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Abstract15

We study the complexity of finding the geodetic number on subclasses of planar graphs and chordal16

graphs. A set S of vertices of a graph G is a geodetic set if every vertex of G lies in a shortest17

path between some pair of vertices of S. The Minimum Geodetic Set (MGS) problem is to18

find a geodetic set with minimum cardinality of a given graph. The problem is known to remain19

NP-hard on bipartite graphs, chordal graphs, planar graphs and subcubic graphs. We first study20

MGS on restricted classes of planar graphs: we design a linear-time algorithm for MGS on solid21

grids, improving on a 3-approximation algorithm by Chakraborty et al. (CALDAM, 2020) and22

show that MGS remains NP-hard even for subcubic partial grids of arbitrary girth. This unifies23

some results in the literature. We then turn our attention to chordal graphs, showing that MGS24

is fixed parameter tractable for inputs of this class when parameterized by their treewidth (which25

equals the clique number minus one). This implies a linear-time algorithm for k-trees, for fixed k.26

Then, we show that MGS is NP-hard on interval graphs, thereby answering a question of Ekim et27

al. (LATIN, 2012). As interval graphs are very constrained, to prove the latter result we design a28

rather sophisticated reduction technique to work around their inherent linear structure.29
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1 Introduction36

A simple undirected graph G has vertex set V (G) and edge set E(G). For two vertices37

u, v ∈ V (G), let I(u, v) denote the set of all vertices in G that lie in some shortest path38

between u and v. For a subset S of vertices of a graph G, let I(S) =
⋃
u,v∈S I(u, v). We39

say that T ⊆ V (G) is covered by S if T ⊆ I(S). A set of vertices S is a geodetic set if40

V (G) is covered by S. The geodetic number, denoted gn(G), is the minimum integer k such41

that G has a geodetic set of cardinality k. Given a graph G, the Minimum Geodetic42

Set (MGS) problem, introduced in [17], is to compute a geodetic set of G with minimum43
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cardinality. In this paper, we study the computational complexity of MGS in subclasses of44

planar and chordal graphs. MGS is a natural graph covering problem that falls in the class45

of problems dealing with the important geometric notion of convexity: see [11,22] for some46

general discussion of graph convexities. The setting of MGS is quite natural, and it can be47

applied to facility location problems such as the optimal determination of bus routes in a48

public transport network [6]. See also [10] for further applications.49

The algorithmic complexity of MGS has been studied actively. In 1993, Harari, Loukakis50

and Tsouros, in [17], proved that MGS is NP-hard. Later, Dourado et al. [8,9] strengthened51

the above result to bipartite graphs, chordal graphs (i.e. graphs with no induced cycle of52

order greater than 3) and chordal bipartite graphs (i.e. bipartite graphs with no induced53

cycle of order greater than 4). Recently, Bueno et al. [4] proved that MGS remains NP-hard54

for subcubic graphs, and Chakraborty et al. [6] proved that MGS is NP-hard for planar55

graphs. Kellerhals and Koana [19] studied the parameterized complexity of MGS, proving56

that it is unlikely to be FPT for the parameters solution size, feedback vertex set number57

and pathwidth, combined.58

On the positive side, polynomial-time algorithms to solve MGS are known for cographs [8],59

split graphs [8], ptolemaic graphs [11], block cactus graphs [10], outerplanar graphs [21] and60

proper interval graphs [10], and the problem is FPT for parameters tree-depth and feedback61

edge set number [19].62

A grid embedding of a graph is a set of points in two dimensions with integer coordinates63

such that each point in the set represents a vertex of the graph and, for each edge, the points64

corresponding to its endpoints are at Euclidean distance 1. A graph is a partial grid if it has65

a grid embedding. A graph is a solid grid if it has a grid embedding such that all interior66

faces have unit area. Chakraborty et al. [6] gave a 3-approximation algorithm for MGS on67

solid grids. We improve this as follows.68

I Theorem 1. There is a linear-time algorithm for MGS on solid grids.69

We note that researchers have designed polynomial-time algorithms for various problems70

on solid grids [12,20, 24]. Our algorithm on solid grids does not require the grid embedding71

to be part of input. This is interesting since deciding whether an input graph is a solid grid72

is an NP-complete problem [16]. To complement Theorem 1, we prove the following.73

I Theorem 2. MGS is NP-hard for subcubic partial grids of girth at least g, for any fixed74

integer g ≥ 4.75

We note that this result jointly strengthens three existing hardness results: for bipartite76

graphs [8], subcubic graphs [4] and planar graphs [6]. Moreover, partial grids are subclasses77

of many other important graph classes such as disk graphs, rectangle intersection graphs,78

etc [7, 23]. Hence, our result implies that MGS remains NP-hard on the aforementioned79

graph classes.80

An interval representation of a graph G is a collection of intervals on the real line such81

that two intervals intersect if and only if the corresponding vertices are adjacent in G. A82

graph is an interval graph if it has an interval representation. Ekim et al. [10] asked if there83

is a polynomial-time algorithm for MGS on interval graphs. We give a negative answer to84

their question (note that proper interval graphs are those interval graphs with no induced85

K1,3).86

I Theorem 3. MGS is NP-hard for interval graphs (even with no induced K1,5).87

This result is somewhat surprising, as most covering problems can be solved in polynomial88

time on interval graphs (but other distance-based problems, like Metric Dimension, are89
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NP-complete for interval graphs [13]). Our reduction (from 3-Sat) uses a quite involved90

novel technique, that we hope can be used to prove similar results for other distance-related91

problems on interval graphs. The main challenge here is to overcome the linear structure92

of the graph to transmit information across the graph. To this end, we use a sophisticated93

construction of many parallel tracks, i.e. shortest paths with intervals of (mostly) the same94

length spanning roughly the whole graph, and such that each track is shifted with respect to95

the previous one. Each track represents shortest paths that will be used by solution vertices96

from our variable and clause gadgets. In between the tracks, we are able to build our gadgets.97

