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Abstract. In this paper, we study the Cartesian product of signed
graphs as defined by Germina, Hameed and Zaslavsky (2011). Here we
focus on its algebraic properties and look at the chromatic number of
some products. One of our main result is the unicity of the prime factor
decomposition of signed graphs. This leads us to present an algorithm
to compute this decomposition in quasi-linear time. Both these results
use their counterparts for ordinary graphs as building blocks. We also
study the signed chromatic number of graphs with underlying graph of
the form Pn � Pm, of products of signed paths, of products of signed
complete graphs and of products of signed cycles, that is the minimum
order of a signed graph to which they admit a homomorphism.

1 Introduction

Signed graphs were introduced by Harary in [8]. Later, the notion of homomor-
phism of signed graphs was introduced by Guenin [7], and latter studied by
Naserasr, Rollová and Sopena [14] and gave rise to a notion of signed chromatic
number χs(G, σ) of a signed graph (G, σ) defined as the smallest order of a
signed graph (H,π) to which (G, σ) admits a homomorphism.

In this paper, we are interested in the study of the Cartesian product of
signed graphs, defined by Germina, Hameed and Zaslavsky in [6]. They mainly
study the spectral properties of the Cartesian product.

The Cartesian product of two ordinary graphs G and H, noted G � H,
has been extensively studied. In 1957, Sabidussi [15] showed that χ(G � H) =
max(χ(G), χ(H)) where χ(G) is the chromatic number of the graph G. Another
notable article on the subject by Sabidussi [16] shows that every connected graph
G admits a unique prime decomposition, i.e. , there is a unique way to write a
graphG as a product of some graphs up to isomorphism of the factors. This result
was also independently discovered by Vizing in [17]. Another algebraic property,
the cancellation property, which states that if A � B = A � C, then B = C,
was proved by Imrich and Klavžar [10] using a technique of Fernández, Leighton
and López-Presa [5]. On the complexity side, the main question associated with
the Cartesian product is to be able to decompose a graph with the best possible
complexity. The complexity of this problem has been improved successively in
[4,18,3,1] to finally reach an optimal complexity of O(m) in [11] where m is the
number of edges of the graph.

Our study of the Cartesian product of signed graphs is divided in several
sections. First in section 2, we present general definitions of graph theory and



set our notation. In section 3, we present some useful results on signed graphs
and on the Cartesian product of graphs. In section 4, we present the definition of
the Cartesian product of signed graphs and give some first properties and easy
consequences of the definition. We also prove the prime decomposition theorem
for signed graphs and give an algorithm to decompose a signed product into its
factors. We study the signed chromatic number of products of complete graphs in
section 5 and products of cycles in section 6. Finally we present some concluding
remarks in section 7.

2 Definitions and notation

All graphs we consider are undirected, simple and loopless. For classical graph
definitions, we refer the reader to [2].

A homomorphism from G to H is a function ϕ from V (G) to V (H) such
that for all x, y ∈ V (G), xy ∈ E(G) implies ϕ(x)ϕ(y) ∈ E(H). In this case, we
note G→ H. Note that χ(G), the chromatic number of G (see [2]), can also be
defined as the smallest order of a graph H such that G → H. An isomorphism
from G to H is a bijection ϕ from V (G) to V (H) such that for all x, y ∈ V (G),
xy ∈ E(G) if and only if ϕ(x)ϕ(y) ∈ E(H). In this case, we note G = H.

A walk in a graph G is a sequence s0, . . . , sn of vertices of G such that
sisi+1 ∈ E(G). Its starting vertex is s0 and its end vertex is sn. A closed walk
is a walk where its starting vertex s0 and its end vertex sn are identified (i.e.
s0 = sn). If all elements of a walk are pairwise distinct, then the walk is a path.
A closed walk where all elements are pairwise distinct (except s0 and sn) is a
cycle. Suppose W is a walk s0, . . . , sn, we define the length of W by its number
of edges n (taken with multiplicity) and the order ofW by its number of vertices
(again taken with multiplicity). Note that a walk has order n+ 1 while a closed
walk has order n since we consider that s0 and sn to count for only one vertex.

A graph is connected if for all pairs of vertices u, v ∈ V (G), there is a path
between u and v. If X ⊆ V (G), then the graph G[X] is the subgraph of G
induced by X. We say that G[X] is an induced subgraph of G. The complete
graph Kp is the graph of order p such that for all pair of distinct vertices of G,
u and v, uv is an edge of Kp.

A signed graph (G, σ) is a graph G along with a function σ : E(G) →
{+1,−1} called its signature and σ(e) is the sign of the edge e ∈ E(G). The edges
in σ−1(+1) are the positive edges and the edges in σ−1(−1) are the negative edges
of (G, σ). We often write a signed graph (G, σ) as (G,Σ) in place of (G, σ) where
Σ is the set of negative edges σ−1(−1). These two ways to represent a signed
graph are equivalent and will be used interchangeably. We note K+

p (resp. K−p )
the complete graph (Kp,∅) (resp. (Kp, E(Kp))) of order p with only positive
(resp. negative) edges.

