Logics on words and trees with data

Diego Figueira & Ranko Lazić

ESSLLI 2016 - Bolzano

Logics on words and trees with data

Diego Figueira & Ranko Lazić

ESSLLI 2016 - Bolzano

Agenda

- Monday: Introduction, motivation
- Tuesday: Data words, first-order logic
- Wednesday: Data words, temporal logics
- Thursday: Data trees, path-based logics
- Friday: Data trees, other formalisms for data trees

Patterns!

- Defined is a tree
 - Unordered, unranked
 - Nodes can have labels
 - Edges are of type 'child' or 'descendant'
 - Additional equality and inequality constraints between nodes
- A data tree "satisfies" a pattern if there is an morphism

 $f: pattern \longrightarrow tree$

that verifies the constraints of the pattern.

A data tree pattern is a tree with

Example:

data pattern

A data tree pattern P is "satisfied" by a data tree T if

- there is an injective function
 f: nodes(P) → nodes(T) so that:
- if $v \ni nodes(P)$ labeled with $a \Rightarrow f(v) \ni nodes(T)$ labeled with a
- (v,v') related by a 'child' edge \Rightarrow f(v') is a child of f(v)
- (v,v') related by a 'descendant' edge \Rightarrow f(v') is descendant of f(v)
- (v,v') at 'incomparable' positions \Rightarrow f(v), f(v') incomparable
- (v,v') are related by a '=' edge (resp. '≠'), then f(v), f(v') have the same (resp. different) data value.

Example 1:

data pattern

data tree

Example 1:

data pattern

data tree

Example 2:

data pattern

data tree

Example 2:

data pattern

data tree

Example 2:

data pattern

data tree

Example 3:

data pattern

data tree

Example 3:

data pattern

data tree

Example 3:

data pattern

data tree

Satisfiability of Data Patterns

Satisfiability problem: Given a <u>regular tree property</u> and a <u>boolean combination of patterns</u>, is there a tree satisfying both?

Satisfiability of Data Patterns

The satisfiability problem is undecidable

[David MFCS'08]

BC(child, desc)

BC(child)

BC(desc)

BC-(child,desc)

BC+(child, desc)

satisfiability

undecidable

2Exptime-c

NExptime-c

undecidable

NP-c

- Reduction from emptiness of a given Minsky Machine M
 - Remember
 - automaton (on words) with 2 counters,
 - instructions: inc(1), inc(2), dec(1), dec(2), tz(1), tz(2)
- The regular language L_M describes the *shape* of the (datablind) property of the tree:
 - "The tree contains a branch labeled with transitions of M."
- The BC of patterns assures that the labels of the branch form a correct accepting run of M.

- The regular language L_M describes the shape of the (datablind)tree:
 - \star There is a long branch, labeled with transitions $\delta_1, \delta_2,...$ of M which are consistent:
 - * initial/final states at endpoints,
 - * source state of δ_{i+1} = target state of δ_i .
 - ★ From each node of this branch, there is a subtree coding the configuration of the counters

coding of an execution

coding of a configuration cf_i

- The BC of patterns assures that the labels of the branch form a correct accepting run of M
 - (I) Every pair of positions in the a-branch of the configuration have different data value.

• The BC of patterns assures that the labels of the branch form a correct accepting run of M

(II) If two a-nodes are at the same index in two successive configurations \Rightarrow they have the same data value.

• The BC of patterns assures that the labels of the branch form a correct accepting run of M

(III) The length of a-branches in successive configurations is consistent. Eg: if there is an inc(1) then the a-branch increases its length by one.

"it can't be that it decreases ... nor that it increases in more than one"

Thus, $L_M \land \neg P_1 \land \dots \land \neg P_n$ is satisfiable $\Leftrightarrow M$ has an accepting run.

Thus, the satisfiability pb for BC-(child,desc) is also undecidable.

We consider conjunctive queries over the binary relations

- child
- desc
- next-sib
- foll-sib
- data-eq
- data-neq
- a, for $a \in A$

A conjunctive query: a conjunction of atoms over these relations (we can use any number of variables).

<u>Semantics</u>: existence of homomorphism (ie, whether the FO sentence holds in the structure).