We remark that MGS admits a polynomial-time algorithm on proper interval graphs by a98

nontrivial dynamic programming scheme [10]. Problems known to be NP-complete on interval99

graphs but polynomial-time solvable on proper interval graphs are very rare; two examples100

known to us are Equitable Coloring [15] and Induced Subgraph Isomorphism [18].101

To complement Theorem 3, we design an FPT algorithm for MGS on interval graphs102

when parameterized by its treewidth which equals its clique number ω minus one. Observe103

that interval graphs are also chordal graphs, i.e. graphs without induced cycles of order104

greater than 3. We use dynamic programming on tree decompositions to prove the following.105

I Theorem 4. MGS can be solved in time 22O(ω)
n for chordal graphs and in time 2O(ω)n106

for interval graphs, where n is the order of the input graph.107

This result applies to the following setting. A k-tree is a graph formed by starting with108

a complete graph on (k + 1) vertices and then repeatedly adding vertices by making each109

added vertex adjacent to exactly k neighbors forming a (k + 1)-clique. Allgeier [1] gave a110

polynomial-time algorithm to solve MGS on maximal outerplanar graphs, which is a subclass111

of 2-trees, and thus our algorithm generalizes this result (note that 2-trees are both chordal112

and planar). Since all k-trees are chordal graphs, MGS can be solved in time 22O(k)
n for113

k-trees of order n. Recall that this is unlikely to hold for partial k-trees (which are exactly114

the graphs of treewidth at most k) since MGS is W [1]-hard for parameter treewidth [19].115

Structure of the paper. In Section 2, we describe the algorithm for solid grids. In116

Section 3, we present the algorithm for chordal graphs. In Section 4, we prove hardness for117

partial grids. In Section 5, we prove hardness for interval graphs. We conclude in Section 6.118

Due to space restrictions, some of the proofs are only sketched. The complete proof details119

can be found in the full version of this paper: see [5].120

2 A linear-time algorithm for solid grids121

We here give a linear-time algorithm for MGS on solid grids and prove Theorem 1. In the122

remainder of the section, G denotes a solid grid and R its grid embedding. A path P in G is123

a corner path if (i) no vertex of P is a cut-vertex, (ii) both end-vertices of P have degree 2124

in G, and (iii) all other vertices of P have degree 3 in G. Chakraborty et al. [6] proved:125

I Lemma 5 ([6]). Any geodetic set of G contains at least one vertex from each corner path.126

Any geodetic set of G contains all vertices of degree 0 or 1. We say that a vertex v of G127

is a corner vertex if v is an end-vertex of some corner path. All corner vertices can be found128

in linear time even if the grid embedding is not provided as an input [6].129

I Definition 6. We say that u1, u2, . . . , uk forms a corner sequence if for each 1 ≤ i ≤ k−1,130

1. there is a corner path with ui and ui+1 as endpoints, and131

2. there is no corner vertex in the clockwise traversal of the boundary of R from ui to ui+1.132
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A corner sequence is maximal if it is not a subsequence of any other corner sequence. For133

a corner sequence S, let |S| denote the length of S.134

I Lemma 7. Let S be the set of all maximal corner sequences of G, and let t be the number135

of vertices of G with degree 1. Then, gn(G) ≥ t+
∑
S∈S b|S|/2c.136

Proof. Any geodetic set of G contains all vertices of degree 1 and therefore gn(G) ≥ t.137

Now, let X be any geodetic set of G and S ∈ S be an arbitrary maximal corner sequence.138

Assume that u1, u2, . . . , u|S| forms the maximal subsequence S. Lemma 5 implies that for139

each 1 ≤ j < |S|, at least one vertex of the corner path between uj and uj+1 must belong to140

X. Observe that two corner paths may have at most one corner vertex in common. Moreover,141

a corner vertex cannot be in three corner paths. Therefore, X must contain at least
⌊
|S|
2

⌋
142

vertices. Now, let P be a corner path with endpoints a, b and P ′ be a corner path with143

endpoints a′, b′. If a, b and a′, b′ are in two different maximal corner subsequences, then P144

and P ′ have no vertex in common. J145

Due to space constraints, we only sketch the proof. Let S be the set of all maximal corner146

sequences of G. For a maximal corner sequence S = u1, u2, . . . , uk let f(S) denote the set147

{u2, u4 . . . , uk−k′} where k′ = 0 if k is even and k′ = 1, otherwise. Observe that |f(S)| =
⌊
k
2
⌋
.148

Let V1 be the set of all vertices of degree 1. Now consider the sets V2 = ∪S∈Sf(S) and149

D = V1 ∪ V2. Indeed, one can prove that D is a geodetic set of G and by Lemma 7, we are150

done.151

3 An FPT algorithm for chordal graphs parameterized by clique152

number153

We now sketch the main ideas for proving Theorem 4.154

We give an FPT algorithm for chordal graphs parameterized by the clique number (which155

is also the treewidth plus 1). We explain how to improve the complexity in the case of interval156

graphs after the proof of the chordal case. Our algorithm performs dynamic programming on157

a nice tree decomposition of the input chordal graph. The main idea behind the algorithm158

is that the internal bags of the tree-decomposition (i.e. those who disconnect the tree into159

non-empty graphs) induce clique cutsets (cliques whose removal disconnects the graph).160

