Semantic Tractability of Conjunctive Queries

Diego Figueira CNRS, LaBRI

Query optimization

$$C \ni Q(\bigcirc)$$
 hard to evaluate

$$\mathcal{C}' \ni \mathcal{Q}'$$
, with $\mathcal{Q} \equiv \mathcal{Q}'$ where $\mathcal{Q}'(\bigcirc)$ efficient

C = Conjunctive Queries

C' = Conjunctive Queries of *small treewidth*

Conjunctive Queries

CQ = first-order formula

$$\exists x_1,...,x_n . \land (atoms)$$

Basic query language on databases

 $\exists x_1, x_2, x_3 R(x_1, x_2) \land S(x_1, x_3) \land S(x_2, x_3)$

"Canonical structure"

evaluation of CQ ≈ 3 homomorphism on relational structures

$$\phi \longrightarrow C_{\phi}$$

$$\phi_A \leftarrow A$$

$$\phi_A \leftarrow A$$
 s.t. $\forall S: S \models \phi_A \text{ iff } A \longrightarrow S$

[Chandra, Merlin, '77]

Conjunctive Queries: syntactic restrictions

Evaluation for CQ's is intractable: NP-complete, W[1]-hard

Evaluating ϕ on A takes $|A|^{|\phi|}$ time $(\neq 2^{|\phi|} \cdot |A|^{const})$

Effort to find tractable syntactic fragments:

* Acyclic CQ (ACQ)

- (CQ's that "resemble a tree")
- *Bounded treewidth CQ's (TW_k)
- *Bounded generalized hyper-treewidth / coverwidth CQ's (GHW_k)

Evaluation for ACQ / TW_k / GHW_k queries is tractable

Conjunctive Queries: syntactic restrictions

Treewidth, examples

Conjunctive Queries: semantic restrictions

Evaluation for acyclic/TW_k/GHW_k CQs is $O(|\phi| \cdot |D|^{k+1})$

```
[Yannakakis, '81]
[Chekuri, Rajaraman, '00]
[Gottlob, Leone, Scarcello, '02]
```

What about *semantic* conditions?

```
If \phi \equiv \psi with \psi \in GHW_k: instead of evaluating \phi(A) in TIME(|A|^{|\phi|}), evaluate \psi(A) in TIME(|\psi| \cdot |A|^{const}) (fixed-parameter tractable)
```

Optimization problem: "find a well-behaved equivalent query"

Semantic tree-width problem

Semantic width-k problem

```
Input: \phi \in CQ
```

Output: Is there an **GHW**_k $CQ \psi$ so that $\psi \equiv \phi$?

The semantic width-k problem is NP-complete.

[Dalmau, Kolaitis, Vardi, '02]

Evaluation of semantically width-k queries is in PTime

[Chen, Dalmau, '05]

Semantic width-k problem under constraints

Semantic width-k problem under 6

Input: $\phi \in CQ$, $\Sigma \subseteq \mathcal{C}$

Output: Is there a CQ $\psi \in GHW_k$ so that $\psi \equiv_{\Sigma} \varphi$?

Equivalence problem \Rightarrow under 6 undecidable

semantic GHW_k problem undecidable

[Barceló, Gottlob, Pieris, '16]

(G = any class of tgds)

$$\forall x_1,...,x_n . \varphi(x_1,...,x_n) \Rightarrow \exists y_1,...,y_m \psi(x_1,...,x_n,y_1,...,y_m)$$

$$\wedge Atoms$$

Semantic width-k problem under constraints

Semantic width-k problem under \mathcal{G}

Input: $\phi \in CQ$, $\Sigma \subseteq \mathcal{C}$

Output: Is there a CQ $\psi \in GHW_k$ so that $\psi \equiv_{\Sigma} \varphi$?

When G is defined by full tgds the problem is undecidable.

[Barceló, Gottlob, Pieris, '16]

$$\forall x_1,...,x_n : \phi(x_1,...,x_n) \Rightarrow \psi(x_1,...,x_n)$$

$$\wedge Atoms$$

Semantic width-k problem

Semantic width-k problem under 6

```
Input: \phi \in CQ, \Sigma \subseteq \mathcal{C}
```

Output: Is there a CQ $\psi \in GHW_k$ so that $\psi \equiv_{\Sigma} \varphi$?

When G is defined by non-recursive/guarded/sticky tgds the semantic width-k under G is decidable

[Barceló, Gottlob, Pieris, '16]

guarded tgds: 2ExpTime (NP if schema fixed)

non-recursive tgds: NExpTime (NP if schema fixed)

sticky tgds: NExpTime (NP if schema fixed)

Semantic width-k problem

Semantic width-k problem under 6

Input: $\phi \in CQ$, $\Sigma \subseteq \mathcal{C}$

Output: Is there a CQ $\psi \in GHW_k$ so that $\psi \equiv_{\Sigma} \varphi$?

