- dist (u, v) = distance between u and v in the Gaifman graph
- $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$

Agent	Name	Drives
007	James Bond	Aston Martin
200	Mr Smith	Cadillac
201	Mrs Smith	Mercedes u
3	Jason Bourne	BMW

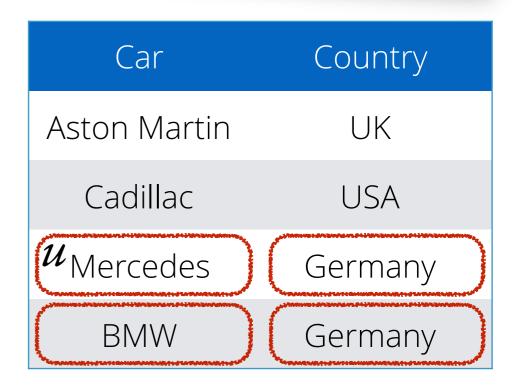


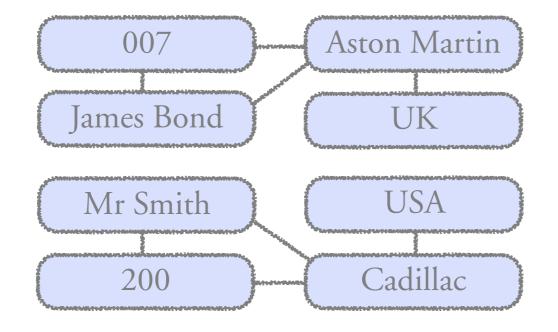


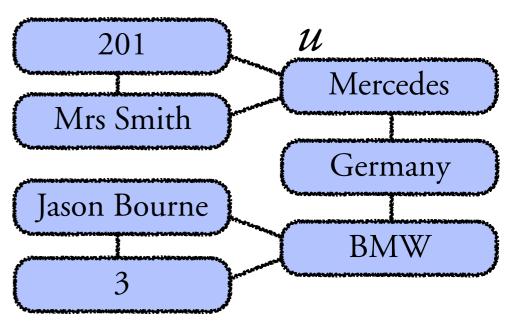


- dist (u, v) = distance between u and v in the Gaifman graph
- $S[u,r] = \text{sub-structure induced by } \{v \mid \text{dist}(u,v) \le r\} = \text{ball around } u \text{ of radius } r$

Ag	ent	Name	Drives
00	07	James Bond	Aston Martin
20	00	Mr Smith	Cadillac
20	01	Mrs Smith	Mercedes u
	3	Jason Bourne	BMW







Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent

iff for each structure B, the two numbers

#
$$u$$
 s.t. $S_1[u,r] \cong B$ # v s.t. $S_2[v,r] \cong B$

are either the same or both $\geq t$.

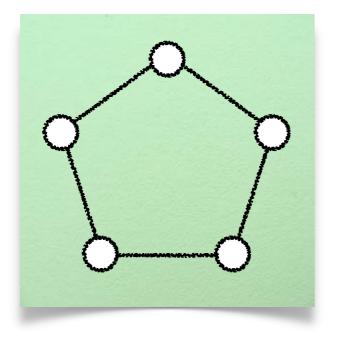
Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent

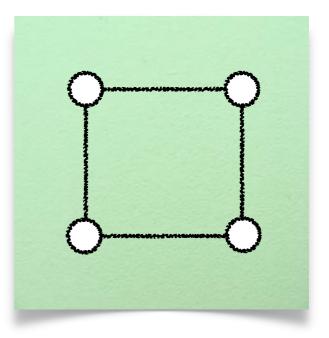
iff for each structure B, the two numbers

#
$$u$$
 s.t. $S_1[u,r] \cong B$ # v s.t. $S_2[v,r] \cong B$

are either the same or both $\geq t$.

Example. S_1 , S_2 are Hanf (1, 1) - equivalent iff they have the *same balls* of radius 1





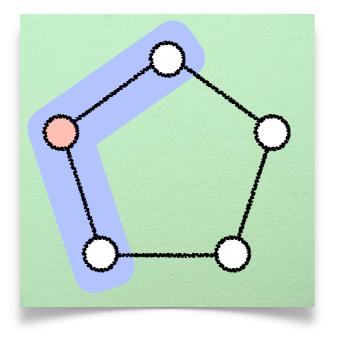
Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent

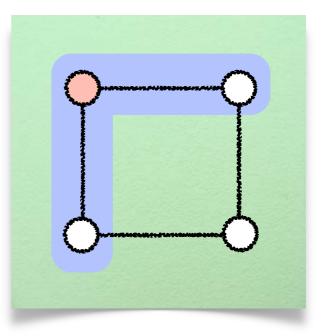
iff for each structure B, the two numbers

#
$$u$$
 s.t. $S_1[u,r] \cong B$ # v s.t. $S_2[v,r] \cong B$

are either the same or both $\geq t$.

Example. S_1 , S_2 are Hanf (1, 1) - equivalent iff they have the *same balls* of radius 1





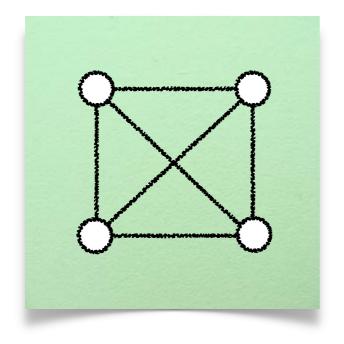
Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent

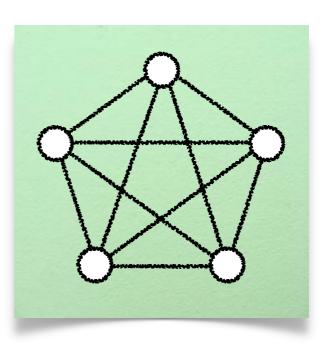
iff for each structure B, the two numbers

#
$$u$$
 s.t. $S_1[u,r] \cong B$ # v s.t. $S_2[v,r] \cong B$

are either the same or both $\geq t$.

Example. K_n , K_{n+1} are **not** Hanf (1,1) - equivalent





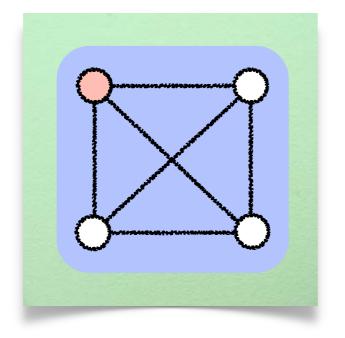
Definition. Two structures S_1 and S_2 are Hanf(r, t) - equivalent

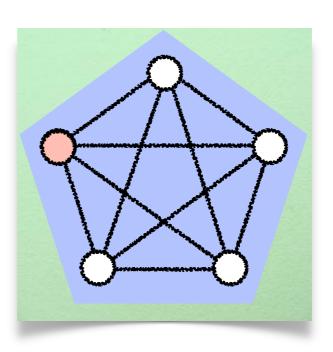
iff for each structure B, the two numbers

#
$$u$$
 s.t. $S_1[u,r] \cong B$ # v s.t. $S_2[v,r] \cong B$

are either the same or both $\geq t$.

Example. K_n , K_{n+1} are **not** Hanf (1,1) - equivalent





```
Theorem. If S_1, S_2 are Hanf(r,t) - equivalent, with r=3^n and t=n then S_1, S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n)
```

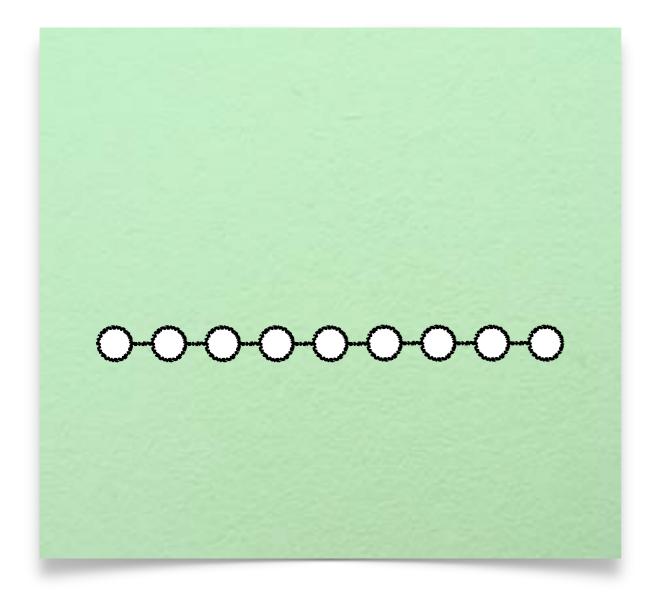
[Hanf '60]

```
Theorem. If S_1, S_2 are Hanf(r,t) - equivalent, with r=3^n and t=n then S_1, S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n)
```

