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How to reason about these structures?

What properties are hard/easy?

Decidability bounds?

Connections with other areas? ‘

questions



Agenda

Monday (Diego, Ranko): Introduction, data words

Tuesday (Ranko): Data words, first-order logic

Wednesday (Ranko): Data words, temporal logics

Thursday (Diego): Data trees, path-based logics

Friday (Diego): Data trees, other formalisms
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Reasoning on data-words

Given a logic £ on data-words,

Satisfiability problem

Input: ¢ € &£
Output: is there a data-word w so that w= ¢ ?

Implication problem

Input: ¢,y € &
Output: is is true that w = ¢ implies w = for every data word w ?



Reasoning on data-words

Given a logic £ on data-words,

Satisfiability problem

Input: ¢ € &£
Output: is there a data-word w so that w= ¢ ?

Implication problem

Input: ¢,y € &
Output: is is true that w = ¢ implies w = for every data word w ?

o implication(d, V) = -1 sat(d A V)

If & closed under boolean operators:
e sat($) = - implication(¢, L)
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 Query optimisation:

« It Q= Q thenitis "safe” to replace Q with a more efhicient Q'

o If Q is unsatisfiable (it contains a contradiction): its
computation can be avoided



Why reasoning?

It's fun! &

Basic question for understanding a formalism: Does this mean

anything at all? Is this a property?
Query optimisation:

« It Q= Q thenitis "safe” to replace Q with a more efhicient Q'

o If Q is unsatisfiable (it contains a contradiction): its
computation can be avoided

In general: verity statically whether a program satisfies a

specification (eg, query accessing forbidden info)



Proviso

We consider closure under isomorphism of data values

(ie, only equality/inequality)
We will mostly focus on finite structures

We will mostly focus on logics (closed under boolean
connectives)

Boolean formulas (ie, 'properties' instead of 'queries')



A zoo of formalisms on data words
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Counting automata!
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Counter systems

y machine

machine with counters and test for zero

ter machine

we don't allow test for zero

counter machine

the machine broke down! Increments along the run






ability problem

is there a computation ending with counters in 0?




Counter systems

Reachability problem

is there a computation ending with counters in 0?

Control-state reachability problem

is there one ending with a given state?
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Wait! Why are we

talking about counter
automata?!

Am I in the

course about data

logics..? logics on data words
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counter automata

Oh! Allright... (?)

Who's that guy?




Minsky Machine

« Minsky Machine = non-det. finite automata + counters

e A counter can only store a natural number (>0)

« Operations on counters
o Check if counter if zero
e Increment counter by one

e Decrement counter by one (only if #0)



Minsky Machine

A = (Q,q0,9, k), automaton with £ counters over finite
statespace Q

Instructions: 0 € Q X {inc,dec,tz} X {1,...k} x Q

Configurations: c€ Q x N*f  ¢g: (q,(3,0,2))

Run: defined by relation (q, v) ~ (q3v') if there is (q, inst, i, q') €

0 so that v' is the result of applying instruction inst to counter i.

eg: (9,(3,0,2)) ~ (q4(2,0,2)) using (q,dec(1),q’) € 9.



Minsky Machine

» Example: A = ({q0,91},90,0, 2), where
0 =1(qo, inc(1), qu), (qu, inc(2), qo)}.

o A possible run:

(90,(0,0)) ~ (q1, (1,0)) ™ (qo, (1,1)) ~ (q1, (0,0)) ~



Reachability problems

Reachability: Given a counter automaton A and a
configuration (qv): is there a run leading to (q,v)

Control-state reachability: Given a counter automaton A
and a state q: is there a run leading to (q,v) for some v?



Control-state reachability for Minsky Machines

is undecidable, already for two counters.




Reachability problems

Control-state reachability for Minsky Machines

is undecidable, already for two counters.

What about

reachability?




Reachability problems

2-counter Minsky machines are Turing-complete:

* A TM can be simulated by two stacks (infinite tape is cut

in half)

* A stack can be simulated by two counters (one of the
counters is the binary representation of the bits on the

stack)

* Four counters can be simulated by two counters
(factorization of one of the counters is 223b5¢74)



Decidable restrictions

Two basic ways of turning Minsky Machines into a decidable

model:
1. no tests for zero, or

2. allow a "faulty” behaviour, where counters can non-

deterministically increment their value.



Counter Machine

A counter machine = A Minsky machine without zero tests.
Equivalent to: Vector Addition Systems (VAS), Petri Nets.

Reachability and control-state reachability problems are

decidable.

Best bound for reachability: non-primitive recursive (hard
p]_‘OOf) . [Sacerdote, Tenney, Mayr, Kosaraju, ... ]

Complxity of control-state reachability: ExpSpace-complete.
[Rackoft, Lipton]



Gainy Counter Machine

e Itisdefined as a Minsky Machine but inside a run there can

be non-deterministic increments to any counter.

 Reachability / control-state reachability for Gainy Counter

Machines is decidable, with (provably) non-primitive

recursive COmPICXitY. [Schoebelen, Abdulla&Jonsson, Finkel&Cécé&lyer]
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Satisfiability problem for data logics




