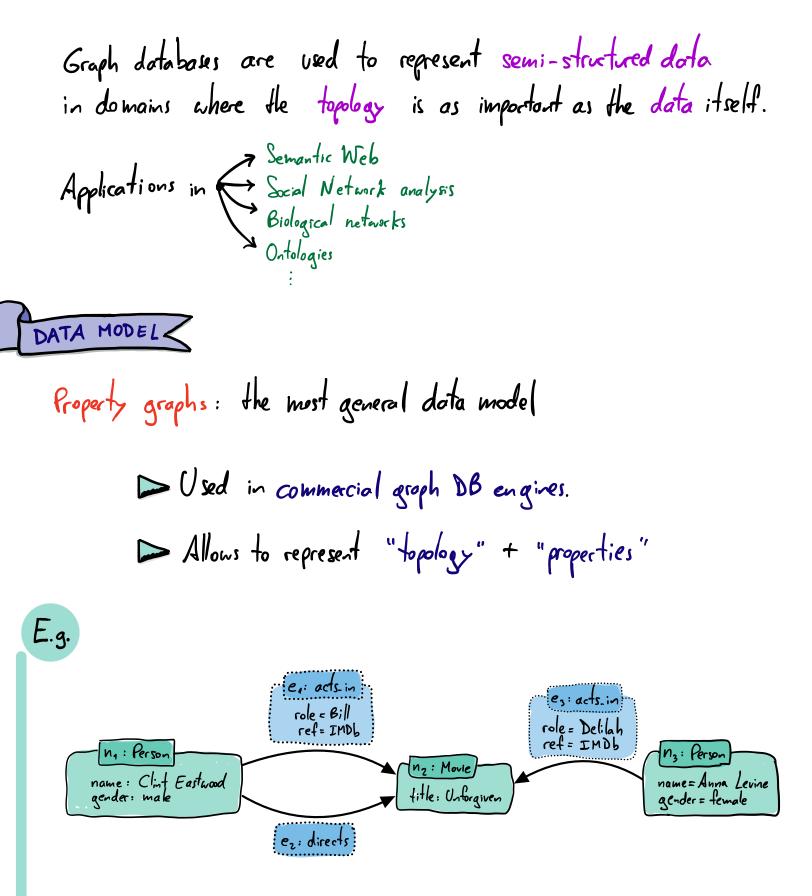
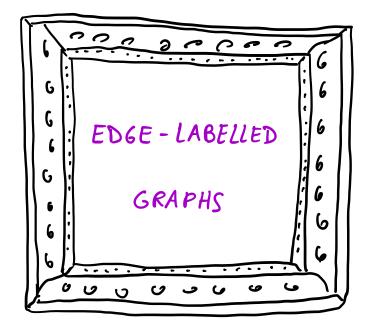
FOUNDATIONS OF GRAPH PATH QUERY LANGUAGES

Diego Figueira CNRS, Univ. Bordeaux, LaBRI France

 Basic complexity classes NL S P S NP S PSpace & Exp Space



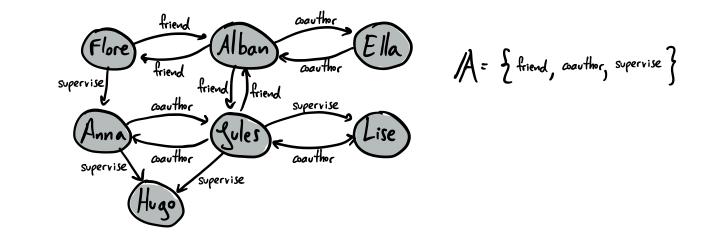
For theoretical exploration, we consider the simpler model of



Def. A graph database over M is a type Q = (V, E) where > V is a finite set of nodes ► E = V × A × V a set of edges labeled by A.

We draw " $u \xrightarrow{\alpha} v$ " to denote $(u, a, v) \in E$.

E.g.

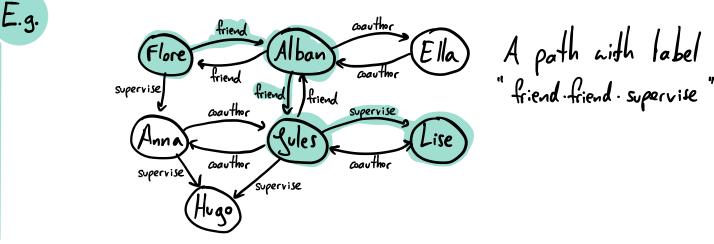


REGULAR PATH QUERIES

An essential deature behind practical groph DB languages: the ability to "navigate" the data.

RPQ: the language allowing to traverse the graph while checking whether a condition holds.

