Logics on words and trees
with data

Diego Figueira & Ranko Lazi¢

ESSLLILI 2016 - Bolzano

Logics on words and trees
with data

Diego Figueira & Ranko Lazi¢

ESSLLILI 2016 - Bolzano

Today, again!

Agenda

Monday: Introduction, motivation
Tuesday: Data words, first-order logic
Wednesday: Data words, temporal logics
Thursday: Data trees, path-based logics

Friday: Data trees, other formalisms for data trees

Data Tree Patterns

e Defined is a tree
e Unordered, unranked
e Nodes can have labels
o Edges are of type ‘child’ or 'descendant’
o Additional equality and inequality constraints between nodes

o A data tree "satisfies” a pattern if there is an morphism

f: pattern — tree

that verifies the constraints of the pattern.

Data Tree Patterns

A data tree pattern is a tree with

/ '/' o child/descendant edges,

@ @ o labelled nodes, and

=" i " o data equality/ inequality constraints between nodes.

Example:

data pattern

Data Tree Patterns

A data tree pattern P is "satisfied” by a data tree T if

e there is an injective function

f: nodes(P) — nodes(T) so that:

o 2 mealeslE) lbelled ek o = 00) = immeles(1) labaled wridh «
e (vy') related by a ‘child' edge = f(v') is a child of f(v)

e (vy') related by a 'descendant’ edge = f(v') is descendant of (v)
e (vv') at 'incomparable’ positions = f(v), f(v') incomparable

o (v,v') are related by a '="edge (resp. '#'), then £(v), {(v') have the same
(resp. different) data value.

Data Tree Patterns

Example 1:

data pattern

data tree

Data Tree Patterns

Example 1:

data pattern data tree

Data Tree Patterns

Example 2:

data pattern

data tree

Data Tree Patterns

Example 2:

data pattern data tree

Data Tree Patterns

Example 2:

= does not preserve incomparability!

data pattern data tree

Example 3:

O
% W 6
o

data pattern data tree

Data Tree Patterns

Example 3:

data pattern data tree

Data Tree Patterns

Example 3:

data pattern data tree

Satisfiability of Data Patterns

Satisfiability problem: Given a regular tree property

and a boolean combination of patterns, is there a tree

satistying both?

Satisfiability of Data Patterns

The satisfiability problem is undecidable ‘David MECS08]

satisfiability
BC(child, desc) undecidable
BC(child) 2Exptime-c
BC(desc) NExptime-c
BC-(child,desc) undecidable

BC+(child, desc) NP-c

'The satistiability problem is undecidable

Reduction from emptiness of a given Minsky Machine M

« Remember
o automaton (on words) with 2 counters,
e instructions: inc(1), inc(2), dec(1), dec(2), tz(1), tz(2)

The regular language Ly describes the shape of the (data-
blind) property of the tree:

o "The tree contains a branch labeled with transitions of M."

The BC of patterns assures that the labels of the branch form

a correct accepting run of M.

'The satistiability problem is undecidable

e 'The regular language Ly describes the shape of the (data-
blind)tree:

* There is a long branch, labeled with transitions 61,9»,... of M

which are consistent:
* initial/final states at endpoints,
* source state of 0j41 = target state of 0.

* From each node of this branch, there is a subtree coding the
configuration of the counters

'The satistiability problem is undecidable

r

/N /\
A T\ &
o L .
AN
$ Cfn

coding of an execution coding of a configuration cf;

'The satistiability problem is undecidable

o 'The BC of patterns assures that the labels of the branch form a
correct accepting run of M

(I) Every pair of positions in the a-branch of the configuration
have different data value.

..a
| ~ |
5

'The satistiability problem is undecidable

o 'The BC of patterns assures that the labels of the branch form a
correct accepting run of M

(IT) If two a-nodes are at the same index in two successive

configurations = they have the same data value.

N T/\ﬁ
=11 A 1
s .

< \

'The satistiability problem is undecidable

o 'The BC of patterns assures that the labels of the branch form a
correct accepting run of M

(IIT) The length of a-branches in successive configurations is
consistent. Eg: if there is an inc(1) then the a-branch increases

its length by one. 0
5 |
/ \ ¢ -
* C a---':$
L T AN T
g I
3 S

"It can't be that it decreases ... nor that it increases in move than one”

'The satistiability problem is undecidable

Thus, Lm A 7 P1 A - A 1 Py is satishiable & M has an accepting run.

Thus, the satisfiability pb for BC-(child,desc) is also undecidable.

Other form of patterns: CQ

We consider conjunctive queries over the binary relations
[Child
e desc
e next-sib
[foll—sib
e data-eq
e data-neq
ea forac A

A conjunctive query: a conjunction of atoms over these relations
(we can use any number of variables).