[Hanf '60]

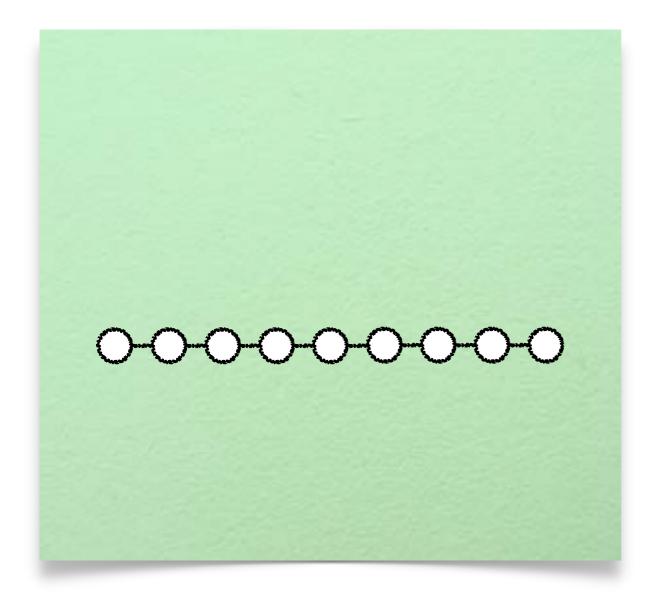
Theorem. If S_1 , S_2 are Hanf(r,t)-equivalent, with $r=3^n$ and t=n then S_1 , S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n)

[Hanf '60]



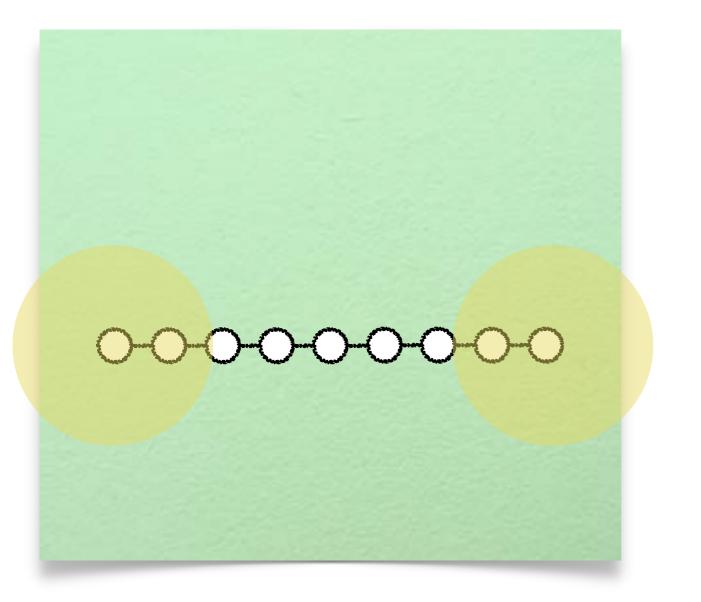
Theorem. If S_1 , S_2 are Hanf(r,t) - equivalent, with $r=3^n$ and t=n then S_1 , S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n)

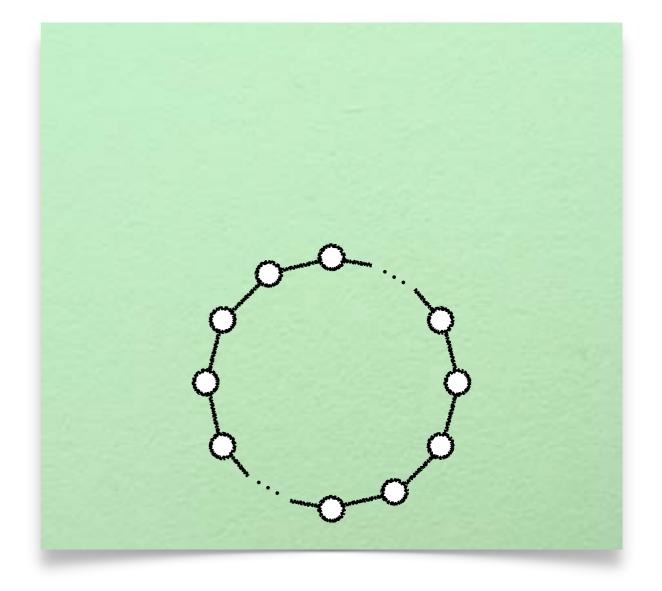
[Hanf '60]



Theorem. If S_1 , S_2 are Hanf(r,t) - equivalent, with $r=3^n$ and t=n then S_1 , S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n)

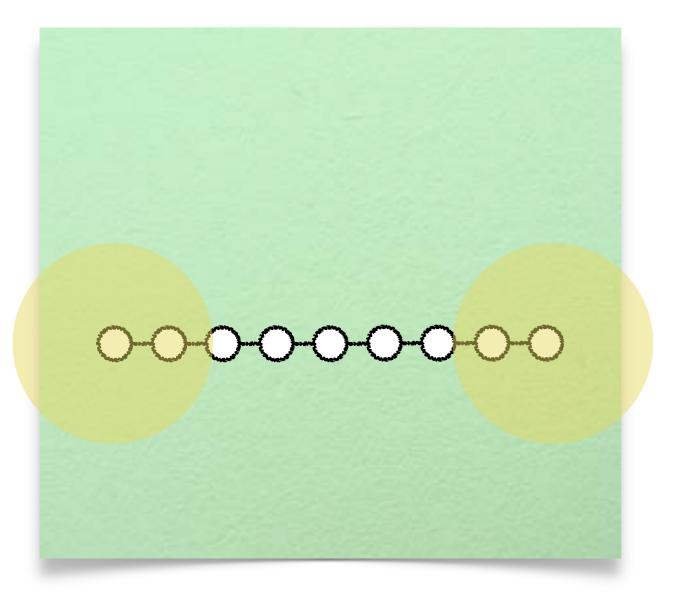
[Hanf '60]

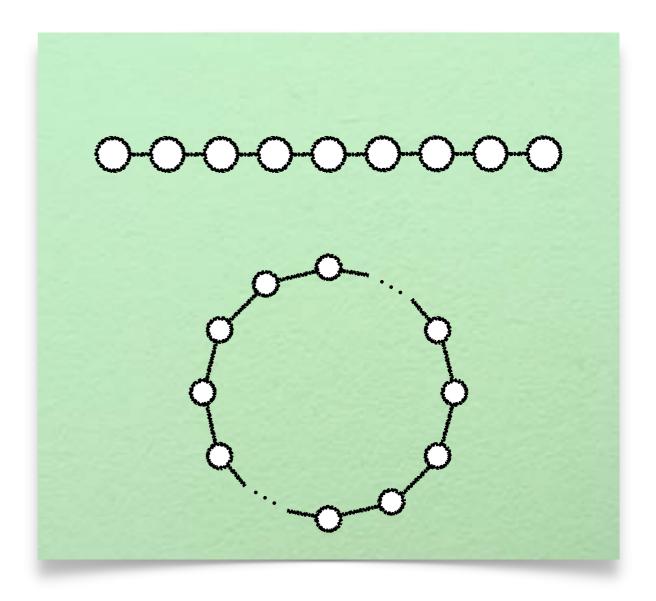




Theorem. If S_1 , S_2 are Hanf(r,t) - equivalent, with $r=3^n$ and t=n then S_1 , S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n)

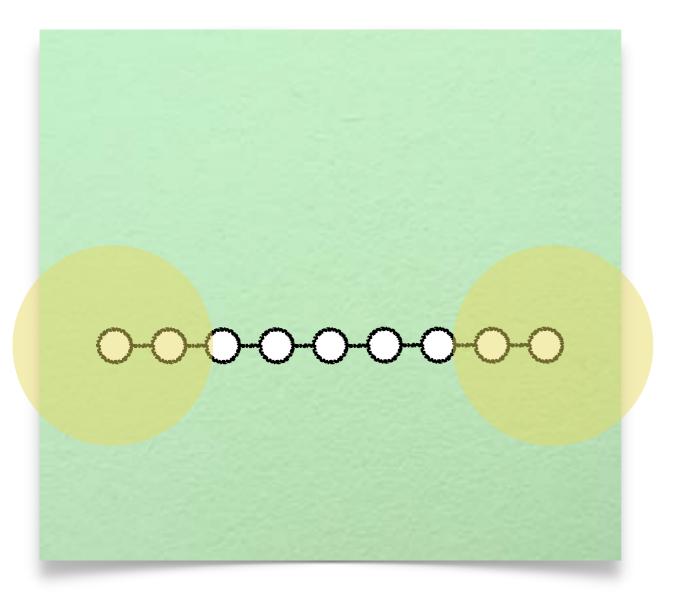
[Hanf '60]