Def. A path in
$$Q = (V, E)$$
 is a sequence
 $p = V_0 \xrightarrow{a_1} V_1 \xrightarrow{a_2} V_2 \xrightarrow{a_3} V_3 \xrightarrow{a_4} \cdots \xrightarrow{a_{n-1}} V_{n-1} \xrightarrow{a_n} V_n$
st $(V_{i,1}, a_i, v_i) \in E$ for all $1 \leq i \leq n$
The label of p is $lab(p) = a_1 \cdots a_n \in A^*$
 $(p = v \text{ is a path with } lab(p) = E)$

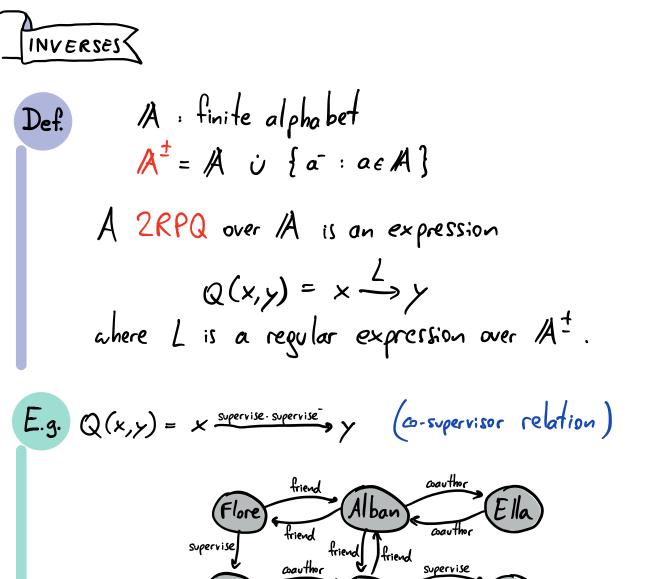


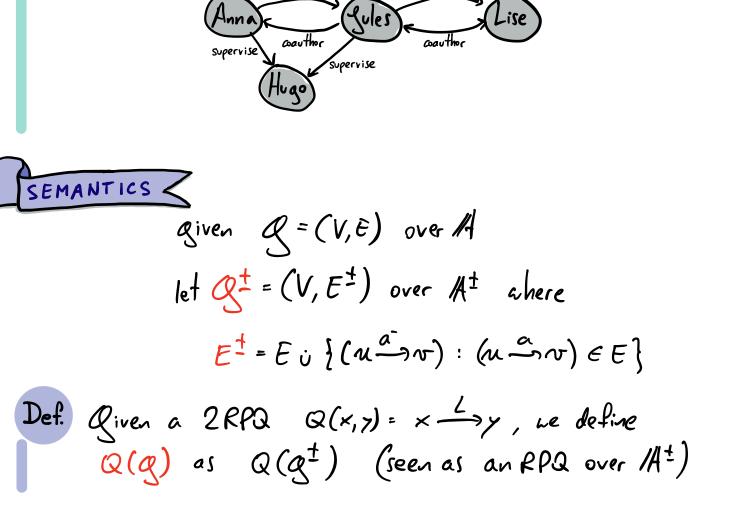
Def. A regular path query (RPQ) over |A| is an expression $Q(x,y) = x \xrightarrow{L} y$ where L is a regular expression over |A|.

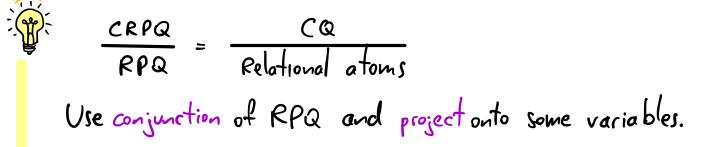
Def. Qiven a graph DB
$$Q = (V, E)$$
 the evaluation of Q on Q
(denoted $Q(Q)$) is the set
 $\{(u,v) \in V \times V : \exists a path p from u to v in Q s.t. $lab(p) \in L \}$$

This is called the "arbitrary path semantics".

