
Logics on words and trees
with data

Diego Figueira & Ranko Lazić

ESSLLI 2016 - Bolzano

Logics on words and trees
with data

Diego Figueira & Ranko Lazić

ESSLLI 2016 - Bolzano To
da

y

A final comment on FO2(<,~) . . .

A final comment on FO2(<,~) . . .

SAT-FO2(<,~) ∈ NExpTime

SAT-FO2(<,~) ∈ NExpTime

a
5

b
1

a
3

b
5

a
2

a
1

a
4

b
2

b
5

a
1

b
1

a
4

b
1

a
3

b
1

a
5

a
5

b
4

a
1

b
1

a
5

b
4

b
1

a
4

Scott normal form

 where χ and χi are quantifier-free.
Note: it uses some new unary predicates.

14 · Bojańczyk et al.

position x also occurs in the p-th block. The first clause in property 2 is written as follows:

∀x∀y
(

(x ̸∼ y ∧ ¬α(x) ∧ ¬α(y)) →
∨

1≤p≤2n

βp(x) ̸↔ βp(y)
)

The second clause is written similarly. Property 3 is enforced by using standard binary arithmetics
on coordinates. The following formula says that the positions of the squares corresponding to the
data values of x and y are in consecutive rows. Here we take the convention that the least significant
bit is the rightmost one. Thus there is some 1 ≤ p ≤ n such that the binary representation of
these two consecutive rows is respectively b1 · · · bp−10 1 · · · 1

︸ ︷︷ ︸

n−p−1

and b1 · · · bp−11 0 · · · 0
︸ ︷︷ ︸

n−p−1

.

∨

1≤p≤n

(

¬βp(x) ∧ βp(y) ∧
∧

1≤r<p

βr(x) ↔ βr(y) ∧
∧

p<r≤n

βr(x) ∧ ¬βr(y)
)

A similar formula talks about columns. Using such formulas we can enforce the existence of all
the positions of the square and the consistency of the labels in neighboring positions of the tiling.
!

We show now the upper bound:

Lemma 19 Satisfiability of FO2(∼, <) formulas is in NExpTime.

Proof. We give a polynomial-time reduction from satisfiability of FO2(∼, <) to satisfiability of
FO2(<), and then we apply [Etessami et al. 2002], which shows that satisfiability of FO2(<) is in
NExpTime.

As in the proof for FO2(∼,<,+1), we show that satisfiability of an FO2(∼, <) formula can be
reduced to satisfiability of a formula in Scott normal form, a step that is performed in linear time.
The Scott normal form formula is of the form

∀x∀y χ(x, y) ∧
∧

i

∀x∃y χi(x, y) ,

where χ and each χi are quantifier-free and use only the order <, the data equivalence relation ∼
and unary predicates. Note that the new formula uses some new unary predicates, but its size—
and therefore also the number of new predicates—is linear in the size of the original formula.

We now show that if a formula in Scott normal form is satisfiable, then it has a model with at
most 2n+2 classes, where n is the number of unary predicates in the formula. Since we can use
n + 2 new unary predicates for encoding these classes, we obtain a polynomial-time reduction to
satisfiability of FO2(<), and thus the NExpTime upper bound follows as satisfiability of FO2(<)
is in NExpTime [Etessami et al. 2002].

Given a model w of the formula in Scott normal form, we build a new model w′ by removing
all positions except those from some distinguished classes. Let α be a complete type, i.e. a truth
assignment for all unary predicates. The new data word w′ is built from w by keeping (if they
exist), for each complete type α, the classes of positions Fstα(w),Ffstα(w),Lstα(w),Llstα(w) (as
defined in Section 2). All other classes are removed. Since there are 2n possible complete types,
the new data word w′ contains at most 4 · 2n classes.

We now show that the data word w′ is still a model of the formula. The ∀x∀y χ(x, y) subformula
holds in w′, since w′ is a substructure of w. For the ∀x∃y part, we show that the classes that we
keep in w′ suffice for satisfiability. In the data word w, every position x needs a witness y such
that χi(x, y) holds. Consider a position x in w′ and a corresponding witness y in w for a formula
χi. If y is in the class of x, then y belongs to w′, so it is also a witness of x in w′. Assume now
that y is not in the class of x and that it has the complete type α. Since Lstα(w) and Llstα(w) are
in different classes (and same for Fstα(w) and Ffstα(w)), one of the positions Lstα(w), Llstα(w),
Fstα(w) or Ffstα(w) is also a witness of x in w. For instance, if x < y then either x has the same
value as Lstα(w) so we have the witness Llstα(w), or they have different values, so Lstα(w) is a
witness. This shows that x has a witness in w′, too. !

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

SAT-FO2(<,~) ∈ NExpTime

a
5

b
1

a
3

b
5

a
2

a
1

a
4

b
2

b
5

a
1

b
1

a
4

b
1

a
3

b
1

a
5

a
5

b
4

a
1

b
1

a
5

b
4

b
1

a
4

Scott normal form

 where χ and χi are quantifier-free.
Note: it uses some new unary predicates.

14 · Bojańczyk et al.

position x also occurs in the p-th block. The first clause in property 2 is written as follows:

∀x∀y
(

(x ̸∼ y ∧ ¬α(x) ∧ ¬α(y)) →
∨

1≤p≤2n

βp(x) ̸↔ βp(y)
)

The second clause is written similarly. Property 3 is enforced by using standard binary arithmetics
on coordinates. The following formula says that the positions of the squares corresponding to the
data values of x and y are in consecutive rows. Here we take the convention that the least significant
bit is the rightmost one. Thus there is some 1 ≤ p ≤ n such that the binary representation of
these two consecutive rows is respectively b1 · · · bp−10 1 · · · 1

︸ ︷︷ ︸

n−p−1

and b1 · · · bp−11 0 · · · 0
︸ ︷︷ ︸

n−p−1

.

∨

1≤p≤n

(

¬βp(x) ∧ βp(y) ∧
∧

1≤r<p

βr(x) ↔ βr(y) ∧
∧

p<r≤n

βr(x) ∧ ¬βr(y)
)

A similar formula talks about columns. Using such formulas we can enforce the existence of all
the positions of the square and the consistency of the labels in neighboring positions of the tiling.
!

We show now the upper bound:

Lemma 19 Satisfiability of FO2(∼, <) formulas is in NExpTime.

Proof. We give a polynomial-time reduction from satisfiability of FO2(∼, <) to satisfiability of
FO2(<), and then we apply [Etessami et al. 2002], which shows that satisfiability of FO2(<) is in
NExpTime.

As in the proof for FO2(∼,<,+1), we show that satisfiability of an FO2(∼, <) formula can be
reduced to satisfiability of a formula in Scott normal form, a step that is performed in linear time.
The Scott normal form formula is of the form

∀x∀y χ(x, y) ∧
∧

i

∀x∃y χi(x, y) ,

where χ and each χi are quantifier-free and use only the order <, the data equivalence relation ∼
and unary predicates. Note that the new formula uses some new unary predicates, but its size—
and therefore also the number of new predicates—is linear in the size of the original formula.

We now show that if a formula in Scott normal form is satisfiable, then it has a model with at
most 2n+2 classes, where n is the number of unary predicates in the formula. Since we can use
n + 2 new unary predicates for encoding these classes, we obtain a polynomial-time reduction to
satisfiability of FO2(<), and thus the NExpTime upper bound follows as satisfiability of FO2(<)
is in NExpTime [Etessami et al. 2002].

Given a model w of the formula in Scott normal form, we build a new model w′ by removing
all positions except those from some distinguished classes. Let α be a complete type, i.e. a truth
assignment for all unary predicates. The new data word w′ is built from w by keeping (if they
exist), for each complete type α, the classes of positions Fstα(w),Ffstα(w),Lstα(w),Llstα(w) (as
defined in Section 2). All other classes are removed. Since there are 2n possible complete types,
the new data word w′ contains at most 4 · 2n classes.