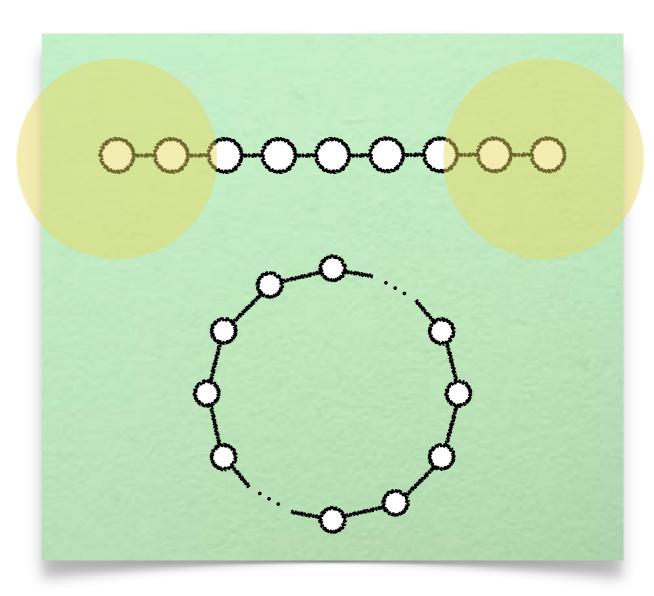




Theorem. If S_1 , S_2 are Hanf(r,t) - equivalent, with $r=3^n$ and t=n then S_1 , S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n)

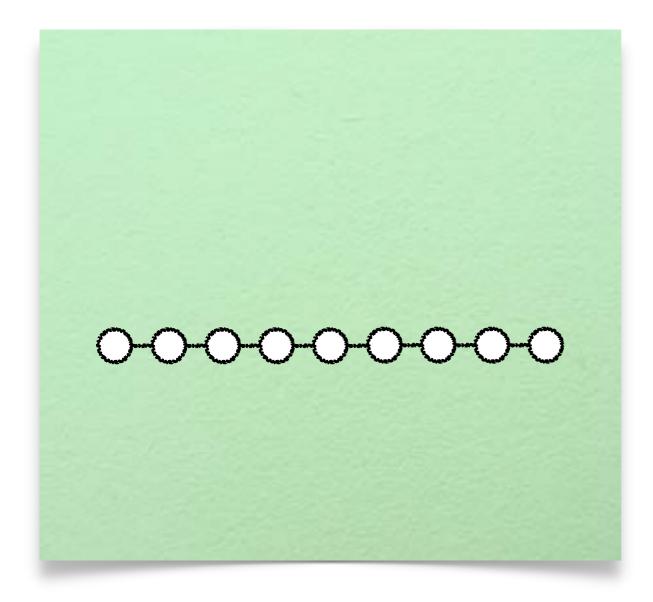
[Hanf '60]

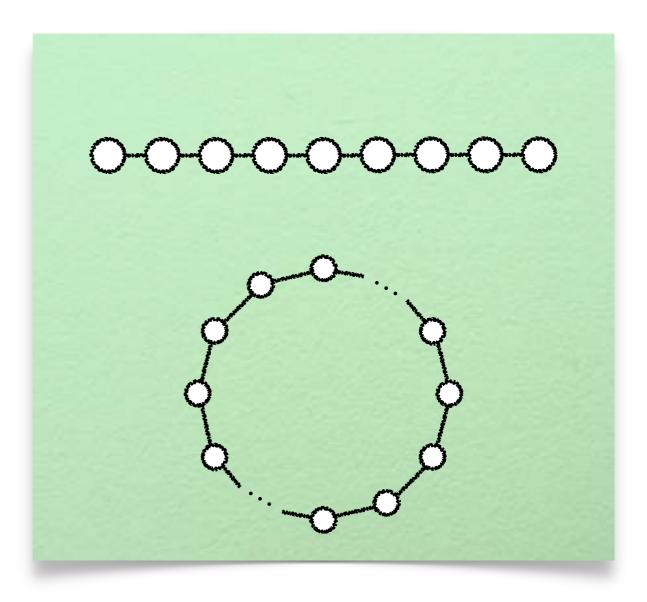




Theorem. If S_1 , S_2 are Hanf(r,t) - equivalent, with $r=3^n$ and t=n then S_1 , S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n)

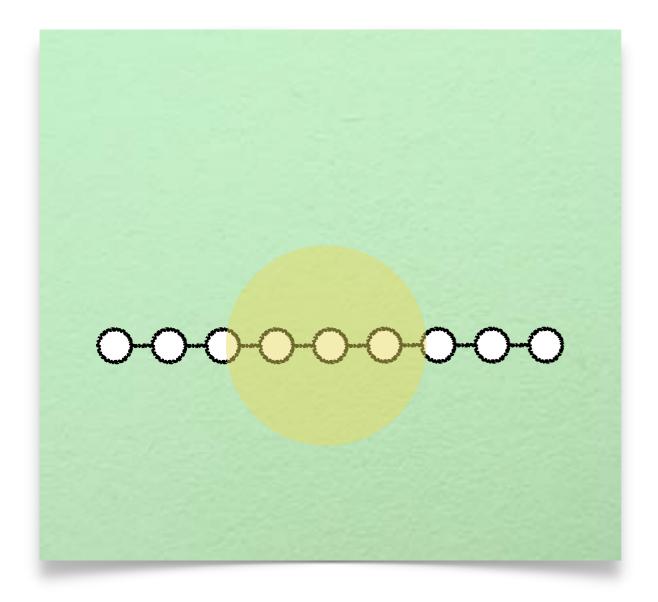
[Hanf '60]

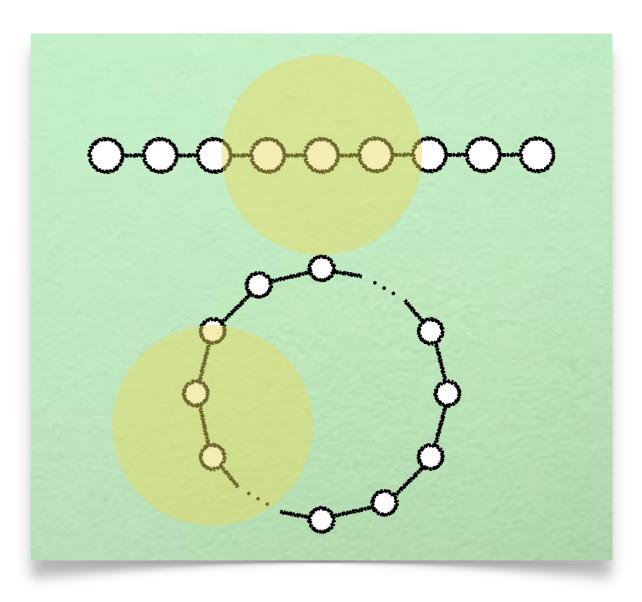




Theorem. If S_1 , S_2 are Hanf(r,t) - equivalent, with $r=3^n$ and t=n then S_1 , S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n)

[Hanf '60]