Suppose that (G, σ) is a signed graph andW is a walk s0, . . . , sn in G. We say
thatW is a balanced walk if σ(W ) = σ(s0s1)σ(s1s2) . . . σ(sisi+1) . . . σ(sn−1sn) =
1 and an unbalanced walk otherwise. Similarly, this notion can be extended to



closed walks, paths and cycles. We note an unbalanced path (resp. balanced
path) of order k by UPk (resp. BPk) and an unbalanced cycle (resp. balanced
cycle) of order k by UCk (resp. BCk). Similarly, we can define an unbalanced
(resp. balanced) path UPk (resp. BPk) of order k. A signed graph where all closed
walks are balanced (resp. unbalanced) is said to be balanced (resp. antibalanced).
Generally, for the same ordinary graph G, there are several signatures σ such
that (G, σ) is balanced. In particular it is the case for all signatures of a forest.
These notions of balanced and antibalanced where introduced by Harary in [8].

This led Zaslavsky in [19] to define the notion of equivalent signed graphs.
Two signed graphs (G, σ1) and (G, σ2) on the same underlying graph are equiv-
alent if they have the same set of balanced closed walks. Note that this is
equivalent to having the same set of balanced cycles. In this case we note
(G, σ1) ≡ (G, σ2). We also say that the two signatures σ1 and σ2 (resp. Σ1

and Σ2) are equivalent and we note σ1 ≡ σ2 (resp. Σ1 ≡ Σ2).

Let (G, σ) be a signed graph and v be a vertex of G. Switching (G, σ) at
v creates the signed graph (G, σ′) where σ′(e) = −σ(e) if e incident to v and
σ′(e) = σ(e) otherwise. One can check that the switch operation does not modify
the set of balanced closed walks as switching at a vertex of a closed walk does not
change the sign of this walk. Moreover, two signed graphs are equivalent if and
only if one can be obtained from the other by a sequence of switches [19]. This
means that we can work with the balance of closed walks or with the switches
depending on which notion is the easiest to use.

A homomorphism of a signed graph (G, σ) to a signed graph (H,π) is a homo-
morphism ϕ from G to H which maps balanced (resp. unbalanced) closed walks
of (G, σ) to balanced (resp. unbalanced) closed walks of (H,π). Alternatively,
a homomorphism from (G, σ) to (H,π) is a homomorphism from G to H such
that there exists a signature σ′ of G with σ′ ≡ σ, such that if e is an edge of
G, then π(ϕ(e)) = σ′(e). When there is a homomorphism from (G, σ) to (H,π),
we note (G, σ) −→s (H,π) and say that (G, σ) maps to (H,π). Here (H,π) is
the target graph of the homomorphism. When constructing a homomorphism,
we can always fix a given signature of the target graph as proven in [14].

The signed chromatic number χs(G, σ) of a signed graph (G, σ) is the smallest
k for which (G, σ) admits a homomorphism to a signed graph (H,π) of order k.
Alternatively, a signed graph (G, σ) admits a k-(vertex)-colouring if there exists
σ′ ≡ σ such that (G, σ′) admits a proper vertex colouring θ : V (G) → JkK
verifying that for every i, j ∈ JkK, all edges uv with θ(u) = i and θ(v) = j have
the same sign in (G, σ′). Then χs(G, σ) is the smallest k such that (G, σ) admits
a k-vertex-colouring. The two definitions are equivalent, as with any colouring
of a signed graph, we can associate a signed homomorphism which identifies the
vertices with the same colour. The homomorphism is well defined as long as the
target graph is simple, which is the case here by definition of a k-vertex-colouring.

Suppose that G and H are two ordinary graphs. The Cartesian product of G
and H is the graph G � H whose vertex set is V (G) × V (H) and where (x, y)



and (x′, y′) are adjacent if and only if x = x′ and y is adjacent to y′ in H or
y = y′ and x is adjacent to x′ in G.