We now show that the data word w′ is still a model of the formula. The ∀x∀y χ(x, y) subformula
holds in w′, since w′ is a substructure of w. For the ∀x∃y part, we show that the classes that we
keep in w′ suffice for satisfiability. In the data word w, every position x needs a witness y such
that χi(x, y) holds. Consider a position x in w′ and a corresponding witness y in w for a formula
χi. If y is in the class of x, then y belongs to w′, so it is also a witness of x in w′. Assume now
that y is not in the class of x and that it has the complete type α. Since Lstα(w) and Llstα(w) are
in different classes (and same for Fstα(w) and Ffstα(w)), one of the positions Lstα(w), Llstα(w),
Fstα(w) or Ffstα(w) is also a witness of x in w. For instance, if x < y then either x has the same
value as Lstα(w) so we have the witness Llstα(w), or they have different values, so Lstα(w) is a
witness. This shows that x has a witness in w′, too. !

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.

R
T T R

R
T R

R
T R R T

Suppose w ⊨ φ.
Collect in D all data values d so that for some complete type τ
(valuation for all unary predicates) d is equal to:
 • the last data value appearing with type τ
 • next to last value appearing with type τ
 • first value appearing with type τ
 • next to first value appearing with type τ

a
5

b
1

a
3

b
5

a
2

a
1

a
4

b
2

b
5

a
1

b
7

a
4

b
7

a
3

b
1

a
7

a
5

b
4

a
1

b
1

a
5

b
4

b
1

a
4

R
T T R

R
T R

R
T R R T

SAT-FO2(<,~) ∈ NExpTime

Suppose w ⊨ φ.
Collect in D all data values d so that for some complete type τ
(valuation for all unary predicates) d is equal to:
 • the last data value appearing with type τ
 • next to last value appearing with type τ
 • first value appearing with type τ
 • next to first value appearing with type τ

a
5

b
1

a
3

b
5

a
2

a
1

a
4

b
2

b
5

a
1

b
7

a
4

b
7

a
3

b
1

a
7

a
5

b
4

a
1

b
1

a
5

b
4

b
1

a
4

R
T T R

R
T R

R
T R R T

D= { 5, 4, 1}

SAT-FO2(<,~) ∈ NExpTime

Let w' be w after removing all positions a data value not in D
We still have w' ⊨ φ.

a
5

b
1

a
3

b
5

a
2

a
1

a
4

b
2

b
5

a
1

b
7

a
4

b
7

a
3

b
1

a
7

a
5

b
4

a
1

b
1

a
5

b
4

b
1

a
4

R
T T R

R
T R

R
T R R T

D= { 5, 4, 1}

SAT-FO2(<,~) ∈ NExpTime

We can code a data word with 2n data values with a word with n
new unary relations.
Polytime reduction:
 SAT-FO2(<,~) ⤳ SAT-FO2(<) ∈ NExpTime

Let w' be w after removing all positions a data value not in D
We still have w' ⊨ φ.

a
5

b
1

a
3

b
5

a
2

a
1

a
4

b
2

b
5

a
1

b
7

a
4

b
7

a
3

b
1

a
7

a
5

b
4

a
1

b
1

a
5

b
4

b
1

a
4

R
T T R

R
T R

R
T R R T

D= { 5, 4, 1}

SAT-FO2(<,~) ∈ NExpTime

We can code a data word with 2n data values with a word with n
new unary relations.
Polytime reduction:
 SAT-FO2(<,~) ⤳ SAT-FO2(<) ∈ NExpTime

Agenda

• Monday: Introduction, motivation

• Tuesday: Data words, first-order logic

• Wednesday: Data words, temporal logics

• Thursday: Data trees, path-based logics

• Friday: Data trees, other formalisms for data trees

da
ta

 w
or

d
da

ta
 w

or
d

data
 word

data
 word

data word

data
 word

data word

data word data word

data word data word

data word

da
ta

word

da
ta

 w
or

d
da

ta
 w

or
d

da
ta

 w
or

d
da

ta
 w

or
d

da
ta

 w
or

d
da

ta
word

da
ta

 w
or

d

da
ta

 w
or

d

data word

data word

...or XML documents.

da
ta

 w
or

d
da

ta
 w

or
d

data word

data word

da
ta

 w
or

d
data trees

 <author name = “Julio Cortázar”>
<book name = “Octaedro” numpages = “125”>

<chapter name = “Liliana llorando”/>
<chapter name = “Los pasos en las huellas”/>

</book>
<book name= “Rayuela” numpages = “...”>

...
</book>

 </author>
 <author name = “Hermann Hesse”>

...
 </author>

XML

 <author name = “Julio Cortázar”>
<book name = “Octaedro” numpages = “125”>

<chapter name = “Liliana llorando”/>
<chapter name = “Los pasos en las huellas”/>

</book>
<book name= “Rayuela” numpages = “...”>

...
</book>

 </author>
 <author name = “Hermann Hesse”>

...
 </author>

XML data tree

name
Julio Cortázar

author
-

book
-

name
Octaedro

numpages
125

chapter
-

name
Liliana llorando

name
Los pasos en las huellas

chapter
-

book
-

name
Rayuela

numpages
..

name
Hermann Hesse

author
-

root
-

 <author name = “Julio Cortázar”>
<book name = “Octaedro” numpages = “125”>

<chapter name = “Liliana llorando”/>
<chapter name = “Los pasos en las huellas”/>

</book>
<book name= “Rayuela” numpages = “...”>

...
</book>

 </author>
 <author name = “Hermann Hesse”>

...
 </author>

XML data tree

name
Julio Cortázar

author
-

book
-

name
Octaedro

numpages
125

chapter
-

name
Liliana llorando

name
Los pasos en las huellas

chapter
-

book
-

name
Rayuela

numpages
..

name
Hermann Hesse

author
-

root
-

A finite, unranked
tree over

a finite alphabet
&

an infinite domain

data tree

Formalisms for data trees

Formalisms for data trees

FO3(<,+1,~)

Formalisms for data trees

FO2(<,+1,~)

FO3(<,+1,~)

(

Formalisms for data trees

(

6✓
6◆

XPath

FO2(<,+1,~)

FO3(<,+1,~)

(

Formalisms for data trees

(

6✓
6◆

(

(

XPath

FO2(<,+1,~)

FO3(<,+1,~)

Data Tree
Patterns

positive
XPath

(

Formalisms for data trees

(

6✓
6◆

(

(6✓ 6◆

Tree Register
Automata

XPath

FO2(<,+1,~)

FO3(<,+1,~)

Data Tree
Patterns

positive
XPath

(

Formalisms for data trees

(

6✓
6◆

(

(6✓ 6◆

)

Tree Register
Automata

XPath

Class Data
Automata

FO2(<,+1,~)

FO3(<,+1,~)

Data Tree
Patterns

positive
XPath

(

Formalisms for data trees

(

6✓
6◆

(

(6✓ 6◆

)

Tree Register
Automata

XPath

Class Data
Automata

FO2(<,+1,~)

FO3(<,+1,~)

Data Tree
Patterns

positive
XPath

(

navigation

navigation

navigation

& joins

navigation

& joins

root
-

category
all

category
electronics category

music

category
phones

category
notebooks

product
-

name
android

id
381

product
-

name
iPad

id
104

product
-

name
Air - Moon Safari

id
257

stock
-

id
257

id
381

“return all products in stock”

XPath, what’s that...?

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

two sorted language
path expressions
node expressions

XPath, what’s that...?

path exp

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

two sorted language
path expressions
node expressions

XPath, what’s that...?

go to ancestor, go to child, go to right sibling, go to descendantpath exp

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

two sorted language
path expressions
node expressions

XPath, what’s that...?

path exp "⇤ # ! #⇤

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

two sorted language
path expressions
node expressions

XPath, what’s that...?

t, (x, y) |=path exp "⇤ # ! #⇤

x y

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

t

two sorted language
path expressions
node expressions

XPath, what’s that...?

[b]t, (x, y) |=path exp "⇤ # ! #⇤[a] [c]

x y

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

t

two sorted language
path expressions
node expressions

XPath, what’s that...?