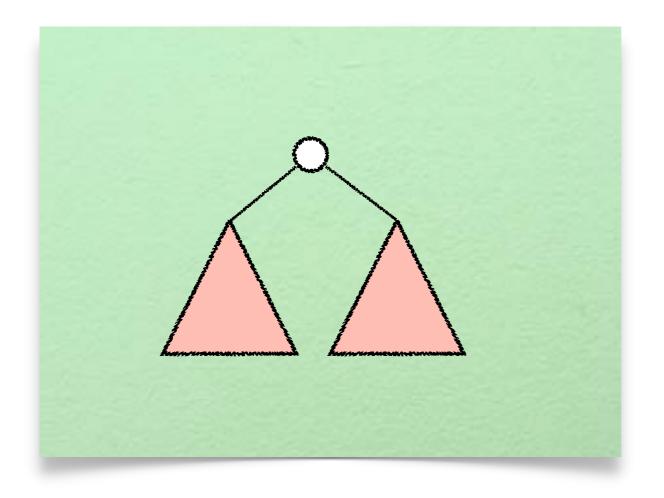


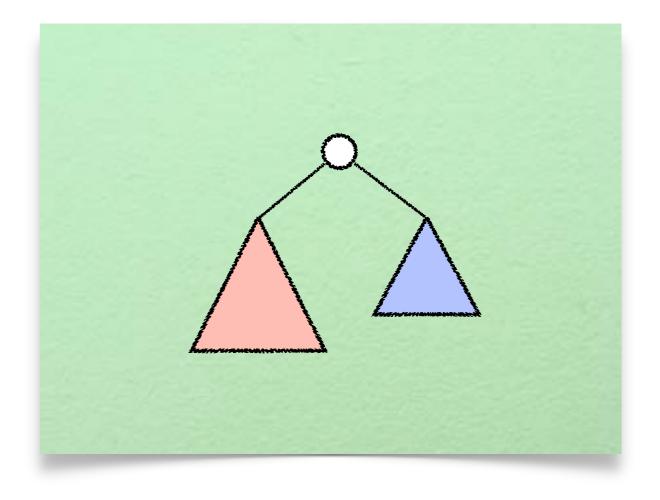
```
Theorem. S_1, S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf (r,t) - equivalent, with r=3^n and t=n. [Hanf '60]
```

Exercise: prove that testing whether a binary tree is *complete* is not FO-definable

Theorem. S_1 , S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1 , S_2 are $\operatorname{Hanf}(r,t)$ -equivalent, with $r=3^n$ and t=n. [Hanf '60]

Exercise: prove that testing whether a binary tree is complete is not FO-definable





```
Theorem. S_1, S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are \operatorname{Hanf}(r,t) - equivalent, with r=3^n and t=n. [Hanf '60]
```

Theorem. S_1 , S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1 , S_2 are Hanf (r,t) - equivalent, with $r=3^n$ and t=n. [Hanf '60]

Why so BIG?

Theorem. S_1 , S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1 , S_2 are Hanf (r,t) - equivalent, with $r=3^n$ and t=n. [Hanf '60]

Why so **BIG?**

Remember $\phi_k(x,y)$ = "there is a path of length 2^k from x to y"

Theorem. S_1 , S_2 are n - equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1 , S_2 are Hanf (r,t) - equivalent, with $r=3^n$ and t=n. [Hanf '60]

Why so BIG?

Remember $\phi_k(x,y)$ = "there is a path of length 2^k from x to y"

$$\begin{split} \varphi_0(x,y) &= E(x,y)\text{, and} \\ \varphi_k(x,y) &= \exists z \ (\ \varphi_{k-1}(x,z) \land \varphi_{k-1}(z,y) \) \\ qr(\varphi_k) &= k \end{split}$$

Hanf locality

Theorem. S_1 , S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n)

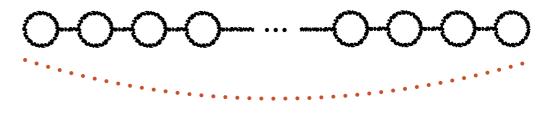
whenever S_1 , S_2 are Hanf(r, t)-equivalent, with $r = 3^n$ and t = n.

[Hanf '60]

Why so BIG?

Remember $\phi_k(x,y)$ = "there is a path of length 2^k from x to y"

$$\begin{split} \varphi_0(x,y) &= E(x,y), \text{and} \\ \varphi_k(x,y) &= \exists z \ (\ \varphi_{k-1}(x,z) \land \varphi_{k-1}(z,y) \) \\ qr(\varphi_k) &= k \end{split}$$



Hanf locality

Theorem. S_1 , S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n)

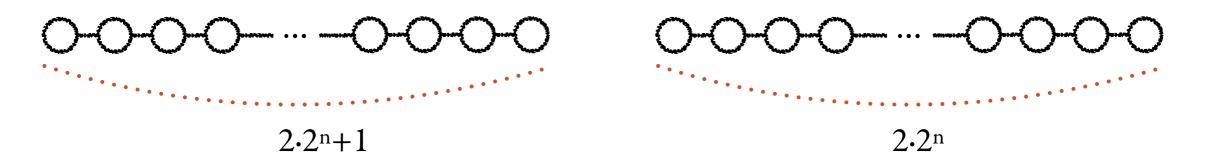
whenever S_1 , S_2 are $\operatorname{Hanf}(r,t)$ - equivalent, with $r=3^n$ and t=n.

[Hanf '60]

Why so BIG?

Remember $\phi_k(x,y)$ = "there is a path of length 2^k from x to y"

$$\begin{aligned} &\varphi_0(x,y)=\ E(x,y), and \\ &\varphi_k(x,y)=\ \exists z\ (\ \varphi_{k-1}(x,z) \land \varphi_{k-1}(z,y)\) \\ &qr(\varphi_k)=k \end{aligned}$$



Not (n+2)-equivalent yet they have the same 2^n-1 balls.

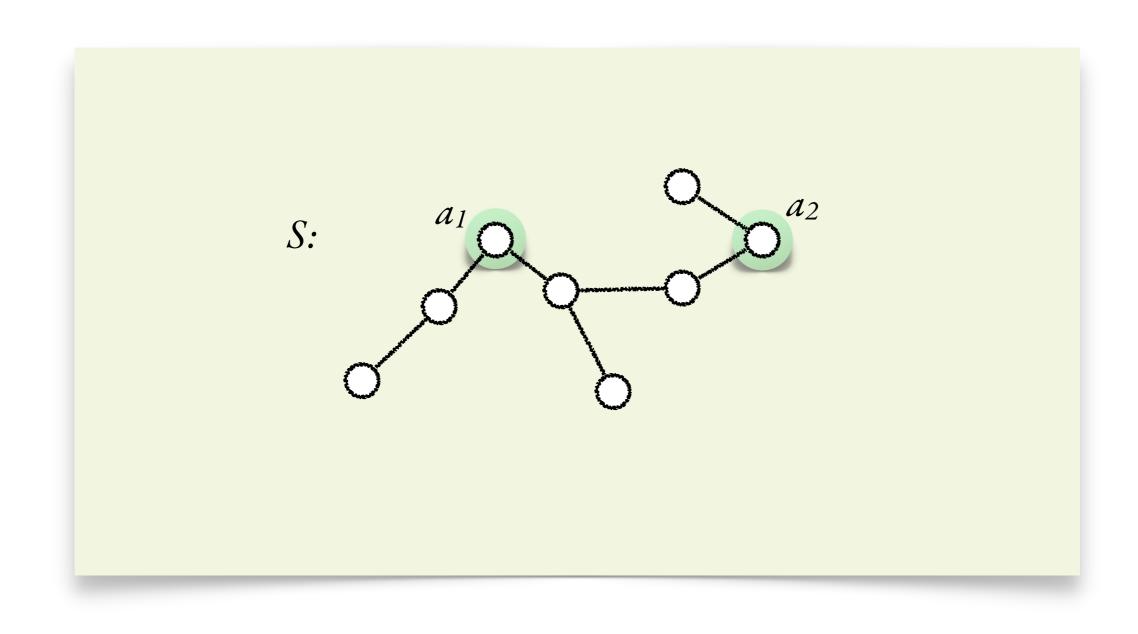
What about queries?

Eg: Is reachability expressible in FO?

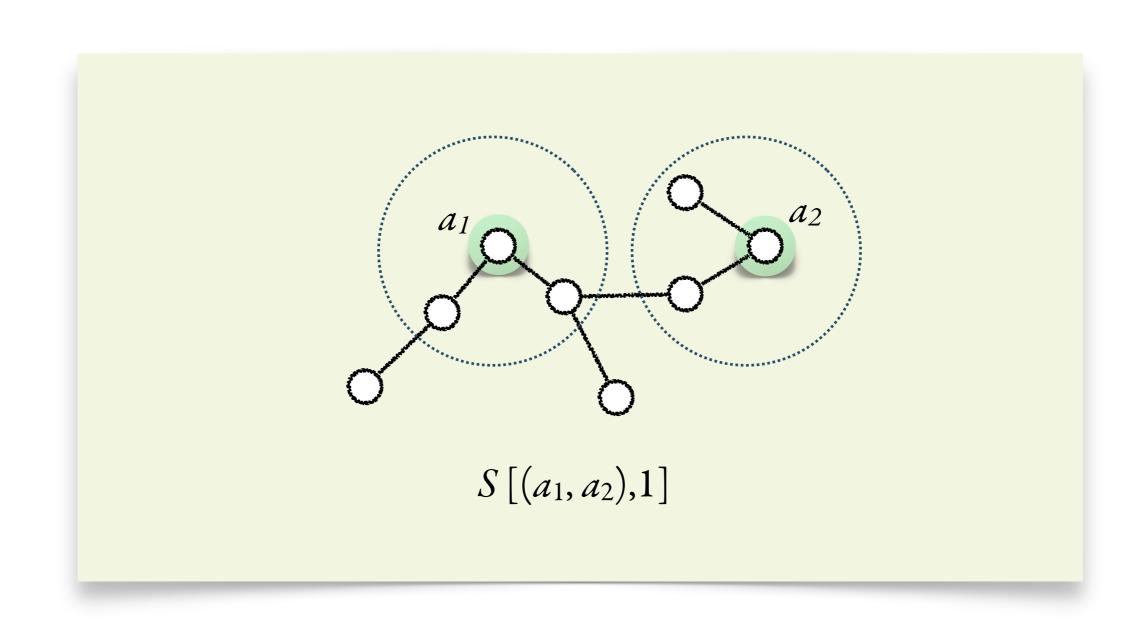
What about equivalence on the same structure?

