
Logics on words and trees
with data

Ranko Lazić & Diego Figueira

ESSLLI 2016 - Bolzano

U. Warwick CNRS, LaBRI

data words

(a data word)

a b a b a b b b b a b b
2 4 7 6 9 3 9 7 6 2 2 9

wordstrees with infinite
finite& alphabets

data words

(a data word)

a b a b a b b b b a b b
2 4 7 6 9 3 9 7 6 2 2 9

data trees

(a data tree)

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

wordstrees with infinite
finite& alphabets

data words

(a data word)

a b a b a b b b b a b b
2 4 7 6 9 3 9 7 6 2 2 9

data trees

(a data tree)

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

wordstrees with infinite
finite& alphabets

How to reason about these structures?

What properties are hard/easy?

Decidability bounds?

Connections with other areas?qu
es

tio
ns ?

Agenda

• Monday (Diego, Ranko): Introduction, data words

• Tuesday (Ranko): Data words, first-order logic

• Wednesday (Ranko): Data words, temporal logics

• Thursday (Diego): Data trees, path-based logics

• Friday (Diego): Data trees, other formalisms

PLEASE
ASK

QUESTIONS
(easy)

data words

a b a b a b b b b a b b
2 4 7 6 9 3 9 7 6 2 2 9

⇥ ({a, b}� N)⇤

data words

dataword

“for every a there is a b with same data value to its right”

a b a b a b b b b a b b
2 4 7 6 9 3 9 7 6 2 2 9

⇥ ({a, b}� N)⇤

data words

dataword

“for every a there is a b with same data value to its right”

a b a b a b b b b a b b
2 4 7 6 9 3 9 7 6 2 2 9

⇥ ({a, b}� N)⇤

data words

dataword

hat does it represent?w

“for every a there is a b with same data value to its right”

a b a b a b b b b a b b
2 4 7 6 9 3 9 7 6 2 2 9

⇥ ({a, b}� N)⇤

data words

dataword

execution of concurrent processes,

hat does it represent?w

data words

dataword

execution of concurrent processes,

r(A)
4

r(B)
7

w(B)
7

commit
4

r(A)
7

w(A)
4

w(A)
7

hat does it represent?w

data words

dataword

execution of concurrent processes,

r(A)
4

r(B)
7

w(B)
7

commit
4

r(A)
7

w(A)
4

w(A)
7

“between w(A) and commit of process P there are no
w(A) from any other process P”

hat does it represent?w

data words

dataword

execution of concurrent processes,

temporal databases,
timed words,

runs of counter automata (or inf. state aut.),

usage of some unbounded resources,

r(A)
4

r(B)
7

w(B)
7

commit
4

r(A)
7

w(A)
4

w(A)
7

“between w(A) and commit of process P there are no
w(A) from any other process P”

hat does it represent?w
. . .

Reasoning on data-words

 Input: φ ∈ ℒ
Output: is there a data-word w so that w ⊨ φ ?

Satisfiability problem

 Input: φ,ψ ∈ ℒ
Output: is is true that w ⊨ φ implies w ⊨ ψ for every data word w ?

Implication problem

Given a logic ℒ on data-words,

Reasoning on data-words

 Input: φ ∈ ℒ
Output: is there a data-word w so that w ⊨ φ ?

Satisfiability problem

 Input: φ,ψ ∈ ℒ
Output: is is true that w ⊨ φ implies w ⊨ ψ for every data word w ?

Implication problem

Given a logic ℒ on data-words,

If ℒ closed under boolean operators:
• implication(φ, ψ) ≣ ¬ sat(φ ∧ ¬ψ)

• sat(φ) ≣ ¬ implication(φ, ⊥)

Why reasoning?

Why reasoning?

• It's fun! 😀

Why reasoning?

• It's fun! 😀

• Basic question for understanding a formalism: Does this mean
anything at all? Is this a property?

Why reasoning?

• It's fun! 😀

• Basic question for understanding a formalism: Does this mean
anything at all? Is this a property?

• Query optimisation:

• If Q ≣ Q' then it is "safe" to replace Q with a more efficient Q'

• If Q is unsatisfiable (it contains a contradiction): its
computation can be avoided

Why reasoning?

• It's fun! 😀

• Basic question for understanding a formalism: Does this mean
anything at all? Is this a property?

• Query optimisation:

• If Q ≣ Q' then it is "safe" to replace Q with a more efficient Q'

• If Q is unsatisfiable (it contains a contradiction): its
computation can be avoided

• In general: verify statically whether a program satisfies a
specification (eg, query accessing forbidden info)

Proviso

• We consider closure under isomorphism of data values
(ie, only equality/inequality)

• We will mostly focus on finite structures

• We will mostly focus on logics (closed under boolean
connectives)

• Boolean formulas (ie, 'properties' instead of 'queries')

A zoo of formalisms on data words

A zoo of formalisms on data words

FO(<,+1,~)

(

A zoo of formalisms on data words

FO2(<,+1,~) FO(<,+1,~)

(

A zoo of formalisms on data words

=)Data
automata

Class Memory
Automata FO2(<,+1,~) FO(<,+1,~)

(

A zoo of formalisms on data words

=)Data
automata

Class Memory
Automata FO2(<,+1,~) FO(<,+1,~)

Data Automata

a b a c b a b b

k l k m l m k m

l m mk k k m l

T

A
ok

A
ok

A
ok

〈T,A〉

(

(

A zoo of formalisms on data words

=

rLTL

)Data
automata

Class Memory
Automata FO2(<,+1,~) FO(<,+1,~)

(

(

A zoo of formalisms on data words

=

rLTL

)Data
automata

Alt. Register
Automata

)