[b]h it, x |= "⇤ # ! #⇤[a]node exp [c]

x

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

t

two sorted language
path expressions
node expressions

XPath, what’s that...?

h i[¬h#i ^ b]t, x |= "⇤ # ! #⇤[a]node exp [c]

x

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

t

two sorted language
path expressions
node expressions

XPath, what’s that...?

h i[¬h#i ^ b]#[c] =t, x |= "⇤ # ! #⇤[a]node exp [c]

x

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

=

t

two sorted language
path expressions
node expressions

XPath, what’s that...?

h i[¬h#i ^ b]#[c]t, x |= "⇤ # ! #⇤[a]node exp [c]

x

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

6=

t

≠

two sorted language
path expressions
node expressions

XPath, what’s that...?

h i[¬h#i ^ b]#[c]t, x |= "⇤ # ! #⇤[a]node exp [c]

x

a
7

a
3

c
9

a
2

b
4

c
1

a
3

c
5

c
3

b
4

b
6

c
2

c
4

a
3

b
3

6=¬

t

two sorted language
path expressions
node expressions

XPath: Syntax

o 2 {!,!+,!⇤,

 ,+ , ⇤ ,
#, #+, #⇤,
", "+, "⇤}

path expressions binary relations

node expressions sets of nodes

α, β ::= ε | α β | [φ] | o

φ, ψ ::= a | ¬ φ | φ ∧ ψ | ⟨ α ⟩ | ⟨ α = β ⟩ | ⟨ α ≠ β ⟩

a ∈ A

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

=

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

⟨↓*[a] = ↓*[b] ⟩ There is an a and a b nodes with
the same data value.

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

⟨↓*[a] = ↓*[b] ⟩ There is an a and a b nodes with
the same data value.

⟨↓*[c]≠ ↓*[c]⟩ There are two c's with different
data value.

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

¬ ⟨↓*[b]≠ ↓*[b] ⟩

⟨↓*[a] = ↓*[b] ⟩ There is an a and a b nodes with
the same data value.

⟨↓*[c]≠ ↓*[c]⟩ There are two c's with different
data value.

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

¬ ⟨↓*[b]≠ ↓*[b] ⟩

⟨↓*[a] = ↓*[b] ⟩ There is an a and a b nodes with
the same data value.

⟨↓*[c]≠ ↓*[c]⟩ There are two c's with different
data value.

All the b's have the same value.

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

¬ ⟨↓*[b]≠ ↓*[b] ⟩

¬ ⟨↓*[b]= ↓*[c] ⟩

⟨↓*[a] = ↓*[b] ⟩ There is an a and a b nodes with
the same data value.

⟨↓*[c]≠ ↓*[c]⟩ There are two c's with different
data value.

All the b's have the same value.

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

¬ ⟨↓*[b]≠ ↓*[b] ⟩

¬ ⟨↓*[b]= ↓*[c] ⟩

⟨↓*[a] = ↓*[b] ⟩ There is an a and a b nodes with
the same data value.

⟨↓*[c]≠ ↓*[c]⟩ There are two c's with different
data value.

All the b's have the same value.

There is no data value shared
by a b and a c.

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

¬ ⟨↓*[b]≠ ↓*[b] ⟩

¬ ⟨↓*[b]= ↓*[c] ⟩

⟨↓*[a] = ↓*[b] ⟩ There is an a and a b nodes with
the same data value.

⟨↓*[c]≠ ↓*[c]⟩ There are two c's with different
data value.

All the b's have the same value.

There is no data value shared
by a b and a c.

c is a key????

⟨↓*[b ∧ ⟨⟶ [c]⟩ ∧ ⟨ ↓ = ↓* [a] ⟩] ⟩

Semantics by Examples

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

¬ ⟨↓*[b]≠ ↓*[b] ⟩

¬ ⟨↓*[b]= ↓*[c] ⟩

⟨↓*[a] = ↓*[b] ⟩ There is an a and a b nodes with
the same data value.

⟨↓*[c]≠ ↓*[c]⟩ There are two c's with different
data value.

All the b's have the same value.

There is no data value shared
by a b and a c.

c is a key????

¬ ⟨ ↓* [c ∧ (⟨ε = ↑*⟶⟶*↓*[c]⟩ ∨

 ⟨ε = ↑↑*[c]⟩)] ⟩

Satisfiability of XPath

Satisfiability of XPath

full XPathUndecidable ♠

♠ [Geerts, Fan, PODS’05]

Satisfiability of XPath

full XPath

Forward

XPath(#, #⇤,!,!⇤)

Vertical
XPath(#, #⇤, ", "⇤)

Decidable,
non-PR

Undecidable

♦ ♣

♠

♠ [Geerts, Fan, PODS’05]

♦ [F. ICDT’10]

♣ [F., Segoufin, STACS’10]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Segoufin:Luc.html

Satisfiability of XPath

full XPath

Downward
XPath(#, #⇤)

Forward

XPath(#, #⇤,!,!⇤)

Vertical
XPath(#, #⇤, ", "⇤)

XPath without data testsExpTime

Decidable,
non-PR

Undecidable
♥ [F. PODS’09]

♦ ♣

♠

♠♥

♠ [Geerts, Fan, PODS’05]

♦ [F. ICDT’10]

♣ [F., Segoufin, STACS’10]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Segoufin:Luc.html

Satisfiability of XPath

full XPath

Downward
XPath(#, #⇤)

Forward

XPath(#, #⇤,!,!⇤)

Vertical
XPath(#, #⇤, ", "⇤)

XPath without data tests

Positive-XPath

ExpTime

Decidable,
non-PR

Undecidable

NP

♥ [F. PODS’09]

♦ ♣

♠

♠

♠♥

♠ [Geerts, Fan, PODS’05]

♦ [F. ICDT’10]

♣ [F., Segoufin, STACS’10]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Segoufin:Luc.html

Satisfiability of XPath

XPath without data tests: ExpTime-complete
Positive-XPath: NP-complete

♣ [Geerts, Fan, DBPL 2005]

♣
♣

♣

XPath: undecidable

Satisfiability of XPath

XPath without data tests: ExpTime-complete
Positive-XPath: NP-complete

♣ [Geerts, Fan, DBPL 2005]

By reduction from the 2-counter Minsky automaton.
Any accepting run of the automaton,

q p r p q r p q r s

A++ A--B++ B-- A++A++ A-- A-- A=0?

♣
♣

♣

XPath: undecidable

Satisfiability of XPath

XPath without data tests: ExpTime-complete
Positive-XPath: NP-complete

♣ [Geerts, Fan, DBPL 2005]

By reduction from the 2-counter Minsky automaton.
Any accepting run of the automaton,

q p r p q r p q r s

A++ A--B++ B-- A++A++ A-- A-- A=0?

∑ =

q p

A++

, ,{ , . . . }Has associated a tree over the finite alphabet

p r

B++

r p

A--

p q

B--

q r

A++

And vice-versa.

q p

A++

p r

B++

r p

A--

r p

A++

p q

A--

q r

A--

r s

A=0?

This is a forest, but the proof would be equivalent adding a root.

♣
♣

♣

XPath: undecidable

Satisfiability of XPath

XPath without data tests: ExpTime-complete
Positive-XPath: NP-complete

♣ [Geerts, Fan, DBPL 2005]

∑ =

q p

A++

, ,{ , . . . }Has associated a tree over the finite alphabet

p r

B++

r p

A--

p q

B--

q r

A++

And vice-versa.

q p

A++

p r

B++

r p

A--

r p

A++

p q

A--

q r

A--

r s

A=0?

This is a forest, but the proof would be equivalent adding a root.

Main Idea: to use data values to synchronize
increments and decrements.

♣
♣

♣

XPath: undecidable

Satisfiability of XPath

XPath without data tests: ExpTime-complete
Positive-XPath: NP-complete

♣ [Geerts, Fan, DBPL 2005]

Main Idea: to use data values to synchronize
increments and decrements.

Conditions to test:

Any pair of successive elements are in the 'chain' relation
q p

A++

p r

B++

¬ �[⋀ �[]]�
? p

?

r ?

?

The run starts with the initial state and ends with a final state.

❉

❉

...for any pair of states p≠r.

♣
♣

♣

XPath: undecidable

Satisfiability of XPath

XPath without data tests: ExpTime-complete
Positive-XPath: NP-complete

♣ [Geerts, Fan, DBPL 2005]

Conditions to test:

Any pair of successive elements are in the 'chain' relation
q p

A++

p r

B++

¬ �[⋀ �[]]�
? p

?

r ?

?

The run starts with the initial state and ends with a final state.

❉

❉

...for any pair of states p≠r.

There are two kinds of illegal transitions wrt the counters:
 - to decrement a counter with value 0,
 - to perform a “C=0?” transition with a non-zero counter C.