When are two points indistinguishable?

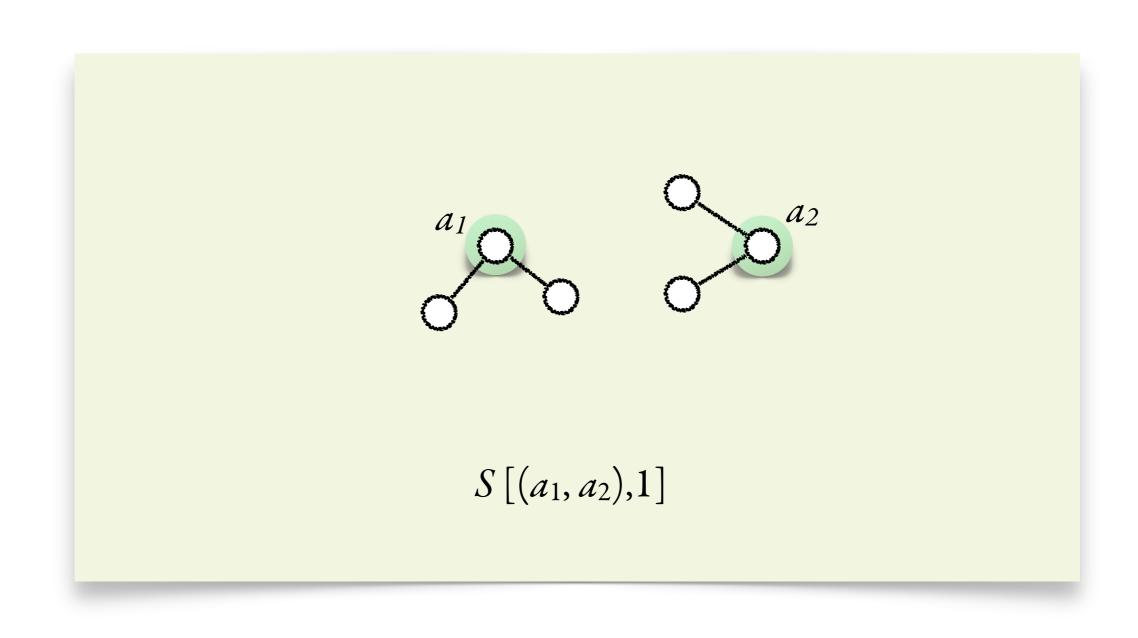
 $S[(a_1, ..., a_n), r] = \text{induced substructure of } S$ of elements at distance $\leq r$ of some a_i in the Gaifman graph.



 $S[(a_1, ..., a_n), r] = \text{induced substructure of } S$ of elements at distance $\leq r$ of some a_i in the Gaifman graph.



 $S[(a_1, ..., a_n), r] = \text{induced substructure of } S$ of elements at distance $\leq r$ of some a_i in the Gaifman graph.



$$S[(a_1, ..., a_n), r] = \text{induced substructure of } S$$

of elements at distance $\leq r$ of some a_i in the Gaifman graph.

Gaifman locality

For any $\phi \in FO$ of quantifier rank k and structure S,

$$S[(a_1, ..., a_n), r] \cong S[(b_1, ..., b_n), r]$$
 for $r = 3^{k+1}$ implies

$$(a_1, ..., a_n) \in \phi(S)$$
 iff $(b_1, ..., b_n) \in \phi(S)$

Idea: If the neighbourhoods of two tuples are the same, the formula cannot distinguish them.

Gaifman locality vs Hanf locality

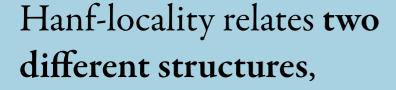
Difference between Hanf- and Gaifman-locality:

Hanf-locality relates two different structures,

Gaifman-locality talks about definability in one structure

Gaifman locality vs Hanf locality

Difference between Hanf- and Gaifman-locality:



Gaifman-locality talks about definability in **one structure**

Inside S,

 3^{k+1} -balls of $(a_1,...,a_n) = 3^{k+1}$ -balls of $(b_1,...,b_n)$

₩

 $(a_1,...,a_n)$ indistinguishable from $(b_1,...,b_n)$ through **formulas** of qr $\leq k$

Gaifman locality vs Hanf locality

Difference between Hanf- and Gaifman-locality:

Hanf-locality relates two different structures,

Gaifman-locality talks about definability in one structure

 S_1 and S_2 have the same # of balls of radius 3^k , up to threshold k

They verify the same sentences of $qr \le k$

Inside S,

$$3^{k+1}$$
-balls of $(a_1,...,a_n) = 3^{k+1}$ -balls of $(b_1,...,b_n)$

 $(a_1,...,a_n)$ indistinguishable from $(b_1,...,b_n)$ through **formulas** of qr $\leq k$

Schema to show non-expressibility results is, as usual:

A query $Q(x_1,...,x_n)$ is not FO-definable if:

for every k there is a structure S_k and $(a_1, ..., a_n)$, $(b_1, ..., b_n)$ such that

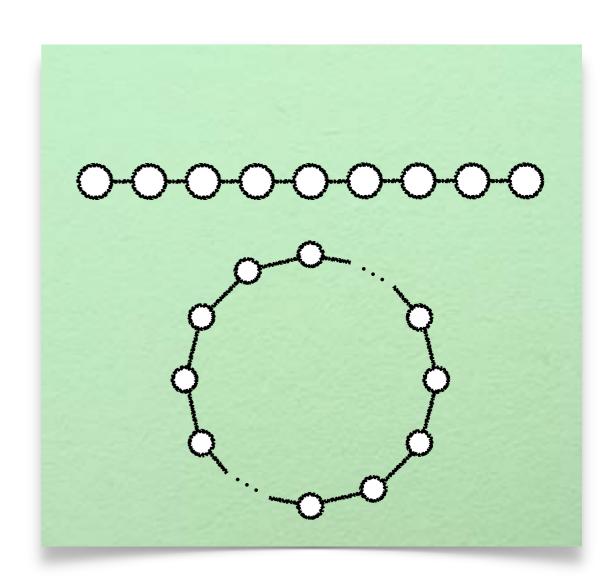
- $S_k[(a_1, ..., a_n), 3^{k+1}] \cong S_k[(b_1, ..., b_n), 3^{k+1}]$
- $(a_1, ..., a_n) \in Q(S_k), (b_1, ..., b_n) \notin Q(S_k)$

Proof: If Q were expressible with a formula of quantifier rank k,

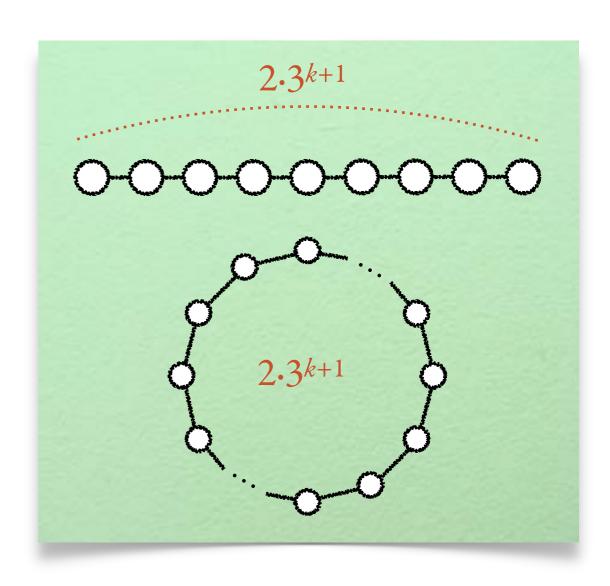
then $(a_1, ..., a_n) \in Q(S_k)$ iff $(b_1, ..., b_n) \in Q(S_k)$. Absurd!