A graph G is prime if there are no graphs A and B on at least two ver-
tices for which G = A � B. A decomposition D of a graph G is a multi-set
{G1, . . . , Gk} such that the Gi’s are graphs containing at least one edge and
G = G1 � · · · � Gk. A decomposition is prime if all the Gi’s are prime. The
Gi’s are called factors of G. A decomposition D is finer than another decompo-
sition D′ if D′ = {G1, . . . , Gk} and for each i there exists a decomposition Di of
Gi such that D =

⋃
iDi. Note that by definition, every decomposition is finer

than itself.
Suppose that G is a graph and D = {G1, . . . , Gk} is a decomposition of G

such that G = G1 � . . . � Gk. A coordinate system for G under decomposition
D is a bijection θ : V (G) →

∏k
i=1 V (Gi) verifying that for each vertex v of G,

the set of vertices which differ from v by the ith coordinate induces a graph
noted Gv

i called a Gi-layer which is isomorphic to Gi by the projection on the
ith coordinate. We say that a subgraph X of G is a copy of Gi if X is a Gi-layer
of G. An edge uv of G is a copy of an edge ab of Gi if θ(u) and θ(v) differ only
in their ith coordinate with ui = a and vi = b.

3 Preliminary results

The goal of this section is to present useful results on signed graphs and on the
Cartesian product.

In [19], Zaslavsky gave a way to determine if two signed graphs are equivalent
in linear time. In particular, all signed forests with the same underlying graph
are equivalent. This theorem comes from the following observation.

Lemma 1 (Zaslavsky [19]). If C is a cycle of a graph G, then the parity of the
number of negative edges of C in (G, σ) is the same in all (G, σ′) with σ′ ≡ σ.

This implies that we can separate the set of all cycles into four families
BCeven, BCodd, UCeven and UCodd, depending on the parity of the number of
negative edges (even for BCeven and BCodd and odd for UCeven and UCodd)
and the parity of the length of the cycle (even for BCeven and UCeven and odd
for BCodd and UCodd).

Theorem 1. If (C, σ) is a signed cycle with (C, σ) ∈ BCeven, then χs(C, σ) = 2.
If (C, σ) ∈ BCodd ∪ UCodd, then χs(C, σ) = 3. Finally, if (C, σ) ∈ UCeven, then
χs(C, σ) = 4.

Proof. By [13], we already have the upper bounds. A homomorphism of signed
graphs is also a homomorphism of graphs thus χ(C) ≤ χs(C, σ). If (C, σ) ≡ UC2q

suppose its signed chromatic number is less than 3. Then (C, σ) −→s (H,π)
where (H,π) is a triangle or a path. In each case, (H,π) can be switched to
be all positive or all negative. This means that (C, σ) can be switched to be all
positive or all negative, which is not the case, a contradiction. We get the desired
lower bounds in each case. ut



One of the first results on Cartesian products is a result from Sabidussi on
the chromatic number of the product of two graphs.

Theorem 2 (Sabidussi [15]). If G and H are two graphs, then χ(G � H) =
max(χ(G), χ(H)).

Following this paper, Sabidussi proved one of the most important results
on the Cartesian product: the unicity of the prime decomposition of connected
graphs. This result was also proved by Vizing.

Theorem 3 (Sabidussi [16] and Vizing [17]). Every connected graph G ad-
mits a unique prime decomposition up to the order and isomorphisms of the
factors.

Using some arguments of [5] and the previous theorem, Imrich and Klavžar
proved the following theorem.

Theorem 4 (Imrich and Klavžar in [9] and [10]). If A, B and C are three
ordinary graphs such that A � B = A � C, then B = C.

The unicity of the prime decomposition raises the question of the complexity
of finding such a decomposition. The complexity of decomposing algorithms has
been extensively studied. The first algorithm, by Feigenbaum et al. [4], had a
complexity of O(n4.5) where n is the order of the graph (its size is denoted by
m). In [18], Winkler proposed a different algorithm improving the complexity to
O(n4). Then Feder [3] gave an algorithm in O(mn) time and O(m) space. The
same year, Aurenhammer et al. [1] gave an algorithm in O(m log n) time and
O(m) space. The latest result is this time optimal algorithm.

Theorem 5 (Imrich and Peterin [11]). The prime factorization of connected
graphs can be found in O(m) time and space. Additionally a coordinate system
can be computed in O(m) time and space.

4 Cartesian products of signed graphs

We recall the definition of the signed Cartesian product.

Definition 1 ([6]). Let (G, σ) and (H,π) two signed graphs. We define the
signed Cartesian product of (G, σ) and (H,π), and note (G, σ) � (H,π), the
signed graph with vertex set V (G) × V (H). It has for positive (resp. negative)
edges the pairs {(u1, v1), (u2, v2)} such that u1 = u2 and v1v2 is a positive (resp.
negative) edge of (H,π) or such that v1 = v2 and u1u2 is a positive (resp.
negative) edge of (G, σ). The underlying graph of (G, σ) � (H,π) is the ordinary
graph G � H.

Using this definition, we can derive that this product is associative and com-
mutative.

The following result shows that it is compatible with the homomorphism of
signed graphs and in particular with the switching operation.



Theorem 6. If (G, σ), (G′, σ′), (H,π), (H ′, π′) are four signed graphs such that
(G, σ) −→s (G

′, σ′) and (H,π) −→s (H
′, π′), then:

(G, σ) � (H,π) −→s (G
′, σ′) � (H ′, π′).