Then, for two vertices u, v all whose shortest paths go through some clique cutset X, their161

behaviour (with respect to MGS and X) can be described in terms of X only. This key162

observation will be enough to design our algorithm.163

Nice tree decompositions are a well-known tool for designing dynamic programming164

algorithms for graphs of bounded treewidth. In our notation, the set of vertices of the graph165

associated to a node v of the tree, its bag, is denoted Xv. A nice tree decomposition of a166

chordal graph (see [2]) is a rooted tree decomposition where the bag of every node induces a167

clique. Each node belong to one of the following types. A node is a join node if it has exactly168

two children, on the same bags as the node. An introduce node has a unique child whose169

bag contains exactly one vertex less. A forget node has a unique child whose bag contains170

exactly one more vertex. A leaf node is a leaf of the tree whose bag is empty. The root node171

is a leaf node.172

For a nice tree decomposition and a node v, we define G≤v as the subgraph of G induced173

by the vertices of the subtree of the decomposition rooted at v. If u ∈ V (G) and X is a clique,174

we say that u is close to a nonempty set of vertices A ⊆ X with respect to X, if d(u, x) = du175

when x ∈ A and d(u, x) = du + 1 when x ∈ X \ A (for some integer du). Intuitively, if X176
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is clique cutset which creates two connected components G1 and G2 when removed and if177

u ∈ V (G1) then the shortest paths from u to some vertices of the other components “tends178

to” go through vertices of A.179

Each maximal clique of a chordal graph will be associated to some node of the tree180

decomposition. Intuitively speaking, as in most tree-width based dynamic programming181

schemes, we need to show how the number of local solutions (i.e. in a bag of the tree) is182

bounded by a function of the maximal size of a bag, and how it can be computed from the183

information already computed for the node’s children. To do this, we will need the following184

lemma, which deals with how shortest paths interact with clique cutsets.185

I Lemma 8. Let X be a clique cutset of a chordal graph G. Let u, v be two vertices of G186

such that all paths from u to v intersect X. Let A (resp. B) be a nonempty set of vertices of187

X such that u (resp. v) is close to A (resp. B) with respect to X. Then, a vertex x belongs188

to I(u, v) ∩X (where I(u, v) is the set of vertices of G covered by a shortest path from u to189

v) if and only if x ∈ A ∩B or, A ∩B = ∅ and x ∈ A ∪B.190

Lemma 8 implies that to compute an optimal partial solution (i.e. a subset of vertices of191

G≤v) for a given bag Xv, it is sufficient to ”guess” for which subsets A of Xv, there will exist192

(in the future solution that will be computed for ancestors of v) a vertex y which is close to193

A with respect to Xv. Thus, roughly speaking, it will be sufficient to index our solutions by194

types depending on what subsets A of Xv are required to satisfy this property.195

More precisely, for each node v of our tree decomposition, we compute a table of partial196

solutions, indexed by types. For a node v, a type τ = (τ int, τext, τ bag, τ cov) is an element of197

{0, 1}2Xv

×{0, 1}2Xv

× 2Xv × 2Xv where 2Xv is the power set of Xv. We see τ int and τext as198

Boolean vectors indexed by the elements of 2Xv , and τ bag and τ bag, as subsets of Xv. The199

table of partial solutions of the node v, denoted as sol [v, τ ], will contain an optimal partial200

solution for Xv of the given type τ , computed using the partial solutions of the children of201

v. Our goal is to compute all such partial solutions sol [v, τ ]. The partial solution sol [v, τ ],202

must follow some additional constraints that we detail below. Note that it is possible that203

no partial solution verify those constraints. In this case, sol [v, τ ] is left empty.204

For a node v of type τ and for a set A ⊆ Xv of vertices, the Boolean τ int[A] represents205

whether there is some y ∈ sol [v, τ ] such that y is close to A with respect to Xv (“int” stands206

for “interior”). For A ⊆ Xv, the Boolean τext[A] represents whether we need to add, at a207

later step of our algorithm, some vertex y such that y is close to A with respect to Xv. Here,208

y is a vertex that needs to be added later to the solution, in the upper part of the tree (“ext”209

stands for “exterior”). By Lemma 8, it is not necessary to keep track of all such vertices, as210

it is sufficient to record which subsets of vertices of Xv they are close to. This is a crucial211

property used to construct our solution: if there exists such a y, then we can cover some212

vertices of the subtree using this y, and Lemma 8 tells us exactly how.213

The set τ cov represents the vertices of Xv that we require to cover with sol [v, τ ]. Due to214

the existence of join nodes, we might want to cover the other vertices of Xv at a later step of215

the algorithm. The set τ bag represents the vertices of Xv in sol [v, τ ], and is essentially used216

to know which solutions of the children nodes of a join node can be merged.217

To formalise the notion of types associated with a node we introduce the following218

definition which essentially asserts what our solution table for a given node must satisfy219

to be correct. To this end, we define a helper graph Hτ
v that simulates the vertices (using220

simplicial vertices) whose types are required to belong to the (future) solution.221

For a node v, let Tv denote the set of all types of v. For a fixed τ let Hτ
v denote the graph222

obtained by adding a vertex S to G≤v whenever there is a set S ⊆ Xv with τext[S] = 1,223
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and making S adjacent to each x ∈ S. Let Sτv = {S : S ⊆ Xv, τ
ext[S] = 1} denote the newly224

added vertices.225

I Definition 9. Let v be a node of T . A 4-tuple τ = (τ int, τext, τ cov, τ bag) of Tv is a “type226

associated with v” if there exists a set D ⊆ V (Hτ
v ) such that the following hold.227

(i) Sτv ⊆ D and τ bag = D ∩Xv.228

(ii) For a vertex w ∈ (V (G≤v) \ Xv) ∪ τ cov there exists a pair w1, w2 ∈ D such that w ∈229

I(w1, w2) and w1 ∈ D \ Sτv .230

(iii) For a subset A ⊆ Xv, we have τ int[A] = 1 if and only if D ∩ V (G≤v) contains a vertex231

which is close to A with respect to Xv.232

Moreover, we shall say that the set D \ Sτv is a “certificate” for (v, τ).233

The proof of Theorem 4 boils down to showing, by induction, that it is possible to construct234

certificates of minimum cardinality for each (valid) pair (v, τ) in a total of 22O(ω(G))
n time.235