Reachability is not FO definable.

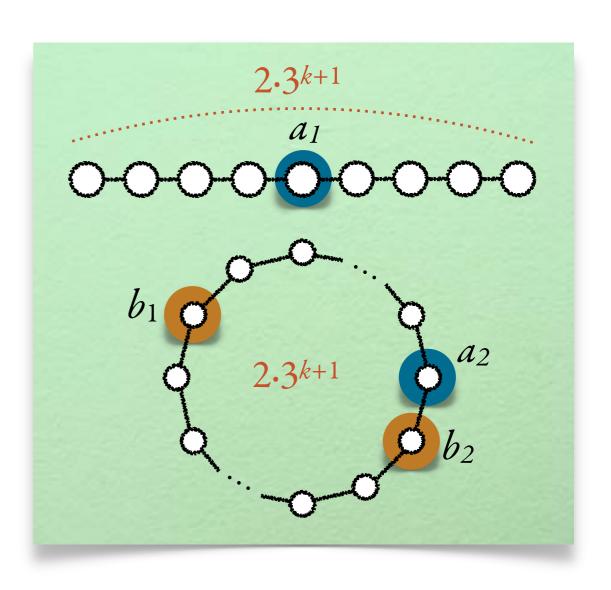
Reachability is not FO definable.



Reachability is not FO definable.

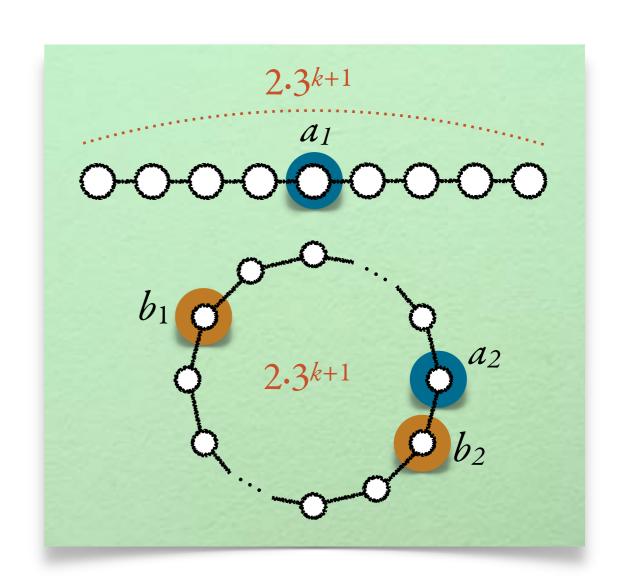


Reachability is not FO definable.



Reachability is not FO definable.

And
$$S_k[(a_1, a_2), 3^{k+1}] \cong S_k[(b_1, b_2), 3^{k+1}]$$



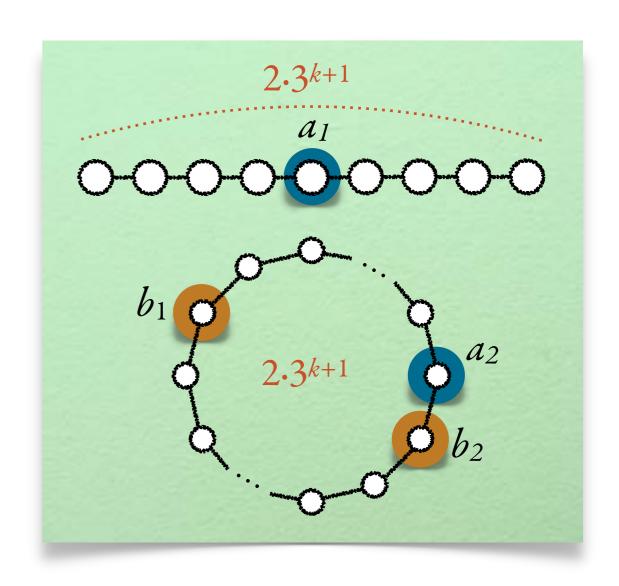
Reachability is not FO definable.

For every k, we build S_k :

And
$$S_k[(a_1, a_2), 3^{k+1}] \cong S_k[(b_1, b_2), 3^{k+1}]$$

However,

- b_2 is reachable from b_1 ,
- a_2 is **not** reachable from a_1 .



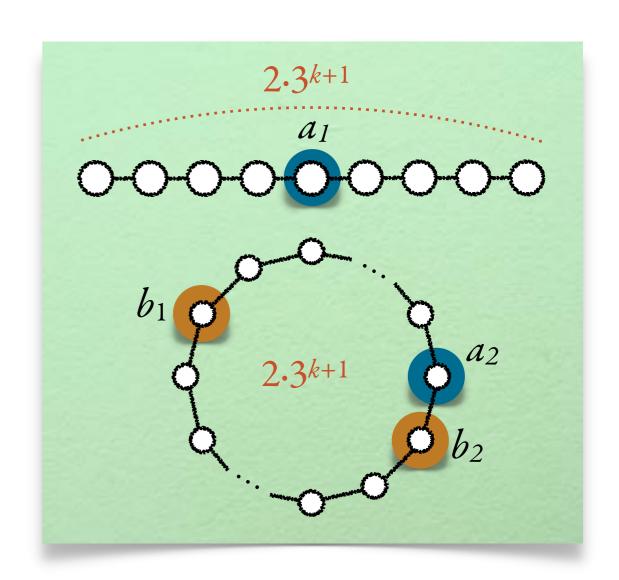
Reachability is not FO definable.

For every k, we build S_k :

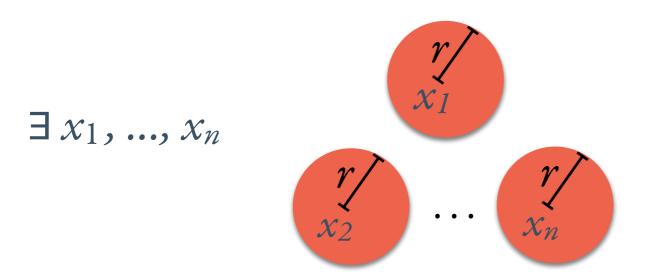
And
$$S_k[(a_1, a_2), 3^{k+1}] \cong S_k[(b_1, b_2), 3^{k+1}]$$

However,

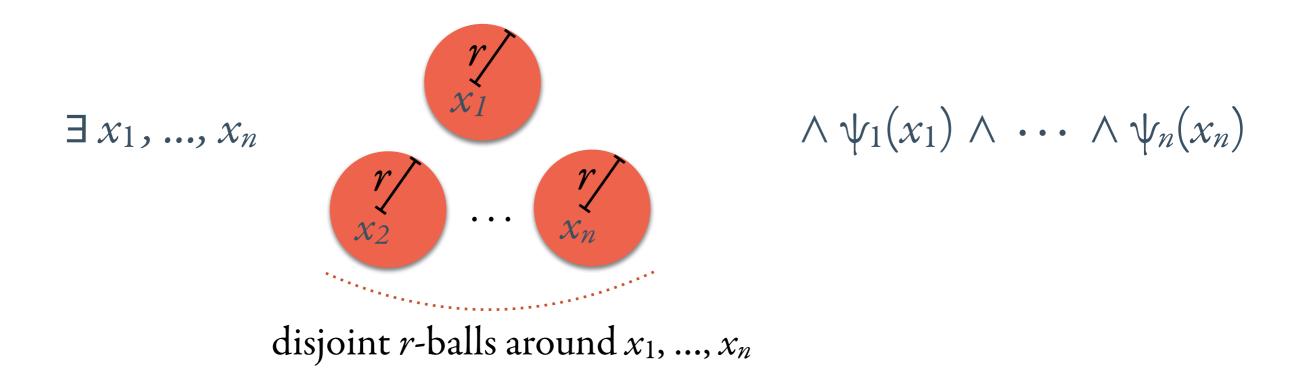
- b_2 is reachable from b_1 ,
- a_2 is **not** reachable from a_1 .