Proof. By commutativity of the Cartesian product and composition of signed
homomorphisms, it suffices to show that (G, σ) � (H,π) −→s (G

′, σ′) � (H,π).
Since (G, σ) −→s (G

′, σ′), there exists a set S of switched vertices and a homo-
morphism ϕ from G to G′ such that if (G, σS) is the signed graph obtained from
(G, σ) by switching at the vertices of S, then σ′(ϕ(e)) = σS(e) for every edge e
of G. We note P = (G, σ) � (H,π) and X = {(g, h) ∈ V (G � H) | g ∈ S}. Let
P ′ be the signed graph obtained from P by switching at the vertices in X.

If (g, h)(g, h′) is an edge of P , then in P ′ this edge was either switched twice
if g ∈ S or not switched if g /∈ S. In both cases its sign did not change. If
(g, h)(g′, h) is an edge of P , then in P ′ this edge was switched twice if g, g′ ∈ S,
switched once if g ∈ S, g′ /∈ S or g /∈ S, g′ ∈ S, and not switched if g, g′ /∈ S.
In each case its new sign is σS(gg′). Thus P ′ = (G, σS) � (H,π). Now define
ϕP (g, h) = (ϕ(g), h). It is a homomorphism from G �H to G′ �H by definition.
By construction, the target graph of ϕP is (G′, σ′) � (H,π) as the edges of H
do not change and the target graph of ϕ is (G′, σ′). ut

As mentioned, we can derive the following corollary from Theorem 6.

Corollary 1. If (G, σ), (G, σ′), (H,π), (H,π′) are four signed graph such that
σ ≡ σ′ and π ≡ π′, then:

(G, σ) � (H,π) ≡ (G, σ′) � (H,π′).

One first observation is that we can apply Theorem 6 to the case of forests.

Corollary 2. If (G, σ) is a signed graph and (F, π) is a signed forest with at
least one edge, then:

χs((G, σ) � (F, π)) = χs((G, σ) � K2).

In particular, for n,m ≥ 2, χs((Pn, σ1) � (Pm, σ2)) = 2.

Note that there is a difference between considering the chromatic number of
a signed product and the chromatic number of a signed graph with the product
graph as underlying graph. For example, BC4 = K2 � K2 but χs(UC4) 6=
χs(BC4). Another example: χs(Pn � Pm) = 2, for any n,m ∈ N but the following
theorem shows that not all signed grids have chromatic number 2.

Theorem 7. If n,m are two integers and (G, σ) is a signed grid with G =
Pn � Pm, then χs(G) ≤ 6. If n or m is less than 4, then χs(G) ≤ 5. Moreover
there exist grids with signed chromatic number 5.

Due to page constraints, we do not include the proof of this result. Nonethe-
less, the proof is available in the full version of this paper which you can find on
the author’s web page. Note that we are not aware of a signed grid with signed
chromatic number six.



Question 1. What is the maximal value of χs(G, σ) when (G, σ) is a signed grid?
Is it 5 or 6?

Our goal is now to prove that each connected signed graph has a unique
prime s-decomposition. Let us start with some definitions.

Definition 2. A signed graph (G, σ) is said to be s-prime if and only if there do
not exist two signed graphs (A, πA) and (B, πB) such that (G, σ) ≡ (A, πA) � (B, πB).
An s-decomposition D of a signed connected graph (G, σ) is a multi-set {(G1, π1), . . . , (Gk, πk)}
such that:

1. the (Gi, πi)’s are signed graphs containing at least one edge and
2. (G, π) ≡ (G1, π1) � · · · � (Gk, πk).

An s-decomposition D is prime if all the (Gi, πi)’s are s-prime. The (Gi, πi)’s are
called factors of D. An s-decomposition D is finer than another s-decomposition
D′ if D′ = {(G1, π1), . . . , (Gk, πk)} and for each i ∈ J1, kK there exists an s-
decomposition Di of (Gi, πi) such that D =

⋃
iDi. Recall that, if D is finer than

D′, then we may have D = D′.
Suppose D = {G1, . . . , Gk} is a decomposition of a graph G. We say that two

copies X1 and X2 of Gi are adjacent by Gj if and only if there exists an edge ab
of Gj such that for all u ∈ V (Gi) and u1,u2 its corresponding vertices in X1 and
X2, u1u2 is a copy of ab. In other words, the subgraph induced by the vertices of
X1 and X2 is isomorphic to Gi � K2 where the edge K2 corresponds to a copy
of an edge of Gj.

Note that if G = A � B, then it is not always true that (G, σ) is the product
of two signed graphs. For example, for (G, σ) ≡ UC4, it is s-prime but C4 is not
a prime graph as C4 = K2 � K2.