Obs. In general:
$$(n, v) \in Q(Q)$$
 under simple path semantics
 $W \neq Q(Q)$ under trail semantics
 $W \neq Q(Q)$ under trail semantics
 $W \neq Q(Q)$ under arbitrary path semantics
 $(n, v) \in Q(Q)$ under arbitrary path semantics







Conjunctive Query : A first-order query of the form

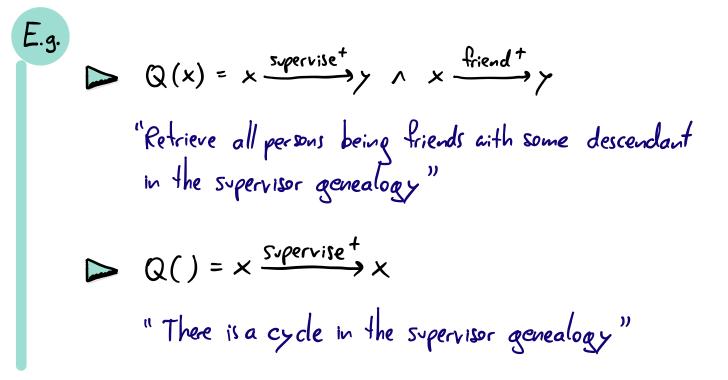
IZ1,..., 2m. Rag(x1, Y1) A. A Rag(x1, Yn).

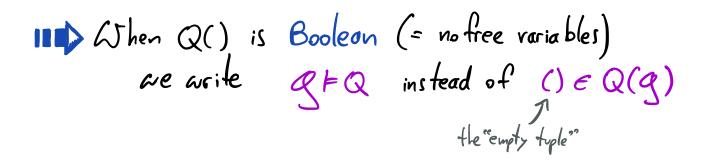
Lemma [Chandra, Merlin '77] QEQ iff = h: hom gaifman(Q) -> 9

Now "atoms" are RPQ ...

Def. A conjunctive 2RPQ (C2RPQ) is on expression $Q(z_1,..,z_n) = (X_1 - y_1) \wedge \dots \wedge (X_m - y_m)$ where The xi's and xi's are variables ● Z1,.., Zn is a tuple of "free" variables in { X1,.., Xm, Y1,.., Ym } • Each Li is a regular expression over 1A.

A homomorphism from Q to Q = (V, E) is a mapping μ from the variables of Q to V. A homomorphism satisfies Q if $(\mu(x_i), \mu(y_i)) \in (x_i \xrightarrow{i} y_i)(Q)$ for all i. Finally, the evaluation Q(Q) is the set $\sum (\mu(z_i), \dots, \mu(z_n)) : \mu$ a satisfying homomorphism from Q to Q]





A query evaluation: Is $(n_1, ..., n_t) \in Q(q)$?

* Static Analysis: Does Q have a certain property?

☆ Emptiness
☆ Containment
☆ Equivalence
☆ Boundedness

Problem: eval-Q Given: Q ∈ Q, a graph db Q, a tuple x Whether: $\bar{x} \in \mathbb{Q}(\mathbb{Q})$

combined complexity: both Q, Q as imput 2 flavours < data complexity: Q is considered to be fixed

Thm. eval-(2)RPQ is NL-complete (both in data and combined complexity) and in linear time O(1Q1.1L1).

Input: (U,V), x - y, Q=(V,E) Proof idea. We want to check up on v S where an eL 1) turn L into an actomation A/ (in logspace / linear fime)

What about other semantics?

Thm. [Mendelzon, Wood '95] eval-RPQ under simple path semantics is NP-complete, both in data and combined complexity.

Consider the RPQ $Q(x,y) = x \frac{(aa)^{*}}{2}y$. On a-labelled graphs, it checks if there is a simple path between two given vertices, which is NP-complete. [Lapacigh, Papadimitriou '84]

Then the query x (aa)* y is bad (NP-c) for simple path semantics but x a* y is good (NL-c).

Convertell apart bad and good queries? And chat about trail semantics?

Thm. [Bagan, Bonifati, Groz'20; Martens, Niewerth, Trautner '20] For every RPQ Q(x,y)=x ->y eval-1Q1 under simple path or trail semantics is ► NP-complete, ► NL-complete, or ▶ in L. (even in AC°) Characterizations are effective (in PSpace).

Correctness properties. 0+ CLECKMD Тъ Importance

Static Analysis Problems Sotisfiability: Is there some & st & = Q? Containment: Is g = Q, =) g = Q2 for all Q? Equivalence: Is Q = Q = Q = Q = Q = Q? Boundedness: Can the expressions of the query be simplified? Can we avoid the use of recursion ? Is there some Q' without Kleene stor s.t. $Q \equiv Q'$?

Problem: sat-Q Given: $Q \in Q$ Whether: there is some graph dbg s.t. $Q(g) \neq \phi$

Problem: Cont-Q Given: $Q_1, Q_2 \in Q$ Whether: $Q_1(q) \subseteq Q_2(q) \forall graph db. q$

Why do we care about containment?

The most basic reasoning task. Useful to Optimization Can I sately replace Q with Q'? Verification Can I obtain Queeret from Q? Integrity checking Is Q between Queer and Qover?