♣
♣

♣

XPath: undecidable

Satisfiability of XPath

XPath without data tests: ExpTime-complete
Positive-XPath: NP-complete

♣ [Geerts, Fan, DBPL 2005]

q p

A++

p r

B++

r p

A--

p q

B--

q r

A++

r p

A++

p q

A--

q r

A--

r s

A=0?

Every “A--” instruction must be
preceeded by a “A++” with the
same data value.

Data values are used to pair incrementing and decrementing instructions.

¬ �[⋀ ¬ ε = �[]]�
? ?

A--

? ?

A++

Hence, “A--” cannot be performed if the counter value is 0.

♣
♣

♣

XPath: undecidable

Satisfiability of XPath

XPath without data tests: ExpTime-complete
Positive-XPath: NP-complete

♣ [Geerts, Fan, DBPL 2005]

q p

A++

p r

B++

r p

A--

p q

B--

q r

A++

r p

A++

p q

A--

q r

A--

r s

A=0?

Every “A++” instruction that is to the left of a “A=0?” instruction, has a “A--”
instruction with the same datum in between.

? ?

A=0?

¬ �[⋀ �[] ⋀ ? ?

A++
¬ ε = �[]

? ?

A--

(
ε = �[]�[]�

? ?

A=0?

? ?

A--
∨]

Hence, “A=0?” is only performed when
the counter value is 0.

)

❉

♣
♣

♣

XPath: undecidable

Satisfiability of XPath

full XPath

Downward
XPath(#, #⇤)

Forward

XPath(#, #⇤,!,!⇤)

Vertical
XPath(#, #⇤, ", "⇤)

XPath without data tests

Positive-XPath

ExpTime

Decidable,
non-PR

Undecidable

NP

♥ [F. PODS’09]

♦ ♣

♠

♠

♠♥

♠ [Geerts, Fan, PODS’05]

♦ [F. ICDT’10]

♣ [F., Segoufin, STACS’10]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Segoufin:Luc.html

Downward XPath

♣ [Geerts, Fan, DBPL 2005]

♦ [Figueira, PODS 2009]

PSpace-completeXPath(#) ♣ ♦

ExpTime-completeXPath(#⇤) ♦

ExpTime-completeXPath(#, #⇤) ♦

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

Take a tree satisfying a formula

a,3

a,7
b,3

b,8
a,2

c,1

c,3

b,2

b,2

a,7

b,7

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

a,3

a,7
b,3

b,8
a,2

c,1

c,3

b,2

b,2

a,7

b,7

h#⇤[b] = #[b]#⇤[a]iφ = for every c,

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

a,3

a,7
b,3

b,8
a,2

c,1

c,3

b,2

b,2

a,7

b,7

h#⇤[b] = #[b]#⇤[a]iφ = for every c,

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

a,3

a,7
b,3

b,8
a,2

c,1

c,3

b,2

b,2

a,7

b,7

h#⇤[b] = #[b]#⇤[a]iφ = for every c,

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

a,3

a,7
b,3

b,8
a,2

c,1

c,3

b,2

b,2

a,7

b,7

h#⇤[b] = #[b]#⇤[a]iφ = for every c,

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

a,3

a,7
b,3

b,8
a,2

c,1

c,3

b,2

b,2

a,7

b,7

h#⇤[b] = #[b]#⇤[a]iφ = for every c,

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

a,3

a,7
b,3

b,8
a,2

c,1

c,3

b,2

b,2

a,7

b,7

h#⇤[b] = #[b]#⇤[a]iφ = for every c, closed under
duplication of subtrees

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

a,3

a,7
b,3

b,8
a,2

c,1

c,3

b,2

b,2

a,7

b,7

h#⇤[b] = #[b]#⇤[a]iφ = for every c, closed under
duplication of subtrees

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

a,3

a,7
b,3

b,8
a,2

c,1

c,3

b,2

b,2

a,7

b,7

h#⇤[b] = #[b]#⇤[a]iφ = for every c,

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

b,2

a,2

b,2

b,7a,2 b,7

a,3

a,7
b,3

b,8
a,2

c,1

c,3

b,2

b,2

a,7

b,7

h#⇤[b] = #[b]#⇤[a]iφ = for every c,

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

II) We can delete subtrees with unmarked root.

b,2

a,2

b,2

b,7a,2 b,7

a,3

a,7
b,3

b,8
a,2

c,1

c,3

b,2

b,2

a,7

b,7

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

II) We can delete subtrees with unmarked root.

b,2

a,2

b,2

c,1

c,3

b,2

b,2

a,7

b,7

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

II) We can delete subtrees with unmarked root.
Markings always disjoint.

b,2

a,2

b,2

c,1

c,3

b,2

b,2

a,7

b,7

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

I) For (1) and (2) we can find witnessing paths that we mark.

Take a tree satisfying a formula

II) We can delete subtrees with unmarked root.
Poly-width model property.Markings always disjoint.

b,2

a,2

b,2

c,1

c,3

b,2

b,2

a,7

b,7

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

Poly-width model property.
Markings always disjoint.

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

Poly-width model property.
Markings always disjoint.

c,1

c,3

b,2 a,7

b,2

b,3' a,7

b,8
a,2 b,7

b,3

III) For every node: at most one witnessing data value for each type (3) formula.
 (Polynomially many.)

¬h#[c]#[b] 6= #[b]i

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

Poly-width model property.
Markings always disjoint.

c,1

c,3

b,2 a,7

b,2

b,3' a,7

b,8
a,2 b,7

b,3

III) For every node: at most one witnessing data value for each type (3) formula.
 (Polynomially many.)

¬h#[c]#[b] 6= #[b]i

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

Poly-width model property.
Markings always disjoint.

c,1

c,3

b,2 a,7

b,2

b,3' a,7

b,8
a,2 b,7

b,3

III) For every node: at most one witnessing data value for each type (3) formula.
 (Polynomially many.)

¬h#[c]#[b] 6= #[b]i

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

Poly-width model property.
Markings always disjoint.

c,1

c,3

b,2 a,7

b,2

b,3' a,7

b,8
a,2 b,7

b,3

III) For every node: at most one witnessing data value for each type (3) formula.
 (Polynomially many.)

¬h#[c]#[b] 6= #[b]i

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

Poly-width model property.
Markings always disjoint.

c,1

c,3

b,2 a,7

b,2

b,3' a,7

b,8
a,2 b,7

b,3b,3'b,3'

III) For every node: at most one witnessing data value for each type (3) formula.
 (Polynomially many.)

¬h#[c]#[b] 6= #[b]i

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

Poly-width model property.
Markings always disjoint.

IV) Every two sibling subtrees share only a polynomial number of dv’s.

c,1

c,3

b,2 a,7

b,2

b,3' a,7

b,8
a,2 b,7

b,3b,3'b,3'

III) For every node: at most one witnessing data value for each type (3) formula.
 (Polynomially many.)

¬h#[c]#[b] 6= #[b]i

ExpTime-completeXPath(#, #⇤)

h↵ = �i(1) h↵ 6= �i(2) ¬h↵ 6= �i(3) ¬h↵ = �i(4)

V) Using this, we devise a
bottom-up algorithm to
compute all possible types.

Poly-width model property.
Markings always disjoint.

IV) Every two sibling subtrees share only a polynomial number of dv’s.

c,1

c,3

b,2 a,7

b,2

b,3' a,7

b,8
a,2 b,7

b,3b,3'b,3'

III) For every node: at most one witnessing data value for each type (3) formula.
 (Polynomially many.)