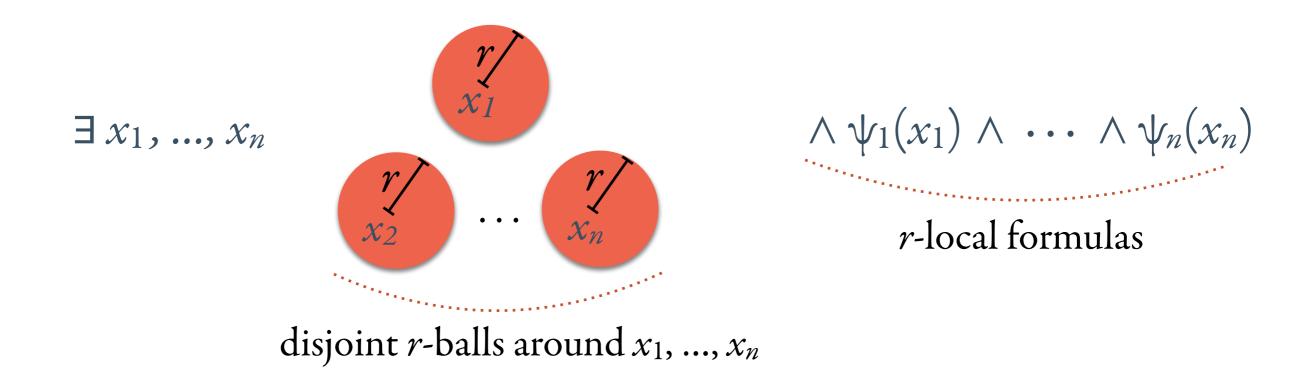


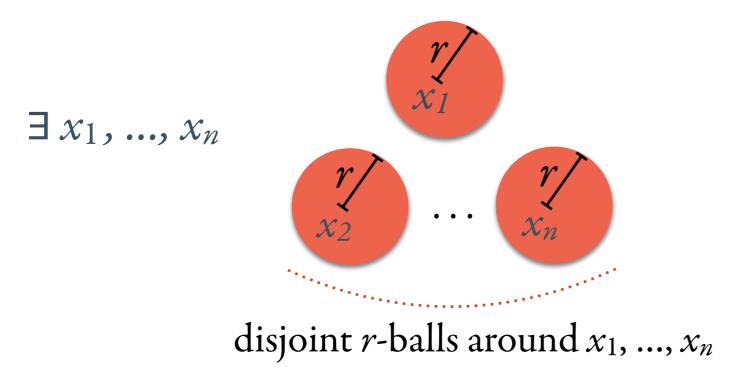
Your turn! Q(x) = "x is a vertex separator"



$$\wedge \psi_1(x_1) \wedge \cdots \wedge \psi_n(x_n)$$



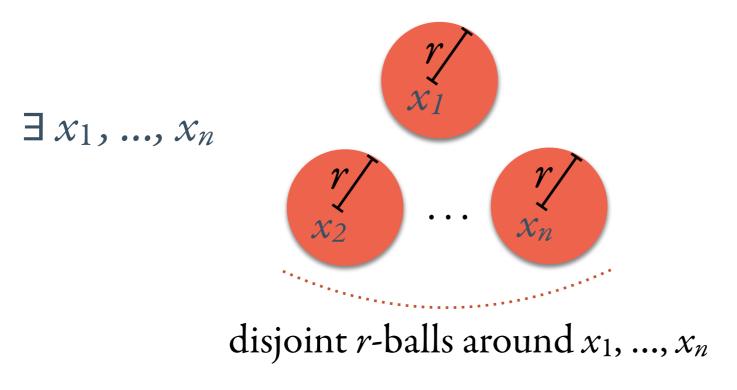






Inside
$$\psi_i(x_i)$$
 we interpret $\exists y . \varphi$ as $\exists y . d(x_i, y) \leq r \land \varphi$

Basic local sentence:



Inside
$$\psi_i(x_i)$$
 we interpret $\exists y . \varphi$ as $\exists y . d(x_i, y) \leq r \land \varphi$

Gaifman Theorem: Every FO sentence is equivalent to

a boolean combination of basic local sentences.

EF games

FO sentences with quantifier rank n

=

winning strategies for Spoiler in the n-round EF game

EF games

FO sentences with quantifier rank n

=

winning strategies for Spoiler in the n-round EF game

0-1 Law

FO sentences are almost always true or almost always false

EF games

FO sentences with quantifier rank n

=

winning strategies for Spoiler in the n-round EF game

0-1 Law

FO sentences are almost always true or almost always false

Hanf locality

FO sentences with quantifier rank n
=
counting 3ⁿ sized balls up to n

EF games

FO sentences with quantifier rank n

=

winning strategies for Spoiler in the n-round EF game

0-1 Law

FO sentences are almost always true or almost always false

Hanf locality

FO sentences with quantifier rank n
=
counting 3ⁿ sized balls up to n

Gaifman locality

Queries of quantifier rank n output tuples closed under 3ⁿ⁺¹ balls.

EF games

FO sentences with quantifier rank n

=

winning strategies for Spoiler in the n-round EF game

0-1 Law

FO sentences are almost always true or almost always false

Hanf locality

FO sentences with quantifier rank n
=
counting 3ⁿ sized balls up to n

An FO sentence can only say

Gaifman locality

Queries of quantifier rank n output tuples closed under 3ⁿ⁺¹ balls.

Gaifman Theorem

"there are some points at distance ≥2r
whose r-balls are isomorphic to certain structures"
or a boolean combination of that.

Descriptive complexity

What properties can be checked efficiently? E.g. 3COL can be tested in NP

Metatheorem

"A property can be expressed in [insert some logic here] iff

it can be checked in [some complexity class here]"

Descriptive complexity

What properties can be checked efficiently? E.g. 3COL can be tested in NP

Metatheorem

"A property can be expressed in [insert some logic here]

iff

it can be checked in [some complexity class here]"

- "A property is FO-definable iff it can be tested in AC0"
- → "A property is ∃SO-definable iff it can be tested in NP" [Fagin 73]
- → Open problem: which logic captures PTIME?

Recursion

Can we enhance query languages with recursion? E.g. express reachability properties

Recursion

Can we enhance query languages with recursion? E.g. express reachability properties

```
Datalog (semantics based on least fixpoint)

Ancestor(X,Y) :- Parent(X,Z), Ancestor(Z,Y)

Ancestor(X,X) :- .

?- Ancestor("Louis XIV",Y)
```

Recursion

Can we enhance query languages with recursion? E.g. express reachability properties

```
Datalog (semantics based on least fixpoint)

Ancestor(X,Y) :- Parent(X,Z), Ancestor(Z,Y)

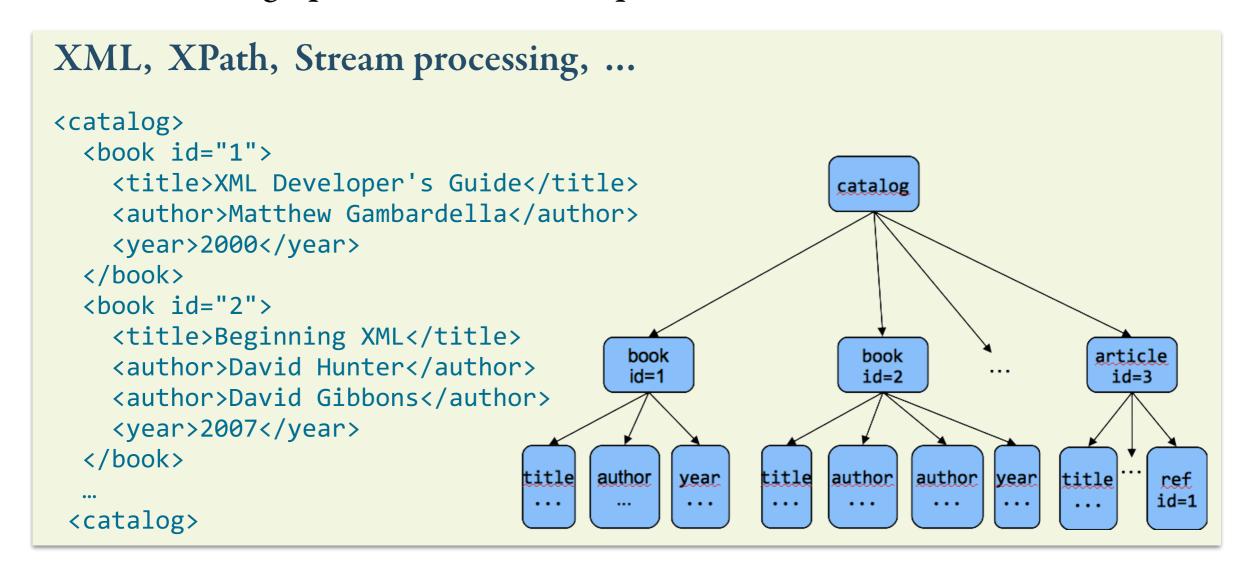
Ancestor(X,X) :- .

?- Ancestor("Louis XIV",Y)
```