Semantics: existence of homomorphism (ie, whether the FO
sentence holds in the structure).

Other form of patterns: CQ

Example:

¢ = desc(x,z) A next-sib(x,y) A desc(y:t) A child(u,t) A child(v,t)
A a(t) A data-neq(x,v) A data-eq(z,u) A b(t)

next-sib ..
X = y
desc - desc ~ data-neq

Other form of patterns: CQ

Semantics: existence of homomorphism (ie, whether the FO
sentence holds in the structure).

o Akin to XPath with path intersection.

« Non-injective semantics

o Boolean combinations of data tree patterns are more
expressive but less succinct than CQs

Other form of patterns: CQ

Satisfiability of CQ on data trees under regular
constraints is NP-complete.

Containment of CQ on data trees under regular
constraints is undecidable.

[Bjorklund, Martens, Schwentick]

First-Order logic, an old friend

e We can also use FO2 on data trees where we have:

~ adata equality relation

child a child relation

desc a descendant relation

next-sib a next-sibling relation
foll-sibl a following-sibling relation

child(x,y) : "x is a child of y"

desc(x,y) : "x is a descendant of y"

next-sib(x,y) : "x is the next sibling of y"
foll-sib(x,y) : "x is one of the following siblings of y"

First-Order logic

Example 1:

vx ((=3ychild(yx)) ¢ 3Jydesc(xy) Ax~y)

‘the only data value that repeats along a branch is
that of the leaf”

First-Order logic

Example 2:

Vx (a(x) = 3Fy b(y) 7 desc(x,y) A 7 desc(y,x) A x~y)

for every node there is another one with the same
data value in an incomparable position”

First-Order logic

SAT-FO?(~,child,desc,next-sib,foll-sib) is at least as
hard as reach-BVASS.

BVASS = "Branching Vector Addition System with States"
It is a branching version of VASS

(brief digression into BVASS)

o Set of states Q
e Set of rules of the form "q mL(J) p>s

~dec(j)

or'q — p.S

" !

"

o Configurations of the form "(q,(n1,...n¢))
e Derivation tree: a binary tree labeled with configurations so that

for every parent and children

(q(C1mr60)) we have: ¥ 3 ruleq ine() p,s or qd(ﬂz U
¥ aj+ bi=ciforalli=j,and
(P,(al,--,at)) (S,(bl,..,bt)> S aj + bj + 1= Cjor aj+ bj -1= Ci

e Reachability problem: whether there exists a derivation tree where
*k all leaves are labeled (qieass (0....,0)) and
*k the root is labeled (qroor(0,-..,0)).

(brief digression into BVASS)

[ts reachability problem is unknown to be decidable,
and it is considered a hard open problem.

First-Order logic

SAT-FO?(~,child,desc,next-sib,foll-sib) is at least as
hard as reach-BVASS.

Reduction reach-BVASS ~ SAT-FO2(~,...):

o A decision procedure for SAT-FO2(~,...) would yield
decidability of reach-BVASS.

e However, the converse is not necessarily true.

reach-BVASS ~ Sat-FO2

(g5(C15ce)) ((q,0).d)

N - N\

(aeae)) (5,(b1,..,be)) p,/),d’) ((s,/"), d

[, [, 1" e {inc,d 1,...
If witnessed by inc(j) then /= inc(j) € {inc,dect x t1,...t}

"Structure is ok
e starts with initial states,
e all leaves have final states

e cvery node has 0 or two children

o for every ((q,/),d) parent of ((p,/),d"), ((s,/"),d") there is a rule q —/ p,s

Note: this needs next-sibling and child relations

reach-BVASS ~ Sat-FO2

(g5(C15ce)) ((q,0).d)

N - N\

(aeae)) (5,(b1,..,be)) p,/),d’) ((s,/"), d

[, [, 1" e {inc,d 1,...
If witnessed by inc(j) then /= inc(j) € {inc,dect x t1,...t}

o Every inc(i) has a different data value along a branch (idem with dec(i))
VX (x£Y) A $inc(X) A inc(y) = 1 (x ~ y)
where ¢inc(x) = Vq (q,inc(i))(x)

o Every inc(i) has a descending dec(i) with the same data value

Vx dinc(x) = (Fy desc(y,x) A ddec(y) A x~y)

o Every dec(i) has an ancestor inc(i) with the same data value

First-Order logic

SAT-FO2(~,child,next-sib) problem is decidable.

[Bojaniczyk&al |

Complexity between NExpl'ime and 3NExpIime.

The proof is non-trivial.