We now present a useful tool to show that a signed graph is a product.

Lemma 2. If (G, σ), (A, πA) and (B, πB) are three connected signed graphs with
G = A � B, then we have (G, σ) ≡ (A, πA) � (B, πB) if and only if:

1. all copies of A are equivalent to (A, πA),
2. one copy of B is equivalent to (B, πB) and
3. for each edge e of A, for each pair of distinct copies e1,e2 of e, if these two

edges belong to the same square, then it is a BC4.

Proof. (⇒) This follows from the definition of the Cartesian product.
(⇐) We will do the following switches: switch all copies of A to have the

same signature πA.
Now we claim that all copies of B have the same signature π′B equivalent to

πB . Indeed take one edge xy of B and two copies of this edge x1y1 and x2y2
in G. Take a shortest path from x1 to x2 in the first copy of A. Now if u1,u2
are two consecutive vertices along the path and v1 and v2 are their copy in the
second copy of A, then u1u2v2v1 is a BC4 by the third hypothesis.



As u1u2 and v1v2 have the same sign by the previous switches, it must be
that u1v1 and u2v2 have the same sign. Thus all copies of an edge of B have the
same sign.

Thus (G, σ) ≡ (A, πA) � (B, π′B) ≡ (A, πA) � (B, πB) by Theorem 6. ut

One of our main results is the prime decompositions theorem.

Theorem 8. If (G, σ) is a connected signed graph and D is the prime decom-
position of G, then (G, σ) admits a unique (up to isomorphism of the factors)
prime s-decomposition Ds. Moreover if we see Ds as a decomposition, then D is
finer than Ds.

For its proof, we need the following lemma.

Lemma 3. If (G, σ) is a connected signed graph that admits two prime s-decomposition
D1 and D2, then there is a signed graph (X,πX) such that (G, σ) ≡ (X,πX) � (Y, πY )
with D1 = {(X,πX)} ∪D′1 and D2 = {(X,πX)} ∪D′2 where D′1 and D′2 are two
decompositions of (Y, πY ).

Proof. Suppose there exists a signed graph (G, σ) that admits two s-decompositions
D1 and D2. Fix an edge e, e belongs to some factor Z of the prime decomposition
of G. The edge e belongs to some copy of some signed graph (A, πA) in D1 and
to some copy of (B, πB) in D2. The graph Z is a factor of A and B by unicity
of the prime factor decomposition of G. Let X be the greatest common divisor
of A and B, we have e ∈ E(X) as e ∈ E(Z). Now G = X � Y for some graph
Y . Let us show that (G, σ) ≡ (X,πX) � (Y, πY ) for some signature πX and πY
of X and Y . We can suppose that Y 6= K1, as otherwise the result is trivial.

First we want to show that all copies of X have equivalent signatures. Take
two adjacent copies of X, if they are in different copies of A, then they are
equivalent since they represent the same part of (A, πA). If they are in the same
copy of A, then they are in different copies of B since X is the greatest common
divisor of A and B. The same argument works in this case. Thus two adjacent
copies of X are two equivalent copies of some signed graph (X,πX), and since
there is only one connected component in Y , all copies of X have equivalent
signatures.

Let πY be the signature of one copy of Y . Fix e an edge of X and X1 and
X2 two copies of X. Now consider the square containing the two copies of this
edge (if exists), if X1 and X2 are in different copies of A, then this is a BC4 by
Lemma 2 in G, otherwise it is a BC4 as they are in different copies of B.

By Lemma 2, we can conclude that (G, σ) ≡ (X,πX) � (Y, πY ).
Now suppose that A = X �W , then we can use Lemma 2 to show (A, πX) ≡

(X,πX) � (W,πW ) as all copies of X have equivalent signatures by (G, σ) ≡
(X,πX) � (Y, πY ) and all C4 between two copies of an edge are BC4 by the
same argument. As (A, πA) is s-prime this is absurd, so (X,πX) ≡ (A, πA).
Thus (X,πX) ≡ (A, πA) ≡ (B, πB) and this proves the lemma. ut

Proof of Theorem 8. Any signed graph has a prime s-decomposition by tak-
ing an s-decomposition of (G, σ) that cannot be refined. If we take a prime



s-decomposition Ds of (G, σ), then it is a decomposition of G thus the prime
decomposition of G is finer than Ds.

It is left to show that the prime s-decomposition of (G, σ) is unique. Suppose,
to the contrary, that (G, σ) is a minimal counterexample to the unicity. Thus
(G, σ) has two prime s-decompositions D1 and D2 and by Lemma 3, (G, σ) ≡
(X,πX) � (Y, πY ) with D1 = {(X,πX)} ∪D′1 and D2 = {(X,πX)} ∪D′2 where
D′1 and D′2 are two decompositions of (Y, πY ). By minimality of (G, σ), D′1 = D′2
in Y . Thus D1 = D2, a contradiction. ut

Note that Theorem 8 implies the following result.