¬h#[c]#[b] 6= #[b]i

Downward XPath

Key properties:

 • closure of duplication of subtrees

 • absence of horizontal navigation

 • unranked trees

Satisfiability of XPath

full XPath

Downward
XPath(#, #⇤)

Forward

XPath(#, #⇤,!,!⇤)

Vertical
XPath(#, #⇤, ", "⇤)

XPath without data tests

Positive-XPath

ExpTime

Decidable,
non-PR

Undecidable

NP

♥ [F. PODS’09]

♦ ♣

♠

♠

♠♥

♠ [Geerts, Fan, PODS’05]

♦ [F. ICDT’10]

♣ [F., Segoufin, STACS’10]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Segoufin:Luc.html

Forward XPath

XPath(#, #⇤,!,!⇤) is decidable, non-primitive recursive

♦ [Jurdziński, Lazić, LICS 2007]

♣ [F, ICDT 2010]

♣ ♦

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jurdzinski:Marcin.html

+ unary key constraints : decidable
+ regular languages / DTDs : decidable
+ unary foreign key constraints : undecidable

Forward XPath

XPath(#, #⇤,!,!⇤) is decidable, non-primitive recursive

♦ [Jurdziński, Lazić, LICS 2007]

♣ [F, ICDT 2010]

♣ ♦

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jurdzinski:Marcin.html

+ unary key constraints : decidable
+ regular languages / DTDs : decidable
+ unary foreign key constraints : undecidable

Forward XPath

XPath(#, #⇤,!,!⇤) is decidable, non-primitive recursive

♦ [Jurdziński, Lazić, LICS 2007]

♣ [F, ICDT 2010]

♣ ♦
∧ ¬ ⟨ ↓ [⟨↓*[c]= ⟶⟶*↓*[c] ⟩] ⟩

¬ ⟨ ↓* [c ∧ ⟨ε = ↓↓*[c]⟩] ⟩

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jurdzinski:Marcin.html

+ unary key constraints : decidable
+ regular languages / DTDs : decidable
+ unary foreign key constraints : undecidable

Forward XPath

XPath(#, #⇤,!,!⇤) is decidable, non-primitive recursive

♦ [Jurdziński, Lazić, LICS 2007]

♣ [F, ICDT 2010]

♣ ♦

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jurdzinski:Marcin.html

ATRA: Alternating Tree Register Automata

XPath ⤳ Alternating automata with one"register"

ATRA: Alternating Tree Register Automata

XPath ⤳ Alternating automata with one"register"

ATRA

ATRA: Alternating Tree Register Automata

XPath ⤳ Alternating automata with one"register"

ATRA
finite

1 register
alternating

automaton
with

control

if current datum
test

to the one in the register
equalis

isn’t

store current
datum

the
registerin

on data trees

ARA

a b a b a b a b a b

1 5 3 1 5 6 8 3 2 3

transitions x

a

y

y

x

states final statesinitial state

x

b

y

xx

b

x

x

ARA

a b a b a b a b a b

1 5 3 1 5 6 8 3 2 3

transitions x

a

y

y

x

states final statesinitial state

x

b

y

xx

b

x

x

data values

1 1

3

1 1

3

1

3

5

1

3

5

1

3

5

8

1

3

5

8

1

3

5

8

2

1

3

5

8

2

the string is (ab)*, and all the a's have different data values

ARA

a b a b a b a b a b

1 5 3 1 5 6 8 3 2 3

transitions x

a

y

y

x

states final statesinitial state

x

b

y

xx

b

x

x

configuration

1 1

3

1 1

3

1

3

5

1

3

5

1

3

5

8

1

3

5

8

1

3

5

8

2

1

3

5

8

2

the string is (ab)*, and all the a's have different data values

ARA

a b a b a b a b a b

1 5 3 1 5 6 8 3 2 3

transitions x

a

y

y

x

states final statesinitial state

x

b

y

xx

b

x

x

configuration

1 1

3

1 1

3

1

3

5

1

3

5

1

3

5

8

1

3

5

8

1

3

5

8

2

1

3

5

8

2

the string is (ab)*, and all the a's have different data values

ARA

a b a b a b a b a b

1 5 3 1 5 6 8 3 2 3

transitions x

a

y

y

x

states final statesinitial state

x

b

y

xx

b

x

x

configuration

1 1

3

1 1

3

1

3

5

1

3

5

1

3

5

8

1

3

5

8

1

3

5

8

2

1

3

5

8

2

the string is (ab)*, and all the a's have different data values

ARA

a b a b a b a b a b

1 5 3 1 5 6 8 3 2 3

transitions x

a

y

y

x

states final statesinitial state

x

b

y

xx

b

x

x

Decidable emptiness problem

ARA

☺

With non-primitive recursive complexity

Closed under complementation, intersection, union☺

☹

Proof of decidability for ARA via theory of well quasi-orderings

quasi-order between configurations ≤

a ≤ b : “b is more difficult to verify than a”

b leads to a final
configuration

a leads to a final
configuration

Proof of decidability for ARA via theory of well quasi-orderings

quasi-order between configurations ≤

a ≤ b : “b is more difficult to verify than a”

b leads to a final
configuration

a leads to a final
configuration

nice properties of ≤ (wqo)

no
 infinite
 decreasing
 sequences

no infinite antichains

. . . .

. . . .

Proof of decidability for ARA via theory of well quasi-orderings

quasi-order between configurations ≤

a ≤ b : “b is more difficult to verify than a”

b leads to a final
configuration

a leads to a final
configuration

nice properties of ≤ (wqo)

no
 infinite
 decreasing
 sequences

no infinite antichains

. . . .

. . . .

only a finite number of
minimally ‘easy’ configurations

Recipe
The ingredients
well quasi-order well-structured

recursive set of
successors

Recipe
The ingredients
well quasi-order well-structured

recursive set of
successors

The algoritm

Recipe
The ingredients
well quasi-order well-structured

recursive set of
successors

The algoritm

Recipe
The ingredients
well quasi-order well-structured

recursive set of
successors

The algoritm

Recipe
The ingredients
well quasi-order well-structured

recursive set of
successors

The algoritm

Recipe
The ingredients
well quasi-order well-structured

recursive set of
successors

The algoritm

Recipe
The ingredients
well quasi-order well-structured

recursive set of
successors

The algoritm

Recipe
The ingredients
well quasi-order well-structured

recursive set of
successors

The algoritm

Recipe
The ingredients
well quasi-order well-structured

recursive set of
successors

The algoritm

Recipe
The ingredients
well quasi-order well-structured

recursive set of
successors

The algoritm

subset of R that
‘covers’ R

Recipe
The ingredients
well quasi-order well-structured

recursive set of
successors

The algoritm

subset of R that
‘covers’ R

The wqo ≤

1

3

1

3≤
5

2

The wqo ≤

1

3

1

3≤
5

2i()
5

7 =

The wqo ≤

1

3

1

3≤
5

2i()
5

7 =

transitiveqoreflexive

The wqo ≤

1

3

1

3≤
5

2i()
5

7 =

transitiveqoreflexivew
well- founded

The wqo ≤

1

3

1

3≤
5

2i()
5

7 =

transitiveqoreflexivew
well- founded

no infinite antichainsw

The wqo ≤

1

3

1

3≤
5

2i()
5

7 =

transitiveqoreflexivew
well- founded

no infinite antichainsw
1

3

1

3

5

a

5

1

≤

Well structured

The wqo ≤

1

3

1

3≤
5

2i()
5

7 =

transitiveqoreflexivew
well- founded

no infinite antichainsw
1

3

1

3

5

a

5

1

≤

Well structured

a

5

1

5

≤

The wqo ≤

1

3

1

3≤
5

2i()
5

7 =

transitiveqoreflexivew
well- founded

no infinite antichainsw
a

5

1

3

1

3

5

a

5

1 1

5

≤ ≤

Well structured

4
=

1

5=

≤

1

3 = =
1

3

5

≤

i()i()

a

i -1(5)

The wqo ≤

1

3

1

3≤
5

2i()
5

7 =

transitiveqoreflexivew
well- founded

no infinite antichainsw
a

5

1

3

1

3

5

a

5

1 1

5

≤ ≤

Well structured

4
=

1

5=

≤

1

3 = =
1

3

5

≤

i()i()

a

i -1(5)

1

3

5

2

Recursive set of sucessors
(finite up to isomorphism)

1

3

5

2

if is final

then is final3 5

≤

By the algorithm...

!

reachable set

!

1

3

5

2

if is final

then is final3 5

≤

By the algorithm...

!

reachable set

!

We only test the minimal elements

If then there is an accepting run.

If then there is no accepting run.

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

3

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

3

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

3

7
7

3

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

7
7

3

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

7
7

3
7

7

3

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

7

7

3

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

7

7

3

7

3 7

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

7

3 7

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

7

3 7

7

7

3 3

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

7

7

3 3

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

7

7

3 3

7

3 3 7 7

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

7

3 3 7 7

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

x

x

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

7

3 3 7 73 3 7 7

7 7

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

3 3 7 7

7 7

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

7

3

7

3

7

7

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

3

7

7 3

7 7

77

3
7 7

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

3

7

7 3

7 7

7

3

7

7

7 7

3 7

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

3

7

7 3

7 7

7

3

7

73

77 7

7 7

3

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

3

7

7 3

7 7

7

3

7

73

7

3

73 3 7 7

7 7

a

3

b

7

c

7

a

6

b

1

b

2

c

3

c

1

c

7

x

a

y

y

x

c

x

x x

x

?