REMEMBER
REMEMBER
Given
$$Q_1 = x - \frac{L_1}{2}y$$
 and $Q_2 = x - \frac{L_2}{2}y$,
is $Q_1(Q) = Q_2(Q)$ for every graph $db Q$?

=) If x by c x by, let we by, for w = an ... an eA*. We show we Lz. Consider Q:= vo an vo an word Then, (vo, vo) e (x -> y)(Q), and thus (vo, vo) e (x -> y)(Q). Since there's only one path from vo to vo this means arman e Lz.

Corollary Containment pb. for regular langs. is PSpace-c. E-RPQ is PSpace-complete.

<u>2222222222222222222222222</u>

For simplicity, let's focus on Boolean queries.
Given
$$Q_1 Q_2 \in CRPQ$$
, $\forall g Q_2(g) = Q_2(g)$?
 $g \models Q_1 = \Im g \models Q_2$?

Visual representation:

$$Q_{n} = \frac{7}{2} \times_{1} \times_{2} \times_{3} \times_{n} \frac{(ab)^{*}}{2} \times_{2} \wedge \times_{n} \frac{a^{*}}{2} \times_{3} \wedge \times_{3} \frac{c^{*}}{2} \times_{2} \wedge \times_{2} \frac{(a+b)^{*}}{2} \times_{3}$$

$$= \underbrace{e_{1}}_{x_{1}} \underbrace{e_{1}}_{x_{2}} \underbrace{e_{1}}_{x_{3}} \underbrace{e$$

► CQ 2 CRPQ whore every long. is a singleton symbol 2a4. CRPQ = UCQ Def. Q is an expansion of Q' if it is the result of replace each L with sus for some wel. Exp(Q) = set of all expansions of Q (an as set in gral) $Q = x_1 \xrightarrow{(a)^{\frac{1}{2}} s + x_2}_{a^{\frac{1}{2}} x_3}} \xrightarrow{(a+b)^{\frac{1}{2}} x_1 = x_3} \xrightarrow{(a+b)^{\frac{1}{2}} x_1 = x_3} \xrightarrow{(a+b)^{\frac{1}{2}} x_2 = Q_1^{e}}_{b}$ $M = X_1 = X_2$ $M = X_1 = X_2$ $\left(\begin{array}{c} e_{xp} \\ x_{1} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{5$ Exp(Q1) Obs. $Q \equiv \bigcup_{E \in E \times p(Q)} E$ for every $Q \in CRPQ$

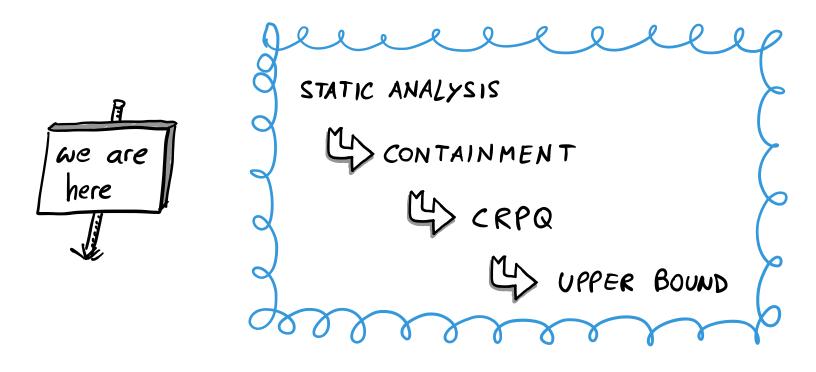
Lemma: For every
$$Q_1, Q_2 \in CRPQ \text{ Boolean,}$$

 $Q_n \in Q_2 \text{ iff } \forall Q_n^e \in Exp(Q_n)$
 $\exists Q_1^e \in Exp(Q_2) \text{ s.t. } Q_2^e \xrightarrow{hom} Q_1^e.$
Allernatively:
 $Q_n \notin Q_1 \text{ iff } \exists Q_1^e \in Exp(Q_1) \forall Q_1^e \in Exp(Q_2) . Q_2^e \xrightarrow{hom} Q_1^e.$
 $\therefore \text{ be to entropy the non-containment}$

 $e^e A \xrightarrow{hom} B^{27}$
 $\xrightarrow{Q_1} \bigoplus Q_2^{27}$
 $\xrightarrow{Q_2} \bigoplus Q_2^{27}$
 $\xrightarrow{Q_1} \bigoplus Q_2^{27}$
 $\xrightarrow{Q_2} \bigoplus Q_2^{$

