
Diego Figueira
CNRS, LaBRI

France

Path Logics for Querying Graphs
combining expressiveness and efficiency

LFDS - 17/11/2015
UCL, London

Graphdatabases

c

b
a

a
b

c b

a a

c
a c

b
a

Semantic web / RDF / social networks / . . .

Notion of path of central importance

Modelled as: edge-labelled directed graphs

"Entities + Relations"

π1

Graphdatabases

c

b
a

a
b

c b

a a

c
a c

b
a

RPQ

π1

π1: (ab)* c

Evaluation: P (combined)
 NL (data)

π1

Graphdatabases

c

b
a

a
b

c b

a a

c
a c

b
a

CRPQ

π1

π2 π3

π1: (ab)* c
π2: (ac)*
π3: a c*

Evaluation: NP (combined)
 NL (data)

π1

Graphdatabases

c

b
a

a
b

c b

a a

c
a c

b
a

CRPQ

π1

π2 π3

π1: (ab)* c
π2: (ac)*
π3: a c*

Evaluation: NP (combined)
 NL (data)

Acyclic P—

Unions, inverse

Graphdatabases

c

b
a

a
b

c b

a a

c
a c

b
a

CRPQ

π1

π2 π3

π1: (ab)* c
π2: (ac)*
π3: a c*

What about…
“All the pairs (u,v) that can reach

some node z in the same number of steps”

• |πi| = |πj|

• πi is a prefix of πj

• πi is a subsequence of πj

• πi is a factor of πj

• πi = πj projected onto A

CRPQ

π1

π2 π3

π1: (ab)* c
π2: (ac)*
π3: a c*

CRPQ(S)

R(π1, π2), R∈S

Motivations from: entity resolution, semantic associations, crime detection,…

Graphdatabases
What about testing for relations
on the paths?

CRPQ

π1

π2 π3

π1: (ab)* c
π2: (ac)*
π3: a c*

CRPQ(S)

R(π1, π2), R∈S

CRPQ(S) =

S: Class of well-behaved
 word relations…

Graphdatabases
What about testing for relations
on the paths?

CRPQ +
tests R(πi1,…,πin), R ∈ S

recognizable

regular

rational

REGk

RATk

RECk

W
or

d
re

lat
io

ns

binary relations recognizable

regular
rational

REG2 RAT2

REC2
R ⊆ !*×!*

prefix, equal, equal length, ... suffix, infix, projection, subsequence, ...

c d a d d a c d c b

a b a b c b b

c d a d d a c d c b

a b a b c b b

c d a d d a c d c b

a b a b c b b

CRPQ(S) =

Graphdatabases
CRPQ +
tests R(πi1,…,πin), R ∈ S

CRPQ(REC) NP/NL complexity

CRPQ(REG) PSPACE/NL complexity

CRPQ(RAT) undecidable

Related to the Intersection Problem:
Given relations R1,…,Rn, whether R1∩···∩Rn≠∅

Can this be extended?

problemintersection
R ⋂ S = ∅ ?

input: R ∈ R, S ∈ S
output: R ⋂ S = ∅ ?

R, S : classes of binary relations

problemintersection
R ⋂ S = ∅ ?

input: R ∈ R, S ∈ S
output: R ⋂ S = ∅ ?REG ⋂ RAT = ∅ ?

already undecidable

R, S : classes of binary relations

...but what about
real world relations?

it has been studied...

PCP
(. . . , . . .)iu 1 iu n iv 1 iv n

problemintersection
R ⋂ S = ∅ ?

input: R ∈ R, S ∈ S
output: R ⋂ S = ∅ ?REG ⋂ RAT = ∅ ?

already undecidable

R, S : classes of binary relations

...but what about
real world relations?

it has been studied...

like

suffix...?

subword...?
subsequence...?

problemintersection
R ⋂ S = ∅ ?

input: R ∈ R, S ∈ S
output: R ⋂ S = ∅ ?REG ⋂ RAT = ∅ ?

already undecidable

R, S : classes of binary relations

it has been studied...

suffix...?

subword...?
subsequence...?

vu v

a b a c c ba b a c a b a c

a b a c a b a cu

v

subsequence

Language Data complexity Combined complexity

CRPQ(REGk) NL PSPACE

CRPQ(RATk) Undecidable Undecidable

CRPQ(REGk + suffix) Undecidable Undecidable

CRPQ(REGk + factor) Undecidable Undecidable

CRPQ(REGk + subsequence) non-elementary non-PR

CRPQ(suffix) NL PSPACE

CRPQ(factor) PSPACE PSPACE

CRPQ(subsequene) PSPACE NEXPTIME

∀ k>1

Can we extend CRPQ beyond REG relations?