?

x

x

?

?

x

x

b

y

y

y

x

initial state
final state

wordstotrees
From

ATRA +
x

a

x

z

+
x

a

x

∀

a

3

c

7

a

6

1

b b

2

b

7

c

1

c

3

c

7

guess universal

ATRA +
x

a

x

z

+
x

a

x

∀

a

3

c

7

a

6

1

b b

2

b

7

c

1

c

3

c

7

guess universal

7

ATRA +
x

a

x

z

+
x

a

x

∀

a

3

c

7

a

6

1

b b

2

b

7

c

1

c

3

c

7

guess universal

7

5

ATRA +
x

a

x

z

+
x

a

x

∀

a

3

c

7

a

6

1

b b

2

b

7

c

1

c

3

c

7

guess universal

7

ATRA +
x

a

x

z

+
x

a

x

∀

a

3

c

7

a

6

1

b b

2

b

7

c

1

c

3

c

7

guess universal

7

2
67
3

ATRA +
x

a

x

z

+
x

a

x

∀

a

3

c

7

a

6

1

b b

2

b

7

c

1

c

3

c

7

guess universal

is decidable.

wqo can be lifted to sets (Higman’s Lemma)

each configuration of the set behaves independently

accepting configurations are downwards closed

decidable emptiness problem

+
+

ARA

Decidab le emptiness prob lem☺

With non-primitive recursive complexity

Closed under complementation, intersection, union☺

☹

[Demri / Lazić]
rLTL(U,X) satisfiab ility of

ARA + guess + spread

Still decidab le emptiness prob lem

No longer closed under complementation

Can't b e closed under complement preserving decidab ility

☺

☹

☠

Reduction:

XPath ⤳ ATRA + guess + universal

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

There are an a and a b
with the same datum

How do we code...?

�[a] = �[b]

Guess the data value 7.

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

There are an a and a b
with the same datum

How do we code...?

�[a] = �[b]

Guess the data value 7.

Check that it can be accessed with “ �[b] ”.

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

There are an a and a b
with the same datum

How do we code...?

�[a] = �[b]

Guess the data value 7.

Check that it can be accessed with “ �[b] ”.

Check that it can be accessed with “�[a] ”.

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

There are an a and a b
with the same datum

How do we code...?

�[a] = �[b]

Guess the data value 7.

Check that it can be accessed with “ ��[b] ”.

Check that it can be accessed with “��[a] ”.

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

There are an a and a b
with the same datum

How do we code...?

�[a] = �[b]

There are two c with
different data values

�[c] ≠ �[c]

All b have the same
data value

¬ (�[b] ≠ �[b])

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

There are an a and a b
with the same datum�[a] = �[b]

Guess the data value 7.

Check that it can be accessed with “ ��[b] ”.

Check that it can be accessed with “��[a] ”.

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

There are an a and a b
with the same datum

How do we code...?

�[a] = �[b]

There are two c with
different data values

�[c] ≠ �[c]

All b have the same
data value

¬ (�[b] ≠ �[b])

a

3

b

7

b

7

a

6

a

1

b

7

c

3

c

1

a

7

a

6

a

1

There are an a and a b
with the same datum�[a] = �[b]

There is no data value
shared by a b and a c

¬ (�[b] = �[c])

¬ (�[b] = �[c])

How do we code...?

There is no data value
shared by a b and a c

If it is unsatisfiable: there was a α=β before.
Otherwise, assume ≠ data values.

¬ (�[b] = �[c])

How do we code...?

There is no data value
shared by a b and a c

If it is unsatisfiable: there was a α=β before.
Otherwise, assume ≠ data values.

¬ (�[b] = �[c])

How do we code...?

There is no data value
shared by a b and a c

=

If it is unsatisfiable: there was a α=β before.
Otherwise, assume ≠ data values.

¬ (�[b] = �[c])

How do we code...?

There is no data value
shared by a b and a c

α=β

=

If it is unsatisfiable: there was a α=β before.
Otherwise, assume ≠ data values.

¬ (�[b] = �[c])

How do we code...?

There is no data value
shared by a b and a c

α=β

=

If it is unsatisfiable: there was a α=β before.
Otherwise, assume ≠ data values.

¬ (�[b] = �[c])

How do we code...?

There is no data value
shared by a b and a c

α=β

=

≠

If it is unsatisfiable: there was a α=β before.
Otherwise, assume ≠ data values.

¬ (�[b] = �[c])

How do we code...?

There is no data value
shared by a b and a c

For all data values considered in the run:
 * we cannot reach �[b] with the value, or
 * we cannot reach �[c] with the value.

If it is unsatisfiable: there was a α=β before.
Otherwise, assume ≠ data values.

¬ (�[b] = �[c])

How do we code...?

There is no data value
shared by a b and a c

For all data values considered in the run:
 * we cannot reach �[b] with the value, or
 * we cannot reach �[c] with the value.

Spread: for all data values that
 were read in the word, or
 were guessed by some previous configuration

If it is unsatisfiable: there was a α=β before.
Otherwise, assume ≠ data values.

¬ (�[b] = �[c])

How do we code...?

There is no data value
shared by a b and a c

Satisfiability of XPath

full XPath

Downward
XPath(#, #⇤)

Forward

XPath(#, #⇤,!,!⇤)

Vertical
XPath(#, #⇤, ", "⇤)

XPath without data tests

Positive-XPath

ExpTime

Decidable,
non-PR

Undecidable

NP

♥ [F. PODS’09]

♦ ♣

♠

♠

♠♥

♠ [Geerts, Fan, PODS’05]

♦ [F. ICDT’10]

♣ [F., Segoufin, STACS’10]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Segoufin:Luc.html

Vertical XPath

is decidable, non-primitive recursive

♣ [Figueira, Segoufin, STACS 2011]

♣XPath(#, #⇤, ", "⇤)

Vertical XPath

is decidable, non-primitive recursive

+ unary key constraints : undecidable
+ regular languages / DTDs : undecidable
+ unary foreign key constraints : decidable

♣ [Figueira, Segoufin, STACS 2011]

♣XPath(#, #⇤, ", "⇤)

XPath on data words

a
5

b
3

c
1

b
1

c
1

b
1

a
4

a
4

b
5

c
1

b
4

XPath on data words

a
5

b
3

c
1

b
1

c
1

b
1

a
4

a
4

b
5

c
1

b
4

⟶*[b] ⟶[c]eg:

XPath on data words

a
5

b
3

c
1

b
1

c
1

b
1

a
4

a
4

b
5

c
1

b
4

. . .

⟶*[b] ⟶[c]eg:

XPath on data words

a
5

b
3

c
1

b
1

c
1

b
1

a
4

a
4

b
5

c
1

b
4

⟨⟵[b] = ⟩⟶*[b] ⟶[c]eg:

XPath on data words

a
5

b
3

c
1

b
1

c
1

b
1

a
4

a
4

b
5

c
1

b
4

⟨ ⟶*[a ∧]⟩ ⟨⟵[b] = ⟩⟶*[b] ⟶[c]eg:

XPath on data words

a
5

b
3

c
1

b
1

c
1

b
1

a
4

a
4

b
5

c
1

b
4

⟨ ⟶*[a ∧]⟩ ⟨⟵[b] = ⟩⟶*[b] ⟶[c]eg:

♠ [Demri, Lazić, 2006]

♣ [F., Segoufin, 2009]

XPath(⟶+, +⟵): undecidable ♣

Satisfiability of XPath on data words

♠ [Demri, Lazić, 2006]

♣ [F., Segoufin, 2009]

XPath(⟶+, +⟵): undecidable ♣

XPath(⟶+,*⟵): undecidable ♣

XPath(⟶, ⟶*,*⟵): undecidable ♣

Satisfiability of XPath on data words

♠ [Demri, Lazić, 2006]

♣ [F., Segoufin, 2009]

XPath(⟶+, +⟵): undecidable ♣

XPath(⟶+,*⟵): undecidable ♣

XPath(⟶, ⟶*,*⟵): undecidable ♣

XPath(⟶+): decidable, non-PR ♠ ♣

Satisfiability of XPath on data words

♠ [Demri, Lazić, 2006]

♣ [F., Segoufin, 2009]

In particular, any fragment with ⟶+ or +⟵ is
undecidable or has a non-PR complexity

XPath(⟶+, +⟵): undecidable ♣

XPath(⟶+,*⟵): undecidable ♣

XPath(⟶, ⟶*,*⟵): undecidable ♣

XPath(⟶+): decidable, non-PR ♠ ♣

Satisfiability of XPath on data words

♠ [Demri, Lazić, 2006]

♣ [F., Segoufin, 2009]

In particular, any fragment with ⟶+ or +⟵ is
undecidable or has a non-PR complexity

XPath(⟶+, +⟵): undecidable ♣

XPath(⟶+,*⟵): undecidable ♣

XPath(⟶, ⟶*,*⟵): undecidable ♣

XPath(⟶+): decidable, non-PR ♠ ♣

Satisfiability of XPath on data words

why?