This is possible as the tree decomposition contains a O(n) nodes and for each of them,236

computing our table for one particular node can be achieved in 22O(ω(G)) time. For the root237

r, there is only one type τ0 and therefore the minimum cardinality certificate for (r, τ0) is an238

optimal geodetic set of G.239

For interval graphs, the tree decomposition is a path decomposition. τ int and τext can be240

chosen in {0, 1}A, where A is a set of size O(ω), reducing the time complexity to 2O(ω)n.241

4 Hardness for partial grids242

We now prove Theorem 2. Let PG(3, g) denote the class of subcubic partial grids of girth at243

least g. Given a graph G, a subset S ⊆ V (G) is a vertex cover of G if every edge in E(G)244

has at least one end-vertex in S. The problem Minimum Vertex Cover is to compute245

a vertex cover of an input graph G with minimum cardinality. To prove Theorem 2, we246

reduce the NP-hard Minimum Vertex Cover problem on cubic planar graphs [14] to MGS247

on graphs in PG(3, g). We use a result of Valiant [25] which says that any planar graph248

G with maximum degree at most 4 has a drawing using O(|V (G)|) area where vertices are249

represented as points on the integer grid, and edges are drawn as rectilinear curves on the250

integer grid.251

Let R be an embedding of a cubic planar graph G as described above. One can ensure252

that the distance between two vertices is at least 100, and two parallel lines are at distance253

at least 100. (Any large constant would be sufficient). We call such an embedding a good254

embedding of G. A set S of vertices of a graph is an edge geodetic set if every edge lies in255

some shortest path between a pair of vertices in S. Note that an edge geodetic set is also a256

geodetic set (if there are no isolated vertices). We need the following lemma.257

I Lemma 10. Let H be a graph having a geodetic set S which is also an edge geodetic set.258

If H ′ denotes the graph obtained by replacing each edge of H with a path having k ≥ 0 edges,259

then S is a geodetic set of H ′.260

Proof. Let w ∈ V (H ′) be a new vertex that was introduced while replacing an edge e of H261

with a path. Let ue, ve ∈ S such that e belongs to a shortest path P between ue and ve. Let262

P ′ be the path obtained by replacing each edge of P by a path having k edges. Observe that263

P ′ is a shortest path between ue and ve in H ′. Hence w belongs to a shortest path between264

ue and ve in H ′. Thus S is a geodetic set of H ′. J265
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Overview of the reduction. From a cubic planar graph G with a given good embedding,266

first we construct a planar graph f1(G) having maximum degree at most 6 and girth 4.267

We show that G has a vertex cover of size k if and only if f1(G) has a geodetic set of size268

3|V (G)|+ k. Then, we construct a graph f2(G) ∈ PG(3, 42) such that the geodetic numbers269

of f2(G) and f1(G) are the same. When g > 42, we construct a graph f3(G) ∈ PG(3, g) such270

that the geodetic numbers of f3(G) and f2(G) are the same.271

Construction of f1(G). From a cubic planar graph G with a given good embedding R, we272

construct a graph f1(G) as follows. Each vertex v of G will be replaced by a vertex-gadget273

Gv which is shown in Figure 1. The edges outside of the vertex-gadgets will depend on R.274

We assume that the edges incident with any vertex v are labeled evi with 0 ≤ i < 3, in such a275

way that the numbering increases counterclockwise around v with respect to the embedding276

(thus the edge vw will have two labels: evi and ewj , for some i, j ∈ {1, 2, 3}). Consider two277

vertices v and w that are adjacent in G, and let evi and ewj be the two labels of edge vw278

in G. Add the edges (tvi , twj ), (yvi,i+1, y
w
j−1,j) and (yvi−1,i, y

w
j+1,j) (See Figure 1). All indices279

are taken modulo 3. There are no other edges in f1(G). Observe that f1(G) is planar, and280

has maximum degree at most 6 and girth 4. We have the following lemma whose proof is281

omitted due to space restrictions.282

cv tv0

xv0,1

yv0,1

zv0,1
tv1

xv1,2yv1,2

zv1,2

tv2

xv0,2

yv0,2
zv0,2

Gv

cwtw0

xw0,1

yw0,1
zw0,1

tw1

xw1,2 yw1,2

zw1,2

tw2

xw0,2

yw0,2

zw0,2

Gw

Figure 1 Illustration of vertex-gadgets in the reduction in the proof of Theorem 2. For an
edge vw, we have the vertex gadgets Gv and Gw and the dashed lines indicate edges between two
vertex-gadgets.

I Lemma 11. The graph G has a vertex cover C of size k if and only if f1(G) has a geodetic283

set of size 3|V (G)|+ k.284

Proof. We construct a geodetic set S of f1(G) of size 3|V (G)|+ k as follows. For each vertex285

v in G, we add the three vertices zvi,j (0 ≤ i < j ≤ 2) of Gv to S. If v is in C, we also add286

vertex cv to S.287

Let us show that S is indeed a geodetic set. First, we observe that in any vertex gadget288

Gv that is part of f1(G), the unique shortest path between two distinct vertices zvi,j , zvi′,j′289

has length 4 and goes through vertices yvi,j , tvk and yvi′,j′ (where {k} = {i, j} ∩ {i′, j′}). Thus,290

it only remains to show that the vertices {cv, xvi,j} (0 ≤ i < j ≤ 2) belong to some shortest291

path of vertices of S. Assume that v is a vertex of G in C. The shortest paths between cv292

and zvi,j have length 3 and one of them goes through vertex xvi,j . Thus, all vertices of Gv293

belong to some shortest path between vertices of S. Now, consider a vertex w /∈ C of G.294

Since G is a cubic planar graph, all three neighbours of w, say, w1, w2, w3 must lie in C. Let295
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cv

xv
1,2

yv1,2

tv2

tv1

xv
0,1

xv
0,2

yv0,2

yv0,1

tv0

zv1,2

zv0,2

zv0,1

av bv dv

Figure 2 Construction of f2(G).