Proposed alternative: approximate RAT through
 REG + counters

Can we extend CRPQ beyond REG relations?

How? 1) take a an NFA
2) add counters
3) use it to read k-tuples of words

b
1

b
2

a
2

a
2

a
2

b
2

a
2

a
1

b
1

a
1

b
1

b a a a b a

a b a b b1

2

2 tapes over ! ≈ 1 tape over !×{1,2}

∈

(!×{1,2})*

b
1

b
2

a
2

a
2

a
2

b
2

a
2

a
1

b
1

a
1

b
1 ababb(,)[[]] =

2 tapes over ! ≈ 1 tape over !×{1,2}

∈

(!×{1,2})*

∈

!*×!*

b
1

b
2

a
2

a
2

a
2

b
2

a
2

a
1

b
1

a
1

b
1 ababb baaaba(,)[[]] =

2 tapes over ! ≈ 1 tape over !×{1,2}

∈

(!×{1,2})*

∈

!*×!*

b
1

b
2

a
2

a
2

a
2

b
2

a
2

a
1

b
1

a
1

b
1 ababb baaaba(,)[[]] =

(!×{1,2})*[[]] !*× !*=

[]((a,1)(a,2)|(b,1)(b,2))*[] equality=

control word

2 tapes over ! ≈ 1 tape over !×{1,2}

(1|2)*-controlled

(12)*-controlled

b
1

b
2

a
2

a
2

a
2

b
2

a
2

a
1

b
1

a
1

b
1 ababb baaaba(,)[[]] =

(!×{1,2})*[[]] !*× !*=

[]((a,1)(a,2)|(b,1)(b,2))*[] equality=

control word

| S∈REG(!×{1,2}) is L-controlled }Rel(L)= {[[]]S

2 tapes over ! ≈ 1 tape over !×{1,2}

(1|2)*-controlled

(12)*-controlled L⊆{1,2}*

Rel((12)*)= length-preserving REG2

Rel((12)*(1*|2*))= REG2

Rel(1*2*)= REC2

Rel((1|2)*)= RAT2

Eg:

Rel((1*|2*)(12)*)= REG2
rev

Idea

Approximate with regular relations that can count patterns

R = { (u,v) | }# of times (ab)*c appears in u

2 · # of times c*b appears in v
=

More than just
counting letters

Instead of regular languages…

…use automata with counting

Idea

| S∈REG(!×{1,2}) is L-controlled }Rel(L)= {[[]]S

 Evaluation of CRPQ with counting is feasible
 PSPACE in combined complexity
 NL in data complexity

Parikh Automata

NFA with n counters c1,…,cn and a semilinear set S⊆ℕn

 (!,Q,q0,δ,F,n,S)

Transitions of δ: (q,a,(x1,…,xn),q') ∈ Q×!×ℕn×Q
Run:
 • Initial configuration: (q0,(0,…,0)) ∈ Q×ℕn

 •

 • Acceptance: last configuration in F×S

(q,x) (p,(x+y))(q,a,y,p)
∈δ

❉ Many equivalent definitions (eg. reversal-bounded counter systems)

❉

[Klaedtke & Rueß]

Parikh Automata

NFA with n counters c1,…,cn and a semilinear set S⊆ℕn

 (!,Q,q0,δ,F,n,S)

Transitions of δ: (q,a,(x1,…,xn),q') ∈ Q×!×ℕn×Q
Run:
 • Initial configuration: (q0,(0,…,0)) ∈ Q×ℕn

 •

 • Acceptance: last configuration in F×S

(q,x) (p,(x+y))(q,a,y,p)
∈δ

❉ Many equivalent definitions (eg. reversal-bounded counter systems)

dimension

❉

counters
can only be

incremented

[Klaedtke & Rueß]

Parikh Automata
Eg: Lba=ca = { }w | number of a’s after a b

=
number of a’s after a c

a b a a c a b a c a c a b a
c1+

+
c2+

+
c2+

+
c2+

+
c1+

+
c1+

+

Parikh Automaton A = (!, Q, q0, δ, F, 2, {(k,k) | k ∈ℕ})