SAT-XPath(⟶+)

⤳

SAT-XPath(⟶,⟶+)

♠ [Demri, Lazić, 2006]

♣ [F., Segoufin, 2009]

In particular, any fragment with ⟶+ or +⟵ is
undecidable or has a non-PR complexity

XPath(⟶+, +⟵): undecidable ♣

XPath(⟶+,*⟵): undecidable ♣

XPath(⟶, ⟶*,*⟵): undecidable ♣

XPath(⟶+): decidable, non-PR ♠ ♣

Satisfiability of XPath on data words

why?

Non-emptiness of ICA is decidable, non-primitive recursive

ICA

n counters
instructions

faulty increments during the run

INC(i)
DEC(i)
TEST_ZERO(i)

Incrementing faulty Counter Automata

inc(1)q0 q2 dec(2) q3 dec(1) q4 dec(1) q5 tz(1) q6

e.g.
a run with 2 counters...

[Demri / Lazić / Schnoebelen]

a b a a b

Non-emptiness of ICA is decidable, non-primitive recursive

ICA

n counters
instructions

faulty increments during the run

INC(i)
DEC(i)
TEST_ZERO(i)

Incrementing faulty Counter Automata

inc(1)q0 q2 dec(2) q3 dec(1) q4 dec(1) q5 tz(1) q6

e.g.
a run with 2 counters...

[Demri / Lazić / Schnoebelen]

a b a a b

faulty increment

B, 1 ... N, 2 E,1 B, 2 ... N, 3 E, 2

Technical idea of the coding

B, 3 ... N, 4 E, 3 B, 4 ... N, 5 E, 4

B BeginingBlocks defined by E EndN Next block

assume F strict

B, 1 ... N, 2 E,1 B, 2 ... N, 3 E, 2

Technical idea of the coding

B, 3 ... N, 4 E, 3 B, 4 ... N, 5 E, 4

B BeginingBlocks defined by E EndN Next block

assume F strict

B, 1 ... N, 2 E,1 B, 2 ... N, 3 E, 2

Technical idea of the coding

B, 3 ... N, 4 E, 3 B, 4 ... N, 5 E, 4

B BeginingBlocks defined by E EndN Next block

assume F strict

Using only F and G...

E, xFor every B, x there is a

All have different data
B

EN

with the same data value

B, 1 ... N, 2 E,1 B, 2 ... N, 3 E, 2

Technical idea of the coding

B, 3 ... N, 4 E, 3 B, 4 ... N, 5 E, 4

B BeginingBlocks defined by E EndN Next block

assume F strict

Using only F and G...

E, xFor every B, x there is a

All have different data
B

EN

with the same data value

No more than one per blockB

N

E

E, xOrder B, x ...

N

points to next blockN

B, 1 ... N, 2 E,1 B, 2 ... N, 3 E, 2

Technical idea of the coding

B, 3 ... N, 4 E, 3 B, 4 ... N, 5 E, 4

B BeginingBlocks defined by E EndN Next block

assume F strict

Using only F and G...

E, xFor every B, x there is a

All have different data
B

EN

with the same data value

No more than one per blockB

N

E

E, xOrder B, x ...

N

points to next blockN

next-block(φ) = ↓F (N ⋀ F(E⋀↑) ⋀ ↓F (B⋀↑⋀φ))next-block(φ) := ⟨ε = ⟶*[N ∧ ⟨ε = ⟶*[B ∧ φ] ⟩]⟶*[E]⟩

q0, a, inc(1), q2 q2, b, dec(2), q3 q3, a, dec(1), q4 q4, a, dec(1), q5 q5, b, tz(1), q6

we code:

as:

q0 q2 q3 q4 q5 q6inc(1)
a

dec(2)
b

dec(1)
a

dec(1)
a

tz(1)
b

q0, a, inc(1), q2 q2, b, dec(2), q3 q3, a, dec(1), q4 q4, a, dec(1), q5 q5, b, tz(1), q6

we code:

as:

q0 q2 q3 q4 q5 q6inc(1)
a

dec(2)
b

dec(1)
a

dec(1)
a

tz(1)
b

the blocks are: B N E..inc.. @ B N E..dec.. B N E..iz..

q0, a, inc(1), q2 q2, b, dec(2), q3 q3, a, dec(1), q4 q4, a, dec(1), q5 q5, b, tz(1), q6

we code:

as:

q0 q2 q3 q4 q5 q6inc(1)
a

dec(2)
b

dec(1)
a

dec(1)
a

tz(1)
b

the blocks are: B N E..inc.. @ B N E..dec.. B N E..iz..

check:
(ends) start with initial state, end with final state

(tran) every (q0, a, inc(1), q2) is in δ.

q0, a, inc(1), q2 q2, b, dec(2), q3 q3, a, dec(1), q4 q4, a, dec(1), q5 q5, b, tz(1), q6

we code:

as:

q0 q2 q3 q4 q5 q6inc(1)
a

dec(2)
b

dec(1)
a

dec(1)
a

tz(1)
b

the blocks are: B N E..inc.. @ B N E..dec.. B N E..iz..

check:
(ends) start with initial state, end with final state

(tran) every (q0, a, inc(1), q2) is in δ.

B, 1 N, 2 E,1 B, 2 N, 3 E, 2@,3q0, a, inc(1), q2 q2, b, dec(2), q3(chain)

=

next-block(φ)

q0, a, inc(1), q2 q2, b, dec(2), q3 q3, a, dec(1), q4 q4, a, dec(1), q5 q5, b, tz(1), q6

we code:

as:

q0 q2 q3 q4 q5 q6inc(1)
a

dec(2)
b

dec(1)
a

dec(1)
a

tz(1)
b

the blocks are: B N E..inc.. @ B N E..dec.. B N E..iz..

check:
(ends) start with initial state, end with final state

(tran) every (q0, a, inc(1), q2) is in δ.

B, 1 N, 2 E,1 B, 2 N, 3 E, 2@,3q0, a, inc(1), q2 q2, b, dec(2), q3(chain)

=

next-block(φ)

..inc(1).. N@ ..dec(2).. N ..dec(1).. N ..dec(1).. N ..tz(1).. N

(pair) every increment is decremented before the first test_zero to its right

Therefore, we have:

 • XPath(⟶+) is (decidable and) non-primitive recursive

 • XPath(+⟵, ⟶+) and XPath(*⟵, ⟶+) are undecidable

 • LTL1(F) is (decidable and) non-primitive recursive

 • LTL1(F,F-1) is undecidable

 • LTL1(F,F-1)

Complexity

♠ [Demri, Lazić, LICS’06]

♣ [F., Segoufin, MFCS’09]

In particular, any fragment with or is
undecidable or has a non-PR complexity

!+ +

XPath(!+,+) : undecidable♣

XPath(!+, ⇤) : undecidable♣

XPath(!,!⇤, ⇤) : undecidable♣

XPath(!+) : decidable, non-PR♠♣

Horizontal
XPath(!,!⇤, , ⇤)

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Segoufin:Luc.html

♠ [Demri, Lazić, LICS’06]

♣ [F., Segoufin, MFCS’09]

In particular, any fragment with or is
undecidable or has a non-PR complexity

!+ +

XPath(!+,+) : undecidable♣

XPath(!+, ⇤) : undecidable♣

XPath(!,!⇤, ⇤) : undecidable♣

XPath(!+) : decidable, non-PR♠♣

XPath(!⇤)What about ?