A = {cw1 , cw2 , cw3} and Z = {zw0,1, zw1,2, zw0,2}. Observe that all vertices of Gw lie in the set296

I(A ∪ Z). Therefore, S is a geodetic set.297

For the converse, assume we have a geodetic set S′ of f1(G) of size 3|V (G)| + k. We298

will show that G has a vertex cover of size k. First of all, observe that all the 3|V (G)|299

vertices of type zvi,j are necessarily in S′, since they have degree 1. As observed earlier, the300

shortest paths between those vertices already go through all vertices of type tvi and yvi,j .301

However, no other vertex lies on a shortest path between two such vertices: these shortest302

paths always go through the boundary 6-cycle of the vertex-gadgets. Let S′0 be the set of303

the remaining k vertices of S′. These vertices are there to cover the vertices of type cv and304

xvi,j . We construct a subset C ′ of V (G) as follows: C ′ contains those vertices v of G whose305

vertex-gadget Gv contains a vertex of S′0. We claim that C ′ is a vertex cover of G. Suppose306

by contradiction that there is an edge vw of G such that neither Gv nor Gw contains any307

vertex of S′0. Without loss of generality assume that ev0 and ew0 are the two labels of the edge308

vw. Here also, the shortest paths between vertices of S always go through the boundary309

6-cycle of Gv and thus, they never include vertex xv1,2. Let a and b be the neighbours of v310

different from w. Observe that no shortest path between a vertex of Ga and a vertex of Gb311

contains the vertex xv1,2, a contradiction. Thus S′ is a vertex cover of G. J312

Construction of f2(G). An edge uv of f1(G) is an internal edge if both u and v belong to313

Gw for some w ∈ V (G). The other edges of f1(G) are external edges. We construct f2(G) in314

three steps described below.315
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1. Replace each vertex of type twi (for w ∈ V (G)) with a new edge Twi = (twi t′wi ). Replace316

each vertex of type ywi,j with a path Y wi,j = awi,j y
w
i,j b

w
i,j d

w
i,j . Replace each vertex of type317

cw with a path Cw = aw bw cw dw. (See Figure 2).318

2. Replace each internal edge between vertices having labels p, q with a new path such that319

the shortest path in the new graph between the vertices with label p, q has length 14 (this320

constant is required to get a valid good embedding).321

3. For an edge uv ∈ E(G), let Euv denote the set of three external edges between Gu and322

Gv in f1(G). Recall that R is a good embedding of G. Let luv denote the length of the323

edge uv in R. Replace all three external edges piqi ∈ Euv (1 ≤ i ≤ 3) with three new324

paths Pi (1 ≤ i ≤ 3) such that lengths of all three paths are equal and in O(luv).325

Clearly, f2(Gv) is a partial grid for each v ∈ V (G) (Figure 2). It is not difficult to verify326

that f2(G) has maximum degree 3 and girth at least 42. Let C be a vertex cover of G with327

cardinality k. We construct a geodetic set S of f2(G) of cardinality 3|V (G)|+ k as follows.328

For each vertex v in G, we add the three vertices with labels zvi,j (0 ≤ i < j ≤ 2) to S. If v329

is in C, we also add vertex cv to S. From the construction of f2(G) and using arguments330

similar to that of Lemma 11, G has a vertex cover of size k if and only if f2(G) has a geodetic331

set of size 3|V (G)|+ k. Moreover, we can prove the following.332

I Lemma 12. The set S is both a geodetic set of minimum cardinality and an edge geodetic333

set of minimum cardinality of f2(G).334

Completion of the proof of Theorem 2. If g ≤ 42, then observe that f2(G) ∈ PG(3, g)335

and from the previous discussions, we have that MGS is NP-hard for graphs in PG(3, g).336

Otherwise, we replace every edge of f2(G) with a path of length g. Call this modified337

graph f3(G), and observe that f3(G) ∈ PG(3, g). By Lemma 12, S is both a geodetic set of338

minimum cardinality and an edge geodetic set of minimum cardinality in f2(G). Now, due339

to Lemma 10, S is a geodetic set of f3(G) of cardinality 3|V (G)|+ k.340

5 Hardness for interval graphs341

We now give a sketch of the proof of Theorem 3. Let F be an instance of 3-Sat with342

variables x1, . . . , xn and clauses C1, . . . , Cm. We construct a set D of intervals in polynomial343

time such that the geodetic number of the intersection graph of D (denoted as I(D)) is at344

most 4 + 7n+ 58m if and only if F is a positive instance of 3-Sat.345

The key intuition that explains why the problem is hard on interval graphs, is that346

considering two solution vertices x, y, the structure of the covered set I(x, y) can be very347

complicated. Indeed, it can be that many vertices lying “in between” x and y in the interval348

representation, are not covered. This allows us to construct gadgets, by controlling which349

such vertices get covered, and which do not. Moreover, we can easily force some vertices350

to be part of the solution by representing them by an interval of length 0 (then, they are351

simplicial vertices), which is very useful to design our reduction. Nevertheless, implementing352

this idea turns out to be far from trivial, and to this end we need the crucial idea of tracks,353

which are shortest paths spanning a large part of the construction. Each track starts at a354

key interval called its root (representing a literal, for example) and serves as a shortest path355

from the root to the rightmost end of the construction. In a way, each track “carries the356

effect of the root” being chosen in a solution to the rest of the graph. The tracks are shifted357

in a way that no shortcut can be used going from one track to another. We are then able to358

locally modify the tracks and place our gadgets so that the track of, say, a literal, enables359
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S X1 X2 · · · Xn C1 C2
· · ·