When G is defined by egds the problem is undecidable.

[Barceló, Gottlob, Pieris, '16]

When G is defined by unary functional dependencies it is decidable

[F, '16]

$$\forall x_1,...,x_n,y_1,...,y_n : R(x_1,...,x_n) \land R(y_1,...,y_n) \land (x_i = y_i) \Rightarrow (x_j = y_j)$$

" $R[i \rightarrow j]$ ": in relation R the *i*-th component determines the *j*-th component

Semantic TW/acyclicity problem

Semantic width-k problem under UFD

Input: $\phi \in CQ$, $\Sigma = \{R_1[i_1 \rightarrow j_1],...,R_n[i_n \rightarrow j_n]\}$

Output: Is there a CQ $\psi \in GHW_k$ so that $\psi \equiv_{\Sigma} \varphi$?

The semantic width-k problem under unary functional dependencies is decidable in 2ExpTime, for every k

(If possible, algorithm returns a $CQ \in GHW_k$)

[F, '16]

Evaluation of CQs

$$\phi \equiv \psi$$
 iff $\operatorname{core}(C_{\phi}) \cong \operatorname{core}(C_{\psi})$

 $^{\square}$ And for Σ : UFD,

$$\phi \equiv_{\Sigma} \psi \quad \text{iff} \quad \operatorname{core}(\operatorname{chase}_{\Sigma}(C_{\phi})) \cong \operatorname{core}(\operatorname{chase}_{\Sigma}(C_{\psi}))$$

Chase

$chase_{\Sigma}(A) =$ The result of repeating:

$$(x,a) \in \mathbb{R}, (x,b) \in \mathbb{R}$$
If and $\mathbb{R}[1 \longrightarrow 2] \in \Sigma$, and
$$x \longrightarrow b$$
, collapse a,b

Restatement of semantic width-k problem under UFD

$$\varphi \equiv_{\Sigma} \psi \quad \text{ iff } \quad \operatorname{core}(\operatorname{chase}_{\Sigma}(C_{\varphi})) \ \cong \ \operatorname{core}(\operatorname{chase}_{\Sigma}(C_{\psi}))$$

Restatement of our problem:

core-chase problem

Input: $A \in STR$, $\Sigma \subseteq UFD$

Output: $GHW_k \cap \{B \in STR \mid core(chase_{\Sigma}(B)) \cong A\} = \emptyset$?

$$\mathbf{A} = \operatorname{core}(\operatorname{chase}_{\Sigma}(\mathbf{C}_{\phi}))$$
$$\mathbf{B} = \mathbf{C}_{\psi}$$

An easy case: GHW₁

core chase Σ preserve $GHW_1 \Rightarrow \text{simply check if input structure } \mathbf{A} \in GHW_1$

The general case, for arbitrary k

However, this does not hold in general

for any n: chase(sth of width 2) = (sth of width n)

Solving the problem

$$GHW_k \cap \{ B \in STR \mid core(chase_{\Sigma}(B)) \cong A \} = \emptyset ?$$

First approach:

- define $\{B \mid core(chase_{\Sigma}(B)) \cong A\}$ with $\phi_A \in MSO$
- test $GHW_k \ni C \models \varphi_A$ for some C [Seese '91]

But $\{B \mid core(chase_{\Sigma}(B)) \cong A\}$ is not MSO-definable \cong

Solving the problem

$$GHW_k \cap \{ B \in STR \mid core(chase_{\Sigma}(B)) \cong A \} = \emptyset ?$$

First approach:

- define $\{B \mid core(chase_{\Sigma}(B)) \cong A\}$ with $\phi_A \in MSO$
- test $GHW_k \ni C \models \varphi_A$ for some C [Seese '91]

But $\{B \mid core(chase_{\Sigma}(B)) \cong A\}$ is not MSO-definable \cong

Solving the problem, now for real

$$GHW_k \cap \{ B \in STR \mid core(chase_{\Sigma}(B)) \cong A \} = \emptyset ?$$

How it's actually solved: define $\phi_A \in MSO$ so that

- if $core(chase_{\Sigma}(B)) \cong A$ then $B \models \phi_A$,
- if $B \in TW_k$, $B \models \varphi_A$ then there is some extension B' of B so that
 - * tree-width(B') = tree-width(B)
 - $* \operatorname{core}(\operatorname{chase}_{\Sigma}(\mathbf{B}')) \cong \mathbf{A}$

... and test $GHW_k \ni C \models \varphi$ for some C

Final comments

- Exact complexity for semantic width-k problem under UFD?

 (Between NP and 2ExpTime)
- Generalization to treating constants, free variables, UCQ
- Non-unary functional dependencies?
- Working optimization procedure?
- Extending to bounded fractional hyper-trewidth?