- → Incomparable with FO (has recursion, but is monotone)
- ** Evaluation is in PTIME (for data complexity, but also for bounded arity)

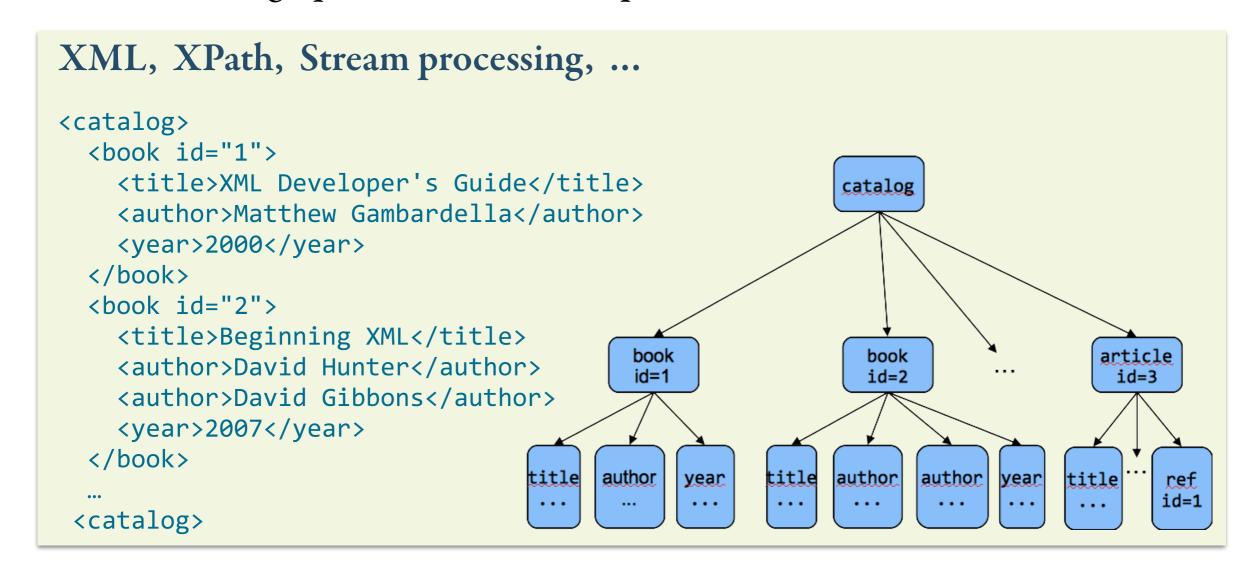
Semi-structured data

Tree-structured or graph-structures dbs in place of relational dbs.



Semi-structured data

Tree-structured or graph-structures dbs in place of relational dbs.



** Evaluation of XPath is in linear time (data complexity)

[Bojanczyk, Parys 08]

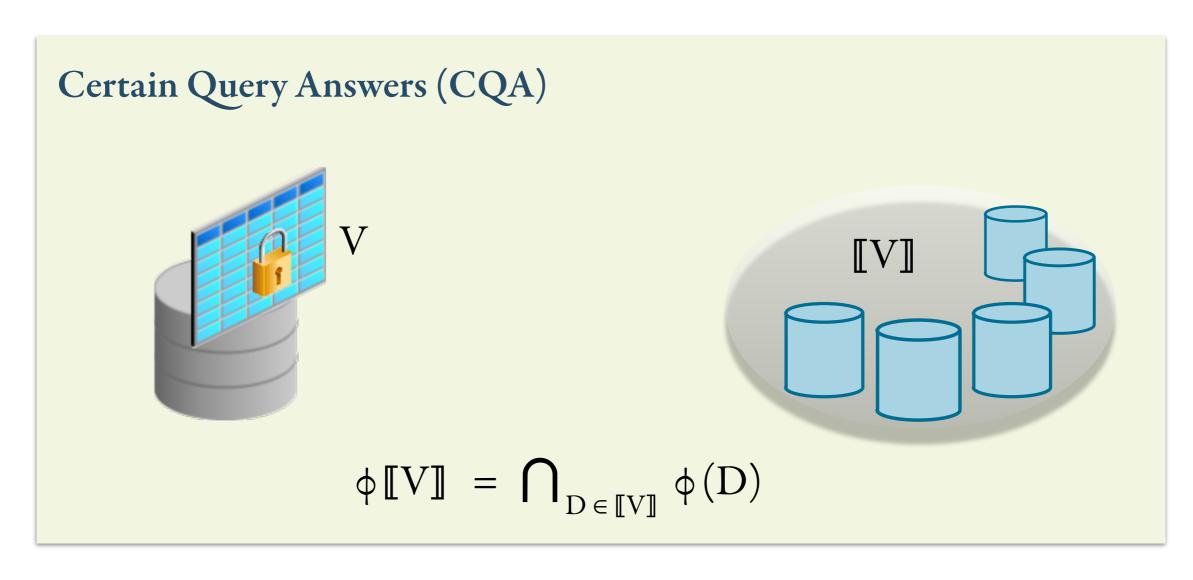
- \rightsquigarrow Satisfiability for FO²[\downarrow , \sim] is decidable Bojanczyk, N
- [Bojanczyk, Muscholl, Schwentick, Segoufin 09]

Incomplete information

How to correctly reason when information is hidden/missing/noisy/...?

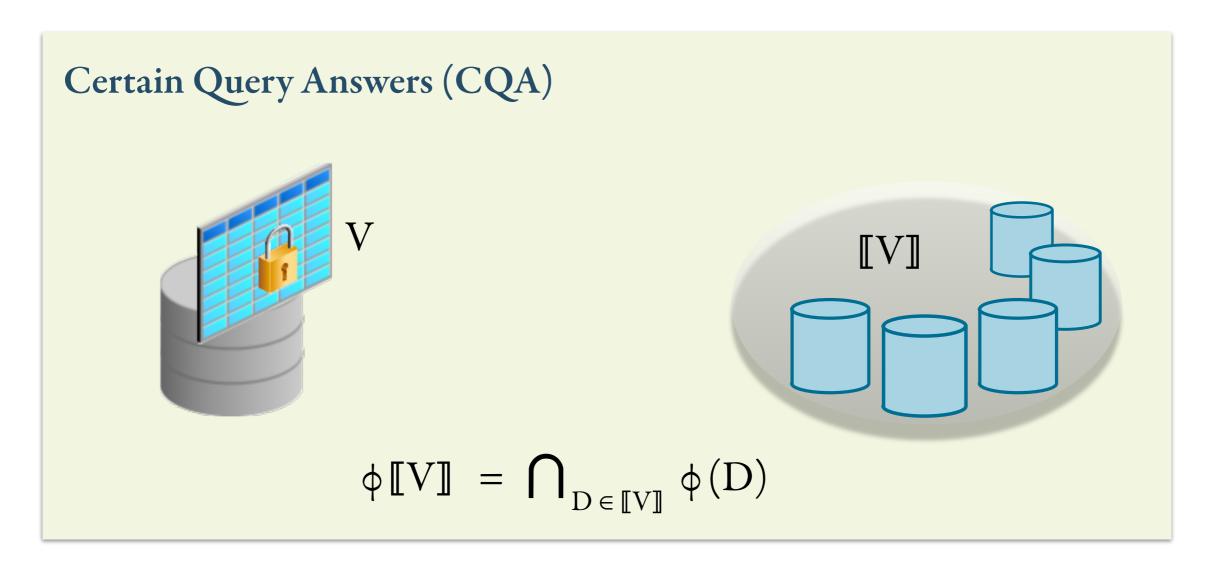
Incomplete information

How to correctly reason when information is hidden/missing/noisy/...?



Incomplete information

How to correctly reason when information is hidden/missing/noisy/...?



→ CQA computable in PTIME w.r.t. view size. [Abiteboul, Kanellakis, Grahne 91]

Bibliography

- Abiteboul, Hull, Vianu, "Foundations of Databases", Addison-Wesley, 1995. (available at http://webdam.inria.fr/Alice/)
- Libkin, "Elements of Finite Model Theory", Springer, 2004.
- Immerman, "Descriptive Complexity", Springer, 1999.
- Otto, "Finite Model Theory", Springer, 2005 (available at www.mathematik.tu-darmstadt.de/-otto/LEHRE/FMT0809.ps)
- Väänänen, "A Short course on Finite Model Theory", 1994. (available at www.math.helsinki.fi/logic/people/jouko.vaananen/shortcourse.pdf)