Cm E

Figure 3 Overview of the construction. Boxes represent gadgets, and lines represent tracks.

the interval of that literal to cover an interval of a specific clause gadget (while the other360

tracks are of no use for this purpose).361

Overview of the reduction: There are four stages of our reduction. We initialise it by362

constructing a set of intervals which we call the start gadget (denoted as S). After creating363

the start gadget, we create the variable gadgets, which are placed consecutively, after the start364

gadget. For each variable xi with 1 ≤ i ≤ n, we create the variable gadget Xi. Each variable365

gadget is composed of several implication gadgets. An implication gadget IMP [¬p→ q]366

ensures (under some extra hypotheses) that if p is not chosen in a geodetic set of our367

constructed intervals, then q must be chosen. These are used to encode the behaviour of368

the variables of the 3-SAT instance: there will be two possible solutions, corresponding to369

both truth values of xi. After creating all the variable gadgets, we create the clause gadgets,370

also placed consecutively, after the variable gadgets. For each clause Cj with 1 ≤ j ≤ m,371

we construct the clause gadget Cj . Each clause gadget is composed of a covering gadget,372

several implication gadgets and several AND gadgets. The covering gadget of a clause Ci is373

denoted by COV[i]. For two intervals p and q, the corresponding AND gadget is denoted374

by AND [p, q]. Together, these gadgets will ensure that all intervals of the clause gadget375

corresponding to the clause Ci are covered by six intervals if and only if one of the intervals376

corresponding to the literals of Ci is chosen in a geodetic set. This encodes the behaviour of377

the clauses of the 3-SAT instance.378

After creating all the clause gadgets, we conclude our construction by creating the end379

gadget E, placed after all clause gadgets. See Figure 3 for a schematic diagram.380

Notations: Let S be a set of intervals with no isolated interval. For a vertex v ∈ V (I(S)), let381

v = [min(v),max(v)] denote the interval corresponding to v in S, where min(v) and max(v)382

refer the left boundary and right boundary of v, respectively. From now on, we only work with383

intervals. The rightmost neighbour of v is the interval intersecting v that has the maximum384

right boundary. For a nonempty set S of intervals, let min(S) = min{min(v) : v ∈ S},385

max(S) = max{max(v) : v ∈ S}.. For two intervals u,v we have u < v if max(u) < min(v).386

Let S be a set of intervals and u,v ∈ S. A shortest path between u,v is a shortest path387

between u,v in I(S). The set I(u,v) is the set of intervals that belongs to some shortest388

path between u,v. The geodetic set of S is analogously defined. For a subset S′ of S the389

phrase “S is covered by S′” means that S′ is a geodetic set of S. A point interval is an390

interval of the form [a, a]. A unit interval is an interval of the form [a, a + 1]. A set of391

intervals is proper if no interval contains another. A set T = {u1,u2, . . . ,ut} of intervals is a392

track if max(ui) = min (ui+1) for all 1 ≤ i < t and no ui is a point interval for all 1 ≤ i ≤ t.393

Observe that if T is a track, then I(T ) is a path. In our construction, each track T will be394

associated with a number of intervals called its roots. The set of roots of T is denoted by395

R(T ). For an intuition of how the tracks and roots are used, the track for which v is the root396

will almost entirely be a shortest path from v to any interval w to the right of v (except for397

some local shortcuts in the gadgets involving w, that can be controlled).398

I Definition 13. Let T and T ′ be two tracks such that T ∪ T ′ is a proper set of intervals.399

Then T < T ′ if max(T ) < max(T ′).400
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sq

q
rq

···

X

Tp
uTp vTp wTp

T2 t
T1 t2t1

···
X ′

Figure 4 The implication gadget IMP [¬p → q].

Let T be a set of tracks and T ∈ T . By construction each T ∪ T ′ will be a proper set401

of intervals for T, T ′ ∈ T . The phrase “the track just preceding T” refers to the track T ′402

such that T ′ < T and there is no T ′′ such that T ′ < T ′′ < T . The phrases “the track just403

following T”, “maximal track of T ” and “minimal track of T ” are analogously defined.404

Construction of S. Let ε = 1
(n+m)4 where n is the number of variables and m is the number405

of clauses. The start gadget S consists of four intervals which are defined as follows: the start406

interval o = [1, 1], uo = [1, 2], the true interval > = [1 + ε, 1 + ε] and u> = [1 + ε, 2 + ε].407

Let T1 = {uo} and T2 = {u>}. Observe that T1, T2 are tracks and T1 < T2.408

We initialize two more sets, the set T = {T1, T2} of all tracks, and the set D = S of409

all intervals. As we proceed with the construction, we shall insert more intervals in T1, T2410

while maintaining that both of them are tracks. We shall also add more tracks in T . Let411

R(T1) = {o} and R(T2) = {>}.412

Implication gadget of a root p. To construct the variable gadgets and the clause gadgets,413

we need to define the implication gadget. On Figure 4, we present the implication gadget of414

a root p which is different from o of S. The track Tp ∈ T is the track such that p ∈ R(Tp).415

Since p 6= o, Tp is not the minimal element in T . The interval q is a new interval constructed416

in the gadget for which we create a track T1. The goal of this gadget is to ensure that q is417

part of our solution when p is not.418

Construction of variable gadgets. We construct the variable gadgets sequentially and419

connect each of them to the previous one (X1 is connected to the start gadget S). Assuming420

that we have placed S,X1, . . . ,Xi−1, we construct Xi as follows. For variable xi, the gadget421