Proof (Remember: for a CQ Q: Q=Q iff Q hom g) $E \times p(Q_1)$ $E_{XP}(Q_2)$ Let $Q_1 \equiv (A_1 \cup A_2 \cup \cdots), Q_2 \equiv (B_1 \cup B_2 \cup \cdots)$. ⇐) Assume ∀i ∃j st Bj → Ai. Q = A1U => Ji Q = Ai => Ai -> Q Take ; st B; -> A:. Then B; -> A: -> g, hence g= B;. Thus, QFB, U. \Rightarrow) Assume $A_1 \cup \cdots \subseteq B_1 \cup \cdots \cup and let's show <math>\forall i \exists j B_j \neg A_i$. Take any i, and let Q = Ai. Since g = Anu., then g = Bnu... because g = A: $\exists B_j \text{ st } g \models B_j$ because $A_i \rightarrow Q$ $B_{j} \rightarrow \mathcal{G}(=A_{i})$

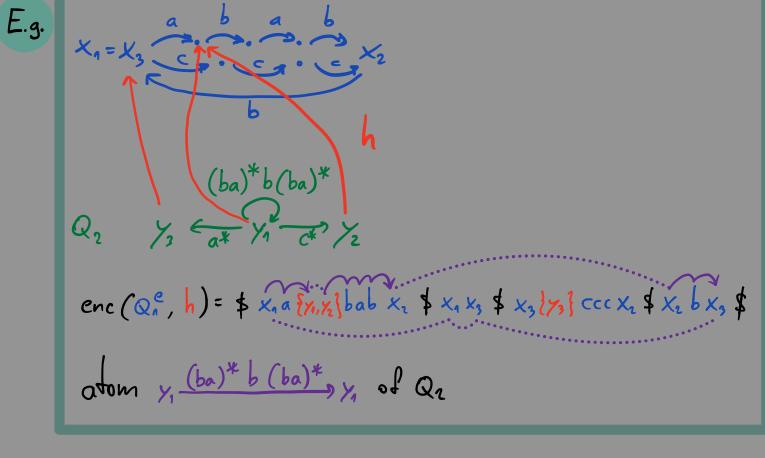
GDAL: Checking Q1 SQ2 in Exp Space



Consider the encoding of expansions into words enc : $Exp(Q_n) \rightarrow (A \cup \{ \$ \} \cup Vars(Q_i))^*$

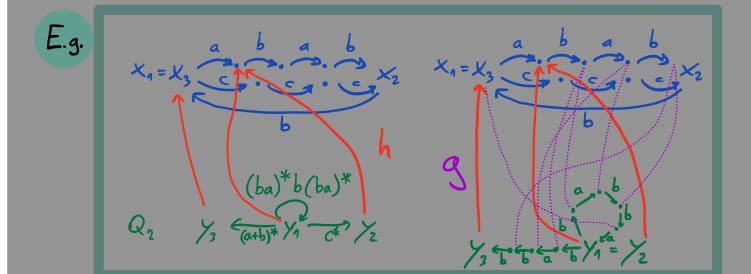
Definition by example:
E.g.
$$Q_{i} = x_{i} = ((a_{i})^{k} \rightarrow x_{i} = x_{i} - x_{i} -$$

SUB-GDAL: Build an automation for ... L= } enc(Q_{*}^{e},h) \in L_{enc}^{map}: Q_{2}^{e} \xrightarrow{g} Q_{1}^{e} for some $Q_{2}^{e} \in Exp(Q_{2})$ s.t. heal HOW? Given an atom y Sny' of Qi, $L_{y,S,y'} := \{e_{nc}(Q_{n}^{e}, h) \in L_{e_{nc}}^{pop} : Q_{1,j}^{e}(h(y), h(y')) \models y \stackrel{S}{\rightarrow} y'\}$ "there's an S-path hay mo hay) (poly ENFA)



Define: Loz = 1 Ly (poly 2NFA)

Obs. L= } enc(Q,e,h) & Lene: Q2 = Q1 for some Q2 & Exp(Q2) s.t. heg} SUB-GOAL



Nou define

 $\mathcal{L}_{Q_2}^{\#} := \prod_{A \cup Vars(Q_1) \cup \{s\}} \left(\mathcal{L}_{Q_2} \right)$

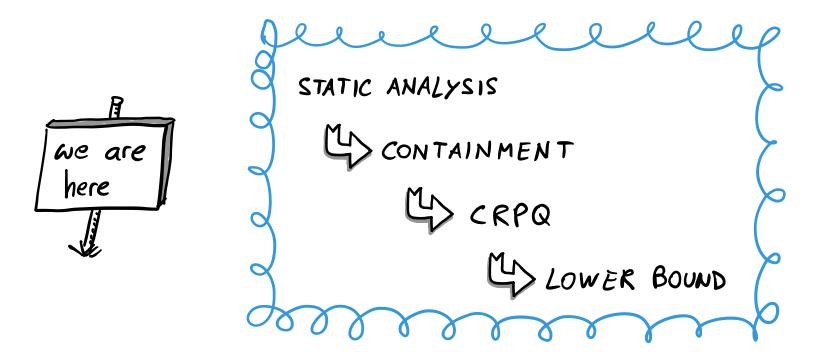
Obs. $L_{Q_1}^{\pi} = \left\{ enc(Q_1^e) : Q_1^e \in Exp(Q_1) \text{ is not a witness for } \right\}$ ron-containment }

Qn SQ2 (=> Lenc SLTQ.