Theorem 9. If (A, πA), (B, πB) and (C, πC) are three signed graphs with (A, πA) � (B, πB) ≡
(A, πA) � (C, πC), then (B, πB) ≡ (C, πC).

The proof of this result is exactly the same as the proof for ordinary graphs
presented in [10]. Indeed, we have all the necessary tools for the proof. The first
one is Theorem 8, the other one is the semi-ring structure of signed graphs (quo-
tiented by the equivalence relation) with the disjoint union and the Cartesian
product which follows from the definition. See [10] for more details.

In the last part of this section, we propose an algorithm to decompose con-
nected signed graphs. Decomposing a graph can be interpreted in multiple ways:
finding a decomposition, identifying which edge of G belongs to which factor, or
even better getting a coordinate system that is compatible with the decomposi-
tion. In [11], Imrich and Peterin gave an O(m) time and space (m is the number
of edges of G) algorithm for these three questions for ordinary graphs.

Our goal is to give an algorithm that does as much for signed graphs based
on their algorithm. Due to size constraints, we do not give all the details of the
algorithm but only the key ideas. Nonetheless, the proof is available in the full
version of this paper which you can find on the author’s web page.

A coordinate system for an s-decomposition D of (G, σ) is a coordinate sys-
tem for D seen as an ordinary decomposition such that there exists a fixed
equivalent signed graph (G, σ′) of (G, σ) in which all layers have the same sig-
nature. This definition is very similar to the definition of a coordinate system
for ordinary graphs but differ by the fact that we can switch our graph in order
to have a fixed signature for which all isomorphisms are tested.

The idea of the algorithm is to start by partitioning (G, σ) with the prime
decomposition of G and to merge some factors in order to get the prime s-
decomposition of (G, σ). If at one point of the algorithm we get an s-decomposition,
then we can stop as all factors must be prime by the merging rules. As we re-
marked before, UC4’s are s-prime graphs thus in an s-decomposition of a signed
graph, the UC4 are included in the prime factors, this means that finding a UC4

in (G, σ) between two distinct factors of our current decomposition implies that
these two factors (of the ordinary graph) belong to the same s-prime factor of
the signed graph.

Another reason to merge is when one factor X has two copies that do not
represent the same signed graph. Then we need to find two adjacent copies X1



and X2 of X adjacent by factor Y , and we must merge the factor X with the
factor Y . This can be tested efficiently in O(m). Note that the proof of this fact
amounts to finding a UC4 between the two factors but it is faster to keep this
remark as a separate rule. Note that it might be possible to use technics of
[12] to improve the time complexity to an optimal O(m) by avoiding to use the
second merging rule.

With these two merging rules we can prove that once no merging is needed
to be done, we get the prime s-decomposition of (G, σ).

Theorem 10. Let (G, σ) be a connected signed graph of order n and size m. If
k is the number of factors in the prime decomposition of G, then we can find in
time O(mk) = O(m log n) and space O(m) the prime s-decomposition of (G, σ)
and a coordinate system for this decomposition.

5 Signed chromatic number of Cartesian products of
complete graphs

In this section, we show a simple upper bound on the signed chromatic number
of a product and compute the signed chromatic number of some special complete
graphs. We start by defining a useful tool on signed graphs.

In what follows we define the notion of an s-redundant set in a signed graph.
Informally, it is a set of vertices such that removing them does not remove any
distance two constraint between the pairs of vertices left in the graph.

Definition 3. Let (G, σ) be a signed graph and S ⊆ V (G). We say that the set
S is s-redundant if and only if, for every x, y ∈ V (G)−S such that xy /∈ E(G),
for every z ∈ S and for all signatures σ′ with σ′ ≡ σ, in the signed graph (G, σ′),
xzy = UP3 implies that there exists w ∈ V (G)− S such that xwy = UP3.

The following proposition is an alternative formulation of the definition which
is useful in order to prove that a set is an s-redundant set.

Proposition 1. If (G, σ) is a signed graph and S ⊆ V (G), then S is s-redundant
if and only if for every z ∈ S, and every x, y ∈ N(z) \ S with xy /∈ E(G), there
exists w ∈ V (G) \ S such that xwyz is a BC4.

Proof. Take x, y ∈ V (G) − S such that xy /∈ E(G) and z ∈ S. If xzy = UP3 in
a signature σ′ ≡ σ, then x, y ∈ N(z). Now if S is a redundant set, then with the
notation of the definition xzyw is a BC4 in (G, σ′) and thus in (G, σ). If xzyw
is a BC4 and xzy is a UP3 in a given signature σ′, then xwy is also a UP3 as
xzyw is balanced. This proves the equivalence between the two statements. ut

The next theorem is the reason why we defined this notion. It allows us to
compute an upper bound of the chromatic number of a graph given the chromatic
number of one of its subgraphs. One example of utilisation of this notion is given
by the proof of Theorem 12.