Xi consists of two implication gadgets. Let D and T be the set of intervals and tracks created422

so far. First, we construct IMP [¬>→ xi]. Observe that the sets D and T have been423

updated after the last operation. There is an interval xi in D and there is a track T ∈ T424

whose root is xi. Now we construct IMP [¬xi → xi]. Observe that after constructing all425

the variable gadgets, for each literal `, there is an interval named ` in D. Also note that426

nothing prevent us, at this point, from taking both xi and xi in our solution. This property427

will follow from the cardinality constraints on the size of the solution.428

A clause gadget consists of a covering gadget, several implication and AND gadgets.429

Construction of covering gadgets. The covering gadget COV[i] of a clause Ci is430

presented on Figure 5. In particular, this gadget is used to say that, under some extra431
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ai

bi

ci

di

covi
fi

···

Tdi

Tci

Tbi

Tai

Tfi

Figure 5 The covering gadget COV[i].

assumptions, one of ai, bi and ci is in our solution and covers the interval covi with a432

shortest path to fi.433

Construction of the AND gadget. For two previously constructed interval p and q, we434

can construct a gadget named AND [p, q]. We do not present the construction of this gadget435

as it is slightly more complicated than the previous ones. This gadget contains a number436

of new intervals. Among them is a particular interval denoted by γ(p, q). The role of this437

gadget is as follows. If p and q are in our solution then every interval of the gadget is covered.438

Otherwise we need to add an interval of the gadget to cover it, namely the interval γ (p, q)439

is sufficient to cover every interval of AND [p, q].440

Construction of Ci. We shall complete our construction of clause gadget Ci corresponding441

to the clause Ci = (`1
i , `

2
i , `

3
i ). First, we create the covering gadget COV[i] and update D, T .442

Recall from the construction of COV[i] that the intervals named ai, bi, ci exist. Also recall443

from the construction of variable gadgets that the intervals `1
i , `2

i , `3
i and `1

i , `2
i , `3

i exist. Now444

we create, in this order, IMP
[
¬ai → a′i

]
, AND

[
ai, `

1
i

]
, AND

[
a′i, `

1
i

]
, IMP

[
¬bi → b′i

]
,445

AND
[
bi, `

2
i

]
, AND

[
b′i, `

2
i

]
, IMP

[
¬ci → c′i

]
, AND

[
ci, `

3
i

]
, AND

[
c′i, `

3
i

]
where a′i, b′i446

and b′i are three new intervals constructed in the corresponding implication gadgets. The447

role of this last part is to ensure that ai and `1
i are either both in the solution or both not in448

the solution. The reality is slightly more complex but one should think of ai as a copy of `1
i449

and a′i as a copy of `1
i . The same holds for bi and ci. This completes the construction of Ci.450

Construction of end gadget. For each T ∈ T , we introduce two new intervals uT =451

[max(T ),max(T ) + 1], eT = [max(uT ),max(uT )] and define T = T ∪ {uT }, D = D ∪452

{uT , eT }T∈T . For each T ∈ T , let eT be the tail of T . The end gadget E consists of all the453

new intervals created above. The role of this gadget is to ensure that every interval belonging454

to a track is covered.455

5.1 Analysis456

First, note that there are 2 + 4n+ 35m tracks in T and npoint = 4 + 6n+ 52m point intervals457

in D. The total number of intervals in D is O((n+m)2). Remark that the point intervals458

are exactly the simplicial vertices of D, hence they belong to every geodetic set of D. Let459

T be a track in T such that T = {u1, . . . ,uk} with max(ui) = min(ui+1) (1 ≤ i ≤ k − 1).460

Observe that for each i with 1 ≤ i ≤ k − 1, ui+1 is the rightmost neighbour of ui.461

I Proposition 14. Let u and v be two intervals of D such that min(u) < min(v). The462

path u0,u1, . . . ,uk,v is a shortest path from u to v (where u = u0, ui+1 is the rightmost463

neighbour of ui for i ∈ 1 ≤ i ≤ k − 1, and uk−1 /∈ N(v), while uk ∈ N(v)). We say that464
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such a path is a good shortest path.465

An interval u is a track interval if u ∈ T for some T ∈ T . From now on, U shall denote466

the set of track intervals. Let Sp be the set of all point intervals and recall that Sp is a467

subset of every geodetic set of D. For an interval z, let T (z) denote the track T such that468

z ∈ R(T ). From our construction, one can observe that all track intervals are covered by469

pair of vertices in Sp.470

I Proposition 15. For an implication gadget IMP [¬p→ q], let T be the track with root q.471

Then q ∈ I(p, sq), rq ∈ I(o, sq).472

I Proposition 16. Consider the cover gadget COV[i] and let z ∈ {ai,di, ci}. Then z ∈473

I(di, eT (z)) and covi ∈ I(z,fi).474

I Proposition 17. Consider an AND gadget AND [p, q]. The set {p, q} ∪ Sp covers all475

vertices in AND [p, q]. The set {γ (p, q)} ∪ Sp covers all vertices in AND [p, q] where476

γ (p, q) is a vertex of AND [p, q].477

We shall show that if F is satisfiable, thenD has a geodetic set of cardinality 4+7n+58m =478

npoint + n + 6m. Let φ : {x1, x2, . . . , xn} → {0, 1} be a satisfying assignment of F (we479

also define φ(xi) = 1 − φ(xi)). Now, define the following sets. Let S1 = {xi : φ(xi) =480