• dimension 2 (2 counters)
• increment c1 whenever we see “ba”
• increment c2 whenever we see “ca”
• F=Q
• Semilinear set assures that counters must be equal to accept a word

Parikh Automata

Closed under Decidable
non-emptiness,
membership

intersection,
union,
(inverse) homomorphisms,
concatenation

(not complementation/iteration)

PA relations

| S∈PA(!×{1,2}) is L-controlled }RelPA(L)= { [[]]S

REGPA = RelPA((12)*(1*|2*))

Eg:

REGPA = RelPA((1*|2*)(12)*)2 rev

. . .

RATPA = RelPA((1|2)*)

2

2

Parikh-regular
REGk

PA

recognizable

regular

rational

REGk

RATk

RECk

W
or

d
re

lat
io

ns

 Theorem: Evaluation of CRPQ(REGPA) is
 PSPACE in combined complexity
 NL in data complexity

 Theorem: Evaluation of CRPQPA (no relations) is
 NP in combined complexity
 NL in data complexity

Proof ingredients:

• Intersection problem for Parikh Automata
Given PA’s A1,…,An, is L(A1) ∩ · · · ∩ L(An) ≠ ∅ ?
is PSPACE-complete

• Intersection closure for REGPA

For all R,S ∈ REGPA, R∩S ∈ REGPA

it suffices to intersect the automata representing them

• Closure under product of REGPA

Approximating rational relations

u ~k v are k-similar iff for all w with |w|≤k, they have the same
number of appearances of w (as factor)

Given R∈RAT,

Rk = {(u,v) | u ~k u', v ~k v', (u', v’)∈R} ∈ REGPA

Approximating rational relations

u ~k v are k-similar iff for all w with |w|≤k, they have the same
number of appearances of w (as factor)

(as subsequence)

Given R∈RAT,

Rk = {(u,v) | u ~k u', v ~k v', (u', v’)∈R} ∈ REGPA

Alternative: Syntactic restrictions π1

π4

π2

π6

π7π3

π5

Gaifman multi-graph
of path variables

E.g. π1

π2 π3

π1: (ab)* c
π2: (ac)*
π3: a c*

R(π1,π3)
S(π3,π2)

π1

π3 π2

acyclic

 Theorem: Evaluation of acyclic-CRPQ(RATPA) is
 PSPACE in combined complexity
 NL in data complexity

Alternative: Syntactic restrictions π1

π4

π2

π6

π7π3

π5

Gaifman multi-graph
of path variables

E.g. π1

π2 π3

π1: (ab)* c
π2: (ac)*
π3: a c*

R(π1,π3)
S(π3,π2)

π1

π3 π2

acyclic

E.g. π1

π2 π3

π1: (ab)* c
π2: (ac)*
π3: a c*

R(π1,π3)
S(π3,π2)
R(π3,π2)

π1

π3 π2

cyclic

 Theorem: Evaluation of acyclic-CRPQ(RATPA) is
 PSPACE in combined complexity
 NL in data complexity

Alternative: Syntactic restrictions π1

π4

π2

π6

π7π3

π5

Gaifman multi-graph
of path variables

 Theorem: Evaluation of acyclic-CRPQ(RATPA) is
 PSPACE in combined complexity
 NL in data complexity

 If also fixed join size: NP combined complexity

Alternative: Syntactic restrictions π1

π4

π2

π6

π7π3

π5

Gaifman multi-graph
of path variables

 Theorem: Evaluation of acyclic-CRPQ(RATPA) is
 PSPACE in combined complexity
 NL in data complexity

 If also fixed join size: NP combined complexity

Maximum cardinality of
connected component

Alternative: Syntactic restrictions π1

π4

π2

π6

π7π3

π5

Gaifman multi-graph
of path variables

 Theorem: Evaluation of acyclic-CRPQ(RATPA) is
 PSPACE in combined complexity
 NL in data complexity

 If also fixed join size: NP combined complexity

 If also fixed PA dimension and unary representation:
 PTIME combined complexity

Avoid the curse of of rational relations

Or staying away from cycles in path relations

Approximating by regular relations with counting

Conclusion

Thank you

Counting does not increase complexity