Example:

 $\phi = \operatorname{desc}(x,z) \wedge \operatorname{next-sib}(x,y) \wedge \operatorname{desc}(y,t) \wedge \operatorname{child}(u,t) \wedge \operatorname{child}(v,t)$ $\wedge a(t) \wedge \operatorname{data-neq}(x,v) \wedge \operatorname{data-eq}(z,u) \wedge b(t)$

<u>Semantics</u>: existence of homomorphism (ie, whether the FO sentence holds in the structure).

- Akin to XPath with path intersection.
- Non-injective semantics
- Boolean combinations of data tree patterns are more expressive but less succinct than CQs

Satisfiability of CQ on data trees under regular constraints is NP-complete.

Containment of CQ on data trees under regular constraints is undecidable.

[Bjorklund, Martens, Schwentick]

First-Order logic, an old friend

• We can also use FO² on data trees where we have:

~ a data equality relation child a child relation desc a descendant relation next-sib a next-sibling relation foll-sibl a following-sibling relation

```
child(x,y): "x is a child of y" desc(x,y): "x is a descendant of y" next-sib(x,y): "x is the next sibling of y" foll-sib(x,y): "x is one of the following siblings of y"
```

Example 1:

$$\forall x \ (\ (\neg \exists y \ child(y,x)) \Leftrightarrow \exists y \ desc(x,y) \land x \sim y \)$$

"the only data value that repeats along a branch is that of the leaf"

Example 2:

$$\forall x \ (a(x) \Rightarrow \exists y \ b(y) \neg desc(x,y) \land \neg desc(y,x) \land x \sim y)$$

"for every node there is another one with the same data value in an incomparable position"

SAT-FO²(~,child,desc,next-sib,foll-sib) is at least as hard as reach-BVASS.

BVASS = "Branching Vector Addition System with States"

It is a branching version of VASS

(brief digression into BVASS)

- Set of states Q
- Set of rules of the form "q $\xrightarrow{inc(j)}$ p,s" or " $\xrightarrow{dec(j)}$ p,s"
- Configurations of the form $(q,(n_1,...,n_t))$
- Derivation tree: a binary tree labeled with configurations so that for every parent and children

- Reachability problem: whether there exists a derivation tree where
 - * all leaves are labeled (q_{leaf},(0,...,0)) and
 - * the root is labeled $(q_{root}, (0,...,0))$.

(brief digression into BVASS)

Its reachability problem is unknown to be decidable, and it is considered a hard open problem.

SAT-FO²(~,child,desc,next-sib,foll-sib) is at least as hard as reach-BVASS.

Reduction reach-BVASS \rightarrow SAT-FO²(\sim ,...):

- A decision procedure for SAT-FO²(~,...) would yield decidability of reach-BVASS.
 - However, the converse is not necessarily true.

reach-BVASS \rightarrow Sat-FO²

If witnessed by inc(j) then l = inc(j)

 $l, l', l'' \in \{\text{inc,dec}\} \times \{1,...t\}$

"Structure is ok":

- starts with initial states,
- all leaves have final states
- every node has 0 or two children
- for every ((q,l),d) parent of ((p,l'),d'), ((s,l''),d'') there is a rule $q \longrightarrow l p$, s

Note: this needs next-sibling and child relations

reach-BVASS \rightarrow Sat-FO²

If witnessed by inc(j) then l = inc(j)

- Every inc(i) has a different data value along a branch (idem with dec(i)) $\forall x,y \ (x \neq y) \land \varphi_{inc}(x) \land \varphi_{inc}(y) \Rightarrow \neg \ (x \sim y)$ where $\varphi_{inc}(x) = \lor_q (q,inc(i))(x)$
- Every inc(i) has a descending dec(i) with the same data value $\forall x \ \varphi_{inc}(x) \Rightarrow (\exists y \ desc(y,x) \land \varphi_{dec}(y) \land x \sim y)$
- Every dec(i) has an ancestor inc(i) with the same data value

SAT-FO²(~,child,next-sib) problem is decidable.

[Bojańczyk&al]

Complexity between NExpTime and 3NExpTime. The proof is non-trivial.