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Semantic web / RDF / social networks / . . .

Notion of path of central importance

Modelled as: edge-labelled directed graphs

"Entities + Relations"
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Acyclic P—

Unions, inverse
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π1: (ab)* c  
π2: (ac)* 
π3: a c*

What about… 
“All the pairs (u,v) that can reach 

some node z in the same number of steps”



• |πi| = |πj| 

• πi is a prefix of πj 

• πi is a subsequence of πj 

• πi is a factor of πj 

• πi = πj projected onto A

CRPQ

π1

π2 π3

π1: (ab)* c  
π2: (ac)* 
π3: a c*

CRPQ(S)

R(π1, π2), R∈S

Motivations from: entity resolution, semantic associations, crime detection,…

Graphdatabases
What about testing for relations 
on the paths?



CRPQ

π1

π2 π3

π1: (ab)* c  
π2: (ac)* 
π3: a c*

CRPQ(S)

R(π1, π2), R∈S

CRPQ(S) =

S: Class of well-behaved 
     word relations…

Graphdatabases
What about testing for relations 
on the paths?

CRPQ + 
tests R(πi1,…,πin), R ∈ S
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binary relations recognizable

regular
rational

REG2 RAT2

REC2
R ⊆ !*×!*

prefix, equal, equal length, ... suffix, infix, projection, subsequence, ...

c d a d d a c d c b

a b a b c b b

c d a d d a c d c b

a b a b c b b

c d a d d a c d c b

a b a b c b b



CRPQ(S) =

Graphdatabases
CRPQ + 
tests R(πi1,…,πin), R ∈ S

CRPQ(REC) NP/NL complexity

CRPQ(REG) PSPACE/NL complexity

CRPQ(RAT) undecidable

Related to the Intersection Problem:  
Given relations R1,…,Rn, whether R1∩···∩Rn≠∅

Can this be extended?



problemintersection
R ⋂ S  =  ∅  ?

input: R ∈ R, S ∈ S 
output:  R ⋂ S  =  ∅ ?

R, S : classes of binary relations



problemintersection
R ⋂ S  =  ∅  ?

input: R ∈ R, S ∈ S 
output:  R ⋂ S  =  ∅ ?REG ⋂ RAT = ∅ ?  

already undecidable

R, S : classes of binary relations

...but what about  
real world relations?
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problemintersection
R ⋂ S  =  ∅  ?

input: R ∈ R, S ∈ S 
output:  R ⋂ S  =  ∅ ?REG ⋂ RAT = ∅ ?  

already undecidable

R, S : classes of binary relations

it has been studied...

suffix...?

subword...?
subsequence...?

vu v

a b a c c ba b a c a b a c

a b a c a b a cu

v

subsequence



Language Data complexity Combined complexity

CRPQ(REGk) NL PSPACE

CRPQ(RATk) Undecidable Undecidable

CRPQ(REGk + suffix) Undecidable Undecidable

CRPQ(REGk + factor) Undecidable Undecidable

CRPQ(REGk + subsequence) non-elementary non-PR

CRPQ(suffix) NL PSPACE

CRPQ(factor) PSPACE PSPACE

CRPQ(subsequene) PSPACE NEXPTIME

∀ k>1

Can we extend CRPQ beyond REG relations?



Proposed alternative: approximate RAT through 
                                         REG + counters

Can we extend CRPQ beyond REG relations?

How? 1) take a an NFA 
2) add counters 
3) use it to read k-tuples of words
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[ ]((a,1)(a,2)|(b,1)(b,2))*[ ] equality=

control word
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(1|2)*-controlled

(12)*-controlled
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[ ]((a,1)(a,2)|(b,1)(b,2))*[ ] equality=

control word

| S∈REG(!×{1,2}) is L-controlled }Rel(L)= {[[ ]]S

2 tapes over !  ≈  1 tape over !×{1,2}

(1|2)*-controlled

(12)*-controlled L⊆{1,2}*



Rel((12)*)= length-preserving REG2

Rel((12)*(1*|2*))= REG2

Rel(1*2*)= REC2

Rel((1|2)*)= RAT2

Eg:

Rel((1*|2*)(12)*)= REG2
rev



Idea

Approximate with regular relations that can count patterns

R = { (u,v) |                      }# of times (ab)*c appears in u

2 · # of times c*b appears in v
=

More than just 
counting letters



Instead of regular languages…

…use automata with counting

Idea

| S∈REG(!×{1,2}) is L-controlled }Rel(L)= {[[ ]]S



     Evaluation of CRPQ with counting is feasible 
                               PSPACE in combined complexity 
                               NL in data complexity



Parikh Automata

NFA with n counters c1,…,cn and a semilinear set S⊆ℕn 

                                    (!,Q,q0,δ,F,n,S) 

Transitions of δ: (q,a,(x1,…,xn),q') ∈ Q×!×ℕn×Q 
Run:  
            • Initial configuration: (q0,(0,…,0)) ∈ Q×ℕn 

            • 
    
            • Acceptance: last configuration in F×S

(q,x) (p,(x+y))(q,a,y,p)
∈δ

❉ Many equivalent definitions (eg. reversal-bounded counter systems)