Theorem 11. If (G, σ) is a signed graph and S is an s-redundant set of (G, σ),
then:

χs(G, σ) ≤ |S|+ χs((G, σ)− S).

Proof. Let ϕ be a homomorphism from (G, σ) − S to a signed graph (H,π) of
order χs((G, σ)− S). We construct a homomorphism ϕ′ of (G, σ) as follows:

ϕ′(v) =

{
ϕ(v) if v /∈ S,
v otherwise.

This homomorphism is well defined. To show this we need to prove that the
image of ϕ′ has no loops and no UC2 (i.e. is simple). It does not create loops
as ϕ does not. As ϕ is well defined, if there was a UC2, it would come from
identification of two vertices x and y in (G, σ)− S and z ∈ S such that xzy is a
UP3. By definition of S, if so, there would be a UC2 in (G, σ)−S, which cannot
be.

Thus ϕ is a well defined homomorphism. Thus χs(G, σ) ≤ |S|+χs((G, σ)−S).
ut

This result does not hold for any set S. For example, if (G, σ) = UC4 and
S = {v} is a single vertex of G, then χs(G, σ) = 4 but χs((G, σ)− v) ≤ 3.

As a direct corollary of Theorem 6, we get the following upper bound on the
chromatic number of a product of signed graphs.

Corollary 3. If (G1, σ1), . . . , (Gk, σk) are k signed graphs, then:

χs((G1, σ1) � · · · � (Gk, σk)) ≤
∏

1≤i≤k

χs(Gi, σi).

We study the product of balanced and antibalanced complete graphs in our
next result. Recall that K+

p (resp. K−q ) is the complete graph with only positive
edges (resp. negative edges).

Theorem 12. For every two integers p, q with p, q ≥ 2, we have

χs(K
+
p � K−q ) =

⌈pq
2

⌉
.

Proof. Let us note (P, π) = K+
p � K−q . First let us show that χs(P, π) ≥

⌈
pq
2

⌉
.

Suppose it is not the case. By the pigeon hole principle, there exist x, y and
z three vertices of the product that were identified. These vertices cannot be in
the same lines or columns as these induce cliques. Consider the subgraph (H,σ)
of the product composed of vertices which are in the same line as one of x, y, z
and in the same column as one of x, y and z. We have (H,σ) = K+

3 � K−3 (see
Figure 1).

By assumption x, y and z of (H,σ) are identified. By the pigeon hole princi-
ple, two of x, y and z have been switched the same way. Without loss of generality
suppose they are x and y. Then if a is one of their common neighbours in H, the
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Fig. 1: The graph (H,σ) of the proof of the Theorem 12. The big squared vertices
have been switched.

edges xa and ya are of different signs, thus x and y cannot be identified. This is
a contradiction.

Now let us show that χs(P, π) ≤
⌈
pq
2

⌉
. By symmetry suppose that p ≥ q.

We will prove this statement by induction. If p = 2, then (P, π) ≡ BC4 and
χ(P, π) = 2 ≤ 2. If p = 3 and q = 2, then (P, π) ≡ BC3 � K2 whose chromatic
number is 3 ≤ 3. If p = 3 and q = 3, then (P, π) ≡ (H,σ) from the previous part
of the proof. We have χs(P, π) = 5, indeed Figure 1 gives a 5-colouring of (P, π).

Now we can assume that p ≥ 4. Suppose the vertices of P are labelled v(i,j)
for 1 ≤ i ≤ p and 1 ≤ j ≤ q such that the labelling corresponds to the product.
Now switch all vertices in

{
v(i,j)

∣∣ i = 1
}
. Now identify v(1,j) with v(2,j+1) (which

are non adjacent) where the indices are taken modulo q to get the graph (P ′, π′).
Let S be the set of identified vertices in (P ′, π′). We want to show that S is s-
redundant to use the induction hypothesis. Take z ∈ S and x, y ∈ N(z) \S such
that xy /∈ E(P ). If xzy is an unbalanced path of length 2, then x is some v(i,j)
and y is some v(k,j+1) with i, k ≥ 3. For a = v(i,j+1), xayz is a BC4.

By Proposition 1, S is s-redundant thus χs(P, π) ≤ χs(P
′, π′) ≤ |S| +

χs((P
′, π′) − S) by Theorem 11. By induction hypothesis, as (P ′, π′) − S =

K+
p−2 � K−q , we get χs((P

′, π′)−S) ≤
⌈
(p−2)q

2

⌉
. Thus χs(P, π) ≤ q+

⌈
pq
2

⌉
−q ≤⌈

pq
2

⌉
. ut

For this product the upper bound of Corollary 3 is pq. We thus have an
example where the chromatic number is greater than half the simple upper
bound.