Class Memory
Automata FO2(<,+1,~) FO(<,+1,~)

(

(

A zoo of formalisms on data words

=

rLTL

)

)

Register
Automata

Data
automata

Alt. Register
Automata

)

Class Memory
Automata FO2(<,+1,~) FO(<,+1,~)

(

(

(

A zoo of formalisms on data words

=

rLTL

)

)

Register
Automata

Data
automata

Alt. Register
Automata

)

Class Memory
Automata

Alternating
Timed Automata

⇡

FO2(<,+1,~) FO(<,+1,~)

(

(

(

A zoo of formalisms on data words

=

(

rLTL

)

)

Register
Automata

Data
automata

Alt. Register
Automata

)

Class Memory
Automata

History-register
Automata

Alternating
Timed Automata

⇡

FO2(<,+1,~) FO(<,+1,~)

(

(

(

A zoo of formalisms on data words

=

(

rLTL

)

)

Register
Automata

Data
automata

Alt. Register
Automata

)

Class Memory
Automata

History-register
Automata

Data walking
automata

Pebble
Automata

Alternating
Timed Automata

⇡

FO2(<,+1,~) FO(<,+1,~)

(

 counting

a b a b a b b b b a b b
2 4 7 6 9 3 9 7 6 2 2 9

“for every a there is a b with same data value to its right”

reasoning with
infinite alphabets ≈

 counting

a b a b a b b b b a b b
2 4 7 6 9 3 9 7 6 2 2 9

“for every a there is a b with same data value to its right”

reasoning with
infinite alphabets ≈

 counting

a b a b a b b b b a b b
2 4 7 6 9 3 9 7 6 2 2 9

“for every a there is a b with same data value to its right”

there must be 3 distinct
data values to the right

reasoning with
infinite alphabets ≈

Counting automata!

Counter systems

Counter systems

Minsky machine
machine with counters and test for zero

Counter systems

Counter machine
we don't allow test for zero

Minsky machine
machine with counters and test for zero

Counter systems

Counter machine
we don't allow test for zero

Minsky machine
machine with counters and test for zero

Gainy counter machine
the machine broke down! Increments along the run

Counter systems

Counter systems

Reachability problem
is there a computation ending with counters in 0?

Counter systems

Control-state reachability problem
is there one ending with a given state?

Reachability problem
is there a computation ending with counters in 0?

Wait! Why are we
talking about counter

automata?!

Wait! Why are we
talking about counter

automata?!

Am I in the
course about data

logics..?

Is this ESSLLI?

Wait! Why are we
talking about counter

automata?!

Oh! Allright… (?)

logics on data words

≈
counter automata

Am I in the
course about data

logics..?

Is this ESSLLI?

Who's that guy?

• Minsky Machine = non-det. finite automata + counters

• A counter can only store a natural number (≥0)

• Operations on counters

• Check if counter if zero

• Increment counter by one

• Decrement counter by one (only if ≠0)

Minsky Machine

• 𝒜 = (Q,q0,δ, k), automaton with k counters over finite
statespace Q

• Instructions: δ ⊆ Q × {inc,dec,tz} × {1,…,k} × Q

• Configurations: c ∈ Q × ℕk eg: (q,(3,0,2))

• Run: defined by relation (q, v) ⤳ (q',v') if there is (q, inst, i, q') ∈
δ so that v' is the result of applying instruction inst to counter i.  
 eg: (q,(3,0,2)) ⤳ (q',(2,0,2)) using (q,dec(1),q') ∈ δ.

Minsky Machine

• Example: 𝒜 = ({q0,q1},q0,δ, 2), where 
 δ = {(q0, inc(1), q1), (q1, inc(2), q0)}.

• A possible run:

(q0,(0,0)) ⤳ (q1, (1,0)) ⤳ (q0, (1,1)) ⤳ (q1, (0,0)) ⤳ · · ·

Minsky Machine

Reachability problems

• Reachability: Given a counter automaton 𝒜 and a
configuration (q,v): is there a run leading to (q,v)

• Control-state reachability: Given a counter automaton 𝒜
and a state q: is there a run leading to (q,v) for some v?

Control-state reachability for Minsky Machines
is undecidable, already for two counters.

Reachability problems

Control-state reachability for Minsky Machines
is undecidable, already for two counters.

Reachability problems

What about
reachability?

2-counter Minsky machines are Turing-complete:

A TM can be simulated by two stacks (infinite tape is cut
in half)

A stack can be simulated by two counters (one of the
counters is the binary representation of the bits on the
stack)

Four counters can be simulated by two counters
(factorization of one of the counters is 2a3b5c7d)

Reachability problems

Decidable restrictions

Two basic ways of turning Minsky Machines into a decidable
model:

1. no tests for zero, or

2. allow a "faulty" behaviour, where counters can non-
deterministically increment their value.

Counter Machine
• A counter machine = A Minsky machine without zero tests.

• Equivalent to: Vector Addition Systems (VAS), Petri Nets.

• Reachability and control-state reachability problems are
decidable.

• Best bound for reachability: non-primitive recursive (hard
proof).

• Complxity of control-state reachability: ExpSpace-complete.

[Sacerdote, Tenney, Mayr, Kosaraju, …]

[Rackoff, Lipton]

Gainy Counter Machine

• It is defined as a Minsky Machine but inside a run there can
be non-deterministic increments to any counter.

• Reachability / control-state reachability for Gainy Counter
Machines is decidable, with (provably) non-primitive
recursive complexity. [Schoebelen,Abdulla&Jonsson, Finkel&Cécé&Iyer]

Control-state reachability problem

Reachability problem

Counter machine

Minsky machine

Gainy counter machine

Satisfiability problem for data logics