❉

[Klaedtke & Rueß]



Parikh Automata

NFA with n counters c1,…,cn and a semilinear set S⊆ℕn 

                                    (!,Q,q0,δ,F,n,S) 

Transitions of δ: (q,a,(x1,…,xn),q') ∈ Q×!×ℕn×Q 
Run:  
            • Initial configuration: (q0,(0,…,0)) ∈ Q×ℕn 

            • 
    
            • Acceptance: last configuration in F×S

(q,x) (p,(x+y))(q,a,y,p)
∈δ

❉ Many equivalent definitions (eg. reversal-bounded counter systems)

dimension

❉

counters 
can only be 

incremented

[Klaedtke & Rueß]



Parikh Automata
Eg: Lba=ca = { }w | number of a’s after a b 

= 
number of a’s after a c

a b a a c a b a c a c a b a
c1+

+
c2+

+
c2+

+
c2+

+
c1+

+
c1+

+

Parikh Automaton  A = (!, Q, q0, δ, F, 2, {(k,k) | k ∈ℕ}) 

• dimension 2  (2 counters) 
• increment c1 whenever we see “ba” 
• increment c2 whenever we see “ca” 
• F=Q 
• Semilinear set assures that counters must be equal to accept a word



Parikh Automata

Closed under Decidable
non-emptiness,  
membership

intersection,  
union,  
(inverse) homomorphisms, 
concatenation 

(not complementation/iteration)



PA relations

| S∈PA(!×{1,2}) is L-controlled }RelPA(L)= { [[ ]]S



REGPA = RelPA((12)*(1*|2*))

Eg:

REGPA    = RelPA((1*|2*)(12)*)2 rev

. . .

RATPA = RelPA((1|2)*)

2

2



Parikh-regular
REGk

PA

recognizable

regular

rational

REGk

RATk

RECk

W
or

d 
re

lat
io

ns



  Theorem:  Evaluation of CRPQ(REGPA) is 
                           PSPACE in combined complexity 
                           NL in data complexity

  Theorem:  Evaluation of CRPQPA (no relations) is 
                           NP in combined complexity 
                           NL in data complexity

Proof ingredients: 

• Intersection problem for Parikh Automata
Given PA’s A1,…,An, is L(A1) ∩ · · · ∩ L(An) ≠ ∅ ?
is PSPACE-complete

• Intersection closure for REGPA

For all R,S ∈ REGPA, R∩S ∈ REGPA 

it suffices to intersect the automata representing them

• Closure under product of REGPA



Approximating rational relations 

u ~k v are k-similar iff for all w with |w|≤k, they have the same 
number of appearances of w (as factor)

Given R∈RAT,

Rk = {(u,v) | u ~k u', v ~k v', (u', v’)∈R} ∈ REGPA



Approximating rational relations 

u ~k v are k-similar iff for all w with |w|≤k, they have the same 
number of appearances of w (as factor)

(as subsequence)

Given R∈RAT,

Rk = {(u,v) | u ~k u', v ~k v', (u', v’)∈R} ∈ REGPA
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                                           NL in data complexity



Alternative: Syntactic restrictions π1

π4

π2

π6

π7π3

π5

Gaifman multi-graph  
of path variables

E.g. π1

π2 π3

π1: (ab)* c  
π2: (ac)* 
π3: a c*

R(π1,π3) 
S(π3,π2)

π1

π3 π2

acyclic

E.g. π1

π2 π3

π1: (ab)* c  
π2: (ac)* 
π3: a c*

R(π1,π3) 
S(π3,π2) 
R(π3,π2)

π1

π3 π2

cyclic

  Theorem:  Evaluation of acyclic-CRPQ(RATPA) is 
                                           PSPACE in combined complexity 
                                           NL in data complexity



Alternative: Syntactic restrictions π1

π4

π2

π6

π7π3

π5

Gaifman multi-graph  
of path variables

  Theorem:  Evaluation of acyclic-CRPQ(RATPA) is 
                                           PSPACE in combined complexity 
                                           NL in data complexity

  If also fixed join size: NP combined complexity



Alternative: Syntactic restrictions π1

π4

π2

π6

π7π3

π5

Gaifman multi-graph  
of path variables

  Theorem:  Evaluation of acyclic-CRPQ(RATPA) is 
                                           PSPACE in combined complexity 
                                           NL in data complexity

  If also fixed join size: NP combined complexity

Maximum cardinality of  
connected component



Alternative: Syntactic restrictions π1

π4

π2

π6

π7π3

π5

Gaifman multi-graph  
of path variables

  Theorem:  Evaluation of acyclic-CRPQ(RATPA) is 
                                           PSPACE in combined complexity 
                                           NL in data complexity

  If also fixed join size: NP combined complexity

  If also fixed PA dimension and unary representation:  
                                           PTIME combined complexity



Avoid the curse of of rational relations 

Or staying away from cycles in path relations

Approximating by regular relations with counting

Conclusion

Thank you

Counting does not increase complexity