Sieve vars. allowed: we consider only mappings which are identity on free vars. (assuming free(Q1) = free(Q2)). Two -wayness (C2RPQ): 2NFA can follow paths in 2 directions.

> Unions (UCRPQ) : Exp - U Exp

GDAL: E-CRPQ is Exp Space-hard



Reduction from ExpSpace-complete "Exponential Greidor Tiling problem"

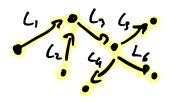
Linencie
$$\frac{1}{2} \le \frac{1}{2} \le \frac{1}{$$

that embeds into x way, it would witness on "error". \$

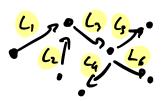
CRPQ CONTAINMENT ~D SUBCLASSES

Two natural ways to define subclasses of CRPQ:

1 Restrict the "shope" of queries

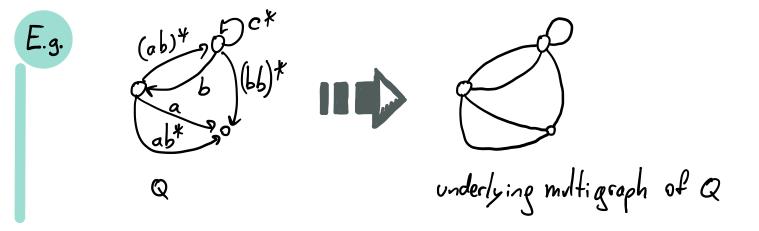


2 Restrict the regular expressions



1 Restrict the "shope" of queries

The underlying multigraph of a CRPQ Def. The one obtained by disregarding regexp's.

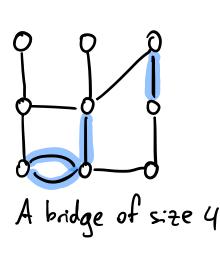


For a class 2 of mutigraphs, Def. CRPQ(C) := {QECRPQ : underlying multigraph of Q is in 2}

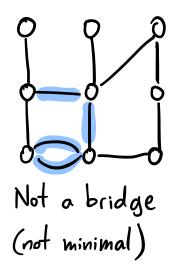
Doree-like queries E.g. \longrightarrow O **م** م We don't need to quess the variable assignment in Lenc in the alphabet, we rather guess "on the fly" using alternation. We obtain some Lay Elenc "= lenc (Qe, h) : Qe ∈ Exp(Q,), h: Vors (Q,) → Vors (Qe) } = $\{e_{nc}(Q_{i}^{e}): Q_{i}^{e} \in E_{xp}(Q_{i}) \text{ is } \frac{n + 1}{2} \text{ a citness for } reaccontainment }\}$ Poly 2 AFA polyNFA I We need to answer: III 3 complement Lenc n La, = Ø ethere's a Q1-expansion which is a witness for non-containment ?? Lan Lenc ÷ Ø exPNFA pol NFA (iff Q1 \$Q2) Innin mannen ner mannah Pxp NFA PSpace (on the fly) DIdem dor

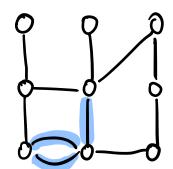
>...or any class of graphs as for as no matter where every "bridge" (= minimal cut) is of bounded size.

Def. A bridge in a multigraph is a minimal set of edges whose removal increases the number of connected components. The bridgewidth of \mathcal{G} (noted bu(g)) = max. size of bridge in \mathcal{G} The bridgewidth of a class \mathcal{C} : $bu(\mathcal{C}) = \sup_{g \in \mathcal{C}} bu(g)$

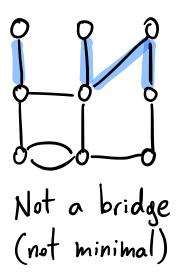


E.g.





Not a bridge (not a separator)



bu(g) > t (=> g contains of o as minor. Obs. Hence: C-CRPQ(2) is PSpace if bu(2) < k. On the other hand, if the we can find a to as a a minor of some QEZ, then we can reproduce the Exp Space lower bound.