1} ∪ {xi : φ(xi) = 1}}. Let S2 = ∅. Now, for each clause Ci = (`1
i , `

2
i , `

3
i ), and for each481

(v,v′, `, `) ∈
{

(ai,a
′
i, `

1
i , `

1
i ), (bi, b

′
i, `

2
i , `

2
i ), (ci, c

′
i, `

3
i , `

3
i )
}
, if φ(`) = 1, then put S2 =482

S2 ∪
{
v,γ

(
v′, `

)}
otherwise put S2 = S2 ∪ {v′,γ (v, `)}. We have that |S1 ∪ S2 ∪ Sp| =483

4 + 7n+ 58m.484

I Lemma 18. The set S is a geodetic set of D.485

Proof. As Sp ⊆ S, we know that all track intervals of D are covered. Moreover, every interval486

of the form rq is covered by Proposition 15. Consider any variable gadget Xi corresponding to487

the variable xi. Recall from construction, that Xi = IMP [¬>→ xi]∪IMP [¬xi → xi]. Due488

to Proposition 15, we have that xi ∈ I(>, eT (xi)). Hence, all intervals of IMP [¬>→ xi]489

are covered by S. Due to Proposition 15, either xi ∈ I(xi, eT (xi)) when xi ∈ S or xi ∈ S490

otherwise. The above arguments imply that all intervals in Xi are covered by S.491

Now, consider any clause Ci = (`1
i , `

2
i , `

3
i ) and recall the construction of Ci. Observe492

that there exists at least one interval z ∈ {ai, bi, ci} ∩ S. Using Proposition 16, we can493

infer that all intervals in COV[i] are covered by S. Now, consider the implication gadget494

IMP
[
¬ai → a′i

]
, note that

{
ai,a

′
i

}
∩ S 6= ∅ and therefore using Proposition 15, we can495

infer that all intervals in IMP
[
¬ai → a′i

]
are covered by S. Repeating the above arguments496

for IMP
[
¬bi → b′i

]
and IMP

[
¬ci → c′i

]
, we infer that all intervals in these implication497

gadgets are covered by S. Now, consider the AND gadget AND
[
ai, `

1
i

]
. From our definition498

of S2, it follows that either
{
ai, `

1
i

}
⊆ S or γ (p, q) ∈ S. In both cases, we can use499

Proposition 17 to show that all intervals in AND
[
ai, `

1
i

]
are covered by S. Repeating the500

above arguments for all the AND gadgets in Ci, we can show that all intervals of Ci are501

covered by S. J502

Now, we show that if the geodetic number of D is at most 4 + 7n + 58m, then F is503

satisfiable. The next proposition is key in showing this (recall that U contains all track504

vertices). It is proven by considering an interval v with minimum min(v) contradicting the505

statement.506

I Proposition 19. There is a minimum-size geodetic set S∗ of D such that S∗ ∩ U = ∅.507
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A good geodetic set of D is a geodetic set of minimum cardinality which does not contain508

any interval belonging to a track (i.e. intervals of U).509

I Proposition 20. Let S∗ be a good geodetic set of D and IMP [¬p→ q] be an implication510

gadget where p is the only root of T (p). Then, either p ∈ S∗ or q ∈ S∗.511

I Proposition 21. Let S∗ be a good geodetic set of D and let Ci = (`1
i , `

2
i , `

3
i ) be a clause.512

Then |S∗ ∩ Ci| ≥ 6. Moreover if none of `i
1, `

i
2, `

i
3 is in S∗ then |S∗ ∩ Ci| ≥ 7.513

I Lemma 22. If there is a good geodetic set of D with cardinality 4 + 7n+ 58m, then F is514

satisfiable.515

Proof. Let S∗ be a good geodetic set of D with cardinality 4 + 7n + 58m. Recall that516

a variable gadget Xi is IMP [¬>→ xi] ∪ IMP [¬xi → xi]. Due to Proposition 20, we517

know that at least one among {xi,xi} lies in S∗. Let S1 = (S∗ \ Sp) ∩ (∪1≤i≤nXi), and518

S2 = (S∗ \ Sp) ∩ (∪1≤i≤mCi). Note that S1 ∪ S2 ∪ Sp ⊆ S∗. We have |S1| ≥ n, |S3| ≥ 6m by519

Proposition 21, and |Sp| = 4 + 6n+ 52m. Therefore, |S1| = n as |S∗| ≤ 4 + 7n+ 58m. This520

means that for each 1 ≤ i ≤ n, exactly one of xi,xi lies in S∗. Based on these, we define the521

following truth assignment φ : {x1, . . . , xn} → {1, 0} of F . Define φ(xi) = 1 if xi ∈ S∗ and522

φ(xi) = 0, otherwise. Using Proposition 21 we can infer that for each 1 ≤ i ≤ m, we have523

that |S∗ ∩ Ci| = 6 and at least one of the intervals `i
1, `

i
2, `

i
3 lies in S∗. Thus, for at least one524

literal `ji , we have that φ(`ji ) = 1, as needed. J525

6 Conclusion526

We gave a polynomial-time algorithm for MGS on solid grids and proved that MGS is527

NP-hard on partial grids and interval graphs. We proved that MGS is FPT on chordal528

graphs when parameterized by the clique number.529

Are there FPT algorithms for MGS on interval graphs, chordal graphs, partial grids,530

planar graphs when parameterized by the geodetic number?531

Assuming the Exponential Time Hypothesis, our reduction implies that there cannot be532

a 2o(
√
n) time algorithm for MGS on interval graphs of order n. Are there subexponential533

time algorithms for MGS on interval graphs or chordal graphs, matching this lower bound?534

(This is the case for many graph problems for geometric intersection graphs, see [3].)535

We have seen that for every k, MGS is solvable in time f(k)n for k-trees, but such a536

running time is unlikely to be possible for partial k-trees, since MGS is known to be W[1]-hard537

for parameter tree-width [19]. However, there could still exist an XP-time algorithm for538

MGS, running in time ng(k) on partial k-trees. In fact, it is already unknown whether MGS539

is solvable in polynomial time on partial 2-trees (also known as series-parallel graphs or540

K4-minor-free graphs).541
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