Question 2. What is the supremum of the set of λ ∈ [ 12 , 1] such that there exist
arbitrarily big signed graphs (G1, σ1) and (G2, σ2) such that χs((G1, σ1)� (G2, σ2)) ≥
λ · χs(G1, σ1) · χs(G2, σ2)?



(G, σ) � (H,π) BCeven BCodd UCeven UCodd

BCeven 2 3 4 3
BCodd 3 3 5 5
UCeven 4 5 4 5
UCodd 3 5 5 3

Table 1: The signed chromatic number for each type of products of two cycles.

6 Signed chromatic number of Cartesian products of
cycles

The goal of this section is to determine the chromatic number of the product
of two cycles. As there are four kind of cycles (balanced/unbalanced and of
even/odd length), we have a number of cases to analyse. In most cases some
simple observations are sufficient to conclude. For the other cases, we need the
following lemma.

Lemma 4. For every two integers p,q ∈ N:

χs(UCq � BC2p+1) > 4.

Due to size constraints we do not include the proof of Lemma 4. Nonetheless,
the proof is available in the full version of this paper which you can find on the
author’s web page. With this lemma, we can state this section’s main result.

Theorem 13. If (G, σ) and (H,π) are two signed cycles, then the signed chro-
matic number of (P, ρ) = (G, σ) � (H,π) is given by Table 1.

Proof. If G is a cycle of type BCeven (resp. BCodd, UCeven, UCodd), then G −→s

BC2 = K2 (resp. BC3, UC4, UC3). By computing the signed chromatic numbers
of the products of (G, σ) and (H,π) when they belong to {K2, BC3, UC4, UC3},
we get an upper bound for each of the product type equal to the corresponding
value in the table. These cases are represented in Figure 2. Note that to color
some graphs, we switched at some vertices.

For the lower bound, we can see that χs((G, σ)� (H,π)) ≥ max(χs(G, σ), χs(H,π)).
Note that χs(BCeven) = 2, χs(BCodd) = 3, χs(UCeven) = 4 and χs(UCodd) = 3
by Theorem 1. Lemma 4 allows us to conclude for the remaining cases as
χs(UCq � BC2p+1) = χs(UCq � UC2p+1) by symmetry between the two edge
types. ut

One further question would be to compute the signed chromatic number of an
arbitrary number of signed cycles. An interesting remark is thatBC3 �BC3 −→s

BC3. This is also true for K2, UC3 and UC4. Thus if we suppose that the length
of the cycles does not impact the result outside of their parity, the only interest-
ing case for upper bounds would be to compute χs(BC3 � UC3 � UC4).



We now give the idea of the proof of Lemma 4. The proof is by contradiction.
If χs(UCq � BC2p+1) > 4, then (P, ρ) = UCq � BC2p+1 −→s (T, θ) where (T, θ)
is a complete graph of order 4. By looking at which (T, θ) are suitable targets,
we get that (T, θ) must be the graph K4 where only one edge is negative. (P, ρ)
must be switched into another signed graph (P, ρ′) which maps to (T, θ) without
switches. By counting the negative edges in (P, ρ′) in different ways we get our
contradiction.

In particular, we use topological arguments on (P, ρ′) seen as a toroidal grid.
We look at connected components of the negative edges and create a set of closed
walks “surrounding” them. These closed walks are bipartite, this fact gives us
constraints on how they can wrap around the torus. These constraints allows us
to count the negative edges one way. The other way to count is directly given
by the definition of the product.

7 Conclusion

To conclude, in this paper, we showed a number of results on Cartesian prod-
ucts of signed graphs. We proved a number of algebraic properties: Theorem
6, Theorem 8 and Theorem 9. We also presented an algorithm to decompose a
signed graph into its factors in time O(m log n). This complexity is theoretically
not optimal, thus we can ask the question: can we decompose a signed graph in
linear time?

Finally, we computed the chromatic number of products: products of any
graphs by a signed forest, products of signed paths, signed graphs with under-
lying graph Pn � Pm, products of some signed complete graphs and products
of signed cycles. We also presented a tool called a s-redundant set that helped
us compute chromatic number of signed graphs. It would be interesting to know
how close to the simple upper bound can be the chromatic number of the prod-
uct of two signed graphs. It is not clear if there is a sequence of signed graphs
approaching this bound or if there is a constant λ < 1 such that for all signed
graphs (G,Σ) and (H,Π), χs((G,Σ) � (H,Π)) ≤ λmax(χs(G,Σ), χs(H,Π)).
It would also be interesting to compute the chromatic number of more products.
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