This yields:

Thm. [Figueira '20] For any class 2 of multi-graphs under mild assumptions, the CRPQ(2) containment problem is ▶ PSpace-complete if $bw(e) < \infty$, or Exp Space-complete otherwise.

2 Restrict the regular expressions

Nery often CRPQs are used with simple regular expressions. Like 🖗 a for a e 12 Ta TA ☆ a* for a∈ A Ta* $(a_1 + \dots + a_n)^*$ for $a_1, \dots, a_n \in A$ TA*

based on the allowed types of expressions.

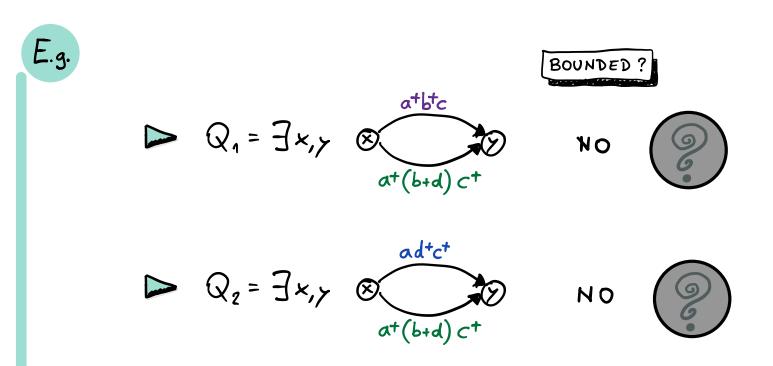
E.g. \triangleright CRPQ(T_a) = CQ \triangleright every Q \in CRPQ (T_A) is equivalent to a UCQ \triangleright CRPQ (T_a) \subseteq CRPQ ($T_a \cup T_{a*}$)

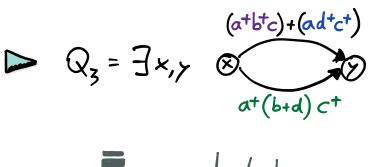
$\overline{\mathcal{F}}$	$\mathcal{F}\subseteq\mathcal{F}$	$\mathcal{F} \subseteq \mathrm{CRPQ}$	$CRPQ \subseteq \mathcal{F}$
Ta	NP (†)	NP (4.2)	Π_{2}^{p} (4.4)
TA	Π_{2}^{p} (4.3)	Π_2^p	$P\tilde{S}$ PACE (4.5)
Tau Tax	$\Pi^{ar{p}}_2$ (‡)	$\Pi_2^{ ilde p}$	PSPACE (5.3)
TA U Ta*	$\Pi^{ar{p}}_2$	$\Pi_{2}^{\tilde{p}}$ (5.2)	PSPACE (5.5)
Ta u TA*	EXPSPACE (6.1)	-	EXPSPACE
TA UTA*	EXPSPACE	EXPSPACE (\star)	EXPSPACE (\star)

CRPQs. All results are complete for the class given. We provide references in round brackets. When there is no bracket, the result follows directly from another cell in the table. (†): (Chandra and Merlin 1977), (‡): (Deutsch and Tannen 2002, fragment (l^*)), (*): (Calvanese et al. 2000)

Problem: band- Q Given: QEQ Whether: Q = Q' for some Q'EUCQ

Another way to see the problem: Remember: $Q \equiv \bigcup E$. $E \in E \times p(Q)$ Is there a finite subset $E \subseteq f_{in} E \times p(Q)$ st $Q \equiv \bigcup_{E \in E} E$?





equivalent to NIVI

Q'_3 =] x, y @ abc+adc

Let's start with an easy one : Atomic queries.

RPQ BOUNDEDNESS

Q: When is q(x,y) := x - y bounded? A: it is bounded iff L is finite! Q: When is q(x) := = = y x - - - y bounded? A : (Jhy? i) Jy x my = U Jy x my ii) Jy x may & Jy x my iff v Lyref M $i)+ii): \exists \gamma \times \stackrel{i}{\longrightarrow} \gamma \equiv \bigcup_{\substack{\omega \in L^{Pref}}} \exists \gamma \times \stackrel{\omega}{\longrightarrow} \gamma$

Cpairwise incomparable

Lemma

•
$$x \xrightarrow{L} y$$
 is bounded iff $|L| < \infty$
• $\exists x \quad x \xrightarrow{L} y$ is bounded iff $|L| < \infty$
• $\exists y \quad x \xrightarrow{L} y$ is bounded iff $|L^{\text{prefix}}| < \infty$
• $\exists y \quad x \xrightarrow{L} y$ is bounded iff $|L^{\text{suffix}}| < \infty$
• $\exists x_{iy} \quad x \xrightarrow{L} y$ is bounded iff $|L^{\text{foctor}}| < \infty$
where

$$\mathcal{L}^{\leq} \coloneqq \{\omega \in \mathcal{L} : \mathcal{A} \; \omega' \in \mathcal{L} \; \text{s.t.} \; \omega' \neq \omega \text{ and } \; \omega' \leq \omega \}$$