Horizontal
XPath(!,!⇤, , ⇤)

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Segoufin:Luc.html

♠ [Demri, Lazić, LICS’06]

♣ [F., Segoufin, MFCS’09]

In particular, any fragment with or is
undecidable or has a non-PR complexity

!+ +

XPath(!+,+) : undecidable♣

XPath(!+, ⇤) : undecidable♣

XPath(!,!⇤, ⇤) : undecidable♣

XPath(!+) : decidable, non-PR♠♣

 is decidable in 2ExpSpace XPath(!⇤) ♦

 is decidable in 2ExpSpaceXPath(!⇤, ⇤) ♦

XPath(!⇤)What about ?

♦ [F., LICS’11]

Horizontal
XPath(!,!⇤, , ⇤)

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Segoufin:Luc.html

♠ [Demri, Lazić, LICS’06]

♣ [F., Segoufin, MFCS’09]

In particular, any fragment with or is
undecidable or has a non-PR complexity

!+ +

XPath(!+,+) : undecidable♣

XPath(!+, ⇤) : undecidable♣

XPath(!,!⇤, ⇤) : undecidable♣

XPath(!+) : decidable, non-PR♠♣

 is decidable in 2ExpSpace XPath(!⇤) ♦

 is decidable in 2ExpSpaceXPath(!⇤, ⇤) ♦

XPath(!⇤)What about ?

♦ [F., LICS’11]

Horizontal
XPath(!,!⇤, , ⇤)

♥ [F., PODS’13] XPath(!⇤, #⇤, ⇤) is decidable♥

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Segoufin:Luc.html

♠ [Demri, Lazić, LICS’06]

♣ [F., Segoufin, MFCS’09]

In particular, any fragment with or is
undecidable or has a non-PR complexity

!+ +

XPath(!+,+) : undecidable♣

XPath(!+, ⇤) : undecidable♣

XPath(!,!⇤, ⇤) : undecidable♣

XPath(!+) : decidable, non-PR♠♣

 is decidable in 2ExpSpace XPath(!⇤) ♦

 is decidable in 2ExpSpaceXPath(!⇤, ⇤) ♦

XPath(!⇤)What about ?

♦ [F., LICS’11]

Horizontal
XPath(!,!⇤, , ⇤)

♥ [F., PODS’13] XPath(!⇤, #⇤, ⇤) is decidable♥

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Segoufin:Luc.html

is decidable in 2ExpSpace

Proof idea
there is only one dv under a c
for every a, there is a b accessible via a c with the same dv
there is a c with the same dv as the current position

φ :

}

e.g. a
1

b
2

b
4

a
4

b
3

c
1

a
5

b
1

c
1

c
1

a
4

a
4

b
5

c
1

b
4

⊨ φ

XPath(!⇤, ⇤)

is decidable in 2ExpSpace

Proof idea
there is only one dv under a c
for every a, there is a b accessible via a c with the same dv
there is a c with the same dv as the current position

φ :

}

e.g. a
1

b
2

b
4

a
4

b
3

c
1

a
5

b
1

c
1

c
1

a
4

a
4

b
5

c
1

b
4

⊨ φ

mosaic

a label

a data value

for every dv d, all the
paths that can access d

restricted to subpaths of φ = { !⇤[c]!⇤[b], !⇤[c], !⇤[b] }

a
4

1 : { !⇤[c]!⇤[b], !⇤[b], !⇤[c] }
2 : { }
3 : { !⇤[b] }. . .

XPath(!⇤, ⇤)

is decidable in 2ExpSpace

Proof idea
there is only one dv under a c
for every a, there is a b accessible via a c with the same dv
there is a c with the same dv as the current position

φ :

}

e.g. a
1

b
2

b
4

a
4

b
3

c
1

a
5

b
1

c
1

c
1

a
4

a
4

b
5

c
1

b
4

⊨ φ

φ is satisfiable ⇔ there is

a relation if they can abstract consecutive positions in a word

in TS(φ) s.t. the first and last elements have certain conditions

 An infinite transition system TS(φ) over mosaics. �

XPath(!⇤, ⇤)

is decidable in 2ExpSpace

Proof idea
there is only one dv under a c
for every a, there is a b accessible via a c with the same dv
there is a c with the same dv as the current position

φ :

}

e.g. a
1

b
2

b
4

a
4

b
3

c
1

a
5

b
1

c
1

c
1

a
4

a
4

b
5

c
1

b
4

⊨ φ

We can add a dv that simulates 4

XPath(!⇤, ⇤)

is decidable in 2ExpSpace

Proof idea
there is only one dv under a c
for every a, there is a b accessible via a c with the same dv
there is a c with the same dv as the current position

φ :

}

e.g. a
1

b
2

b
4

a
4

b
3

c
1

a
5

b
1

c
1

c
1

a
4

a
4

b
5

c
1

b
4

⊨ φb
9

a
9

a
9

a
9

b
9

We can add a dv that simulates 4

XPath(!⇤, ⇤)

is decidable in 2ExpSpace

Proof idea
there is only one dv under a c
for every a, there is a b accessible via a c with the same dv
there is a c with the same dv as the current position

φ :

}

e.g. a
1

b
2

b
4

a
4

b
3

c
1

a
5

b
1

c
1

c
1

a
4

a
4

b
5

c
1

b
4

⊨ φb
9

a
9

a
9

a
9

b
9

...but we cannot simulate 1.

We can add a dv that simulates 4

XPath(!⇤, ⇤)

is decidable in 2ExpSpace

Proof idea
there is only one dv under a c
for every a, there is a b accessible via a c with the same dv
there is a c with the same dv as the current position

φ :

}

e.g. a
1

b
2

b
4

a
4

b
3

c
1

a
5

b
1

c
1

c
1

a
4

a
4

b
5

c
1

b
4

⊨ φb
9

a
9

a
9

a
9

b
9

...but we cannot simulate 1. rigid value

rigid value : from some
position it is the only dv
accessed with a path α

satisfaction of φ is closed under
simulation of flexible values

flexible valueWe can add a dv that simulates 4

XPath(!⇤, ⇤)

is decidable in 2ExpSpace

Proof idea
there is only one dv under a c
for every a, there is a b accessible via a c with the same dv
there is a c with the same dv as the current position

φ :

}

e.g. a
1

b
2

b
4

a
4

b
3

c
1

a
5

b
1

c
1

c
1

a
4

a
4

b
5

c
1

b
4

⊨ φ

adding simulated values of flexible values: ≤ ≤

XPath(!⇤, ⇤)

is decidable in 2ExpSpace

Proof idea
there is only one dv under a c
for every a, there is a b accessible via a c with the same dv
there is a c with the same dv as the current position

φ :

}

e.g. a
1

b
2

b
4

a
4

b
3

c
1

a
5

b
1

c
1

c
1

a
4

a
4

b
5

c
1

b
4

⊨ φ

adding simulated values of flexible values: ≤ ≤
A monotonicity property:

∀

≤

XPath(!⇤, ⇤)

is decidable in 2ExpSpace

Proof idea
there is only one dv under a c
for every a, there is a b accessible via a c with the same dv
there is a c with the same dv as the current position

φ :

}

e.g. a
1

b
2

b
4

a
4

b
3

c
1

a
5

b
1

c
1

c
1

a
4

a
4

b
5

c
1

b
4

⊨ φ

adding simulated values of flexible values: ≤ ≤
A monotonicity property:

∀

≤

∃

≤

XPath(!⇤, ⇤)

is decidable in 2ExpSpace

Proof idea
there is only one dv under a c
for every a, there is a b accessible via a c with the same dv
there is a c with the same dv as the current position

φ :

}

e.g. a
1

b
2

b
4

a
4

b
3

c
1

a
5

b
1

c
1

c
1

a
4

a
4

b
5

c
1

b
4

⊨ φ

adding simulated values of flexible values: ≤ ≤

we only need to consider ≤-minimal mosaics

there are boundedly many (since there are boundedly many rigid values)

we reduce to a derivation problem for a finite transition system

XPath(!⇤, ⇤)