Lemma Checking if L is finite is PSpace-complete Proof. .. idea for the upper bound. (same ideas for Louffex Lfactor) From a NFA Hof L mo a NFA B of L'= { N.V: NEL, V 7 E} (words with proper prefix in L) Consider NFA B' for L^{pref} = Ln(L')^C (of exponential size) Check if B' is finite "on the fly", ic in NL wit 1 B'l NPSpace urt [2] u (Savitch) PSpace wit 101

Then: Thm. [Barcelo', figue: ra, Romero'19]
O Boundedness for RPQs is NL-complete
O Boundedness for CRPQs of the form
i)
$$\exists y \quad x \leq by$$
,
ii) $\exists x \quad x \leq by$, or
iii) $\exists x \quad x \leq by$, or
iii) $\exists xy \quad x \leq by$

What about the general case?

Thm. [Barcelo', figueira, Romero'19] The Boundedness problem for CRPQ is ExpSpace.complete. (also for UC2RPQ)

Reduction to limitedness for distance automata.

DISTANCE AUTOMATA ▷ NFA with 2 sorts of transitions ▷ cost of run = sum of costly transitions therein > ast of word = min. cost of accepting run A is limited if BnEN every word in lang. of I has cost < n. Limitedness problem: Is a given dist. art. limited? DPSpace-complete [Hashigushi'82; Lemg, Podolsky '91 '04]

REMEMBER $\{ eval-CRPQ(\mathcal{C}) \text{ is in PTime iff } fw(\mathcal{C}) < \infty \}$ (assuming FPT = W[1]) whith self-bops and ledges In particular: eval-CRPQ(Trees) is in PTime. Acyclic CRPQ = a CRPQ ahose underlying simple graph has no nontrivial cycles. E.g. $Q = a^{*} \int (ab)^{*} \cdots D \int (a+c)^{*}$ Q is Acyclic. > Con a query QECRPQ that does not bok like a tree be recritten into an acyclic one? Yes, it can happen!

Semantic Acyclicity problem

Problem: Sem Acyclicity - Q Given: $Q \in Q$ Whether: $Q \equiv Q'$ for some acyclic $Q' \in Q$

Thm. [Barcelo' & al '16] SemAcyclicity-CRPQ is ExpSpace-complete. (Also for UC2RPQ.)

Given a UCRPQ Q, produce a UCRPQ Q^{app}, where Q^{app} = the maximal acyclic underapproximation of Q. unique (D^{app} S R) i.e. $\begin{cases} 1 \ Q^{app} \text{ is an acyclic UCRPQ} \\ 2 \ Q^{app} \in Q \\ 3 \ \text{for every acyclic } Q' \in UCRPQ \text{ s.t. } Q' \subseteq Q \\ \text{ we have } Q' \in Q^{app}. \end{cases}$

Now, a CRPQ Q is Semantically Acyclic if $Q = Q^{app}$. Why does such Qapp exist? And how to produce it? List all the "types" in which the query can be arranged in the shape of a tree. E.g. $Q_1 \xrightarrow{a^{*}}_{(bc)^{*}} \xrightarrow{(ab)^{+}}_{(bc)^{*}}$ $Q = \underbrace{a^{4}}_{(bc)^{*}} (ab)^{*}$ only banded by many $Q_{2} = \underbrace{a^{4}}_{(bc)^{*}} (ab)^{*}$ $Q_3 \qquad \underbrace{\begin{array}{c} a^{*} \\ (bc)^{*} \end{array}}_{(bc)^{*}} \circ \underbrace{\begin{array}{c} a^{*} \\ (ab)^{*} \end{array}}_{(ab)^{*}} \end{array}$ → Defire Q^{opp} = U Qi.

RECAP: • RPQ & CRPQ : fundamental query languages for querying topology + labels of graph db's. CRPQ ≈ CQ + basic recursion
 ≈ pattern with navigation • evaluation ok, but static analysis generally hard O complexity depends on the notion of "path" we take Nice surveys on graph query languages by: ► Barceló PODS'13 ► Wood SIGMOD Rec. 12 Angles, Qutierrez ACM Comput. Surv. '08 ► Angles, Arenas, Barceló, Hogan, Reutter, Vrgoč ACM Comput. Surv. '17

