00000

Cartesian products and signed chromatic number

Cartesian product of signed graphs

D. Lajou¹

¹LaBRI, Université de Bordeaux, France.

CALDAM 2020 14 February 2020

Cartesian products and signed chromatic number 00000 000

Overview

Signed Graphs Signed graphs Signed Homomorphisms

Cartesian Product of signed graphs Definitions and Properties Algebraic properties

Cartesian products and signed chromatic number Firsts results Products of cycles

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
00000 00000	00000	00000 000
Signed graphs		

Overview

Signed Graphs Signed graphs Signed Homomorphis

Cartesian Product of signed graphs Definitions and Properties Algebraic properties

Cartesian products and signed chromatic number Firsts results Products of cycles

igned	Graphs	
0000	00	
00000		

Cartesian products and signed chromatic number 00000

Signed graphs

Definition

Signed	Graphs
0000	0
00000	

Cartesian products and signed chromatic number 00000

Signed graphs

Definition

Signed	Graphs	
00000	00	
00000		

Cartesian products and signed chromatic number

Signed graphs

Definition

Signed	Graphs	
0000	0	
20000		

Cartesian products and signed chromatic number

Signed graphs

Definition

Signed	Graphs	
0000	00	
20000		

Cartesian products and signed chromatic number

Signed graphs

Definition

Signed	Graphs
00000	0
00000	

Cartesian products and signed chromatic number

Signed graphs

Definition

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
00000	00000	00000 000
Signed graphs		

A signed graph (G, σ) is a graph where each edge can be either positive or negative. The function $\sigma : E(G) \to \{-1, 1\}$ is the signature of (G, σ) . Moreover we can switch at any vertex v. Switching at v consists in inverting the signs of all edges incident with v.

Definition (Equivalent signed graphs)

Two signed graphs (G, σ) and (G, σ') are **equivalent** if we can obtain one from the other by a sequence of switches. In this case we note $(G, \sigma) \equiv (G, \sigma')$.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic numb
00000	00000	00000 000
Signed graphs		

A signed graph (G, σ) is a graph where each edge can be either positive or negative. The function $\sigma : E(G) \to \{-1, 1\}$ is the signature of (G, σ) . Moreover we can switch at any vertex v. Switching at v consists in inverting the signs of all edges incident with v.

Definition (Equivalent signed graphs)

Two signed graphs (G, σ) and (G, σ') are **equivalent** if we can obtain one from the other by a sequence of switches. In this case we note $(G, \sigma) \equiv (G, \sigma')$.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic numb
00000	00000	00000 000
Signed graphs		

A signed graph (G, σ) is a graph where each edge can be either positive or negative. The function $\sigma : E(G) \to \{-1, 1\}$ is the signature of (G, σ) . Moreover we can switch at any vertex v. Switching at v consists in inverting the signs of all edges incident with v.

Definition (Equivalent signed graphs)

Two signed graphs (G, σ) and (G, σ') are **equivalent** if we can obtain one from the other by a sequence of switches. In this case we note $(G, \sigma) \equiv (G, \sigma')$.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000	00000 000
Signed graphs		

Related to Ising Model in physics.

Picture uploaded on researchgate.com by Sascha Wald.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000	00000 000
Signed graphs		

A cycle is **balanced** if it has an **even** number of negative edges. A cycle is **unbalanced** if it has an **odd** number of negative edges. $BC_k =$ a balanced cycle of length k. $UC_k =$ an unbalanced cycle of length k.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000	00000 000
Signed graphs		

A cycle is **balanced** if it has an **even** number of negative edges. A cycle is **unbalanced** if it has an **odd** number of negative edges. BC_k = a balanced cycle of length k. UC_k = an unbalanced cycle of length k.

There are four classes of cycles:

	even length	odd length
balanced	$\bigotimes^{BC_{even}} \bigtriangledown$	$\triangleright \bigcirc \lor \triangleright \diamond$
unbalanced	$\bigcirc^{UC_{even}} \bigtriangledown$	$\bigcup_{i \in V} \bigcup_{i \in V} \bigcup_{i$

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
00000	00000	00000 000
Signed graphs		

Theorem (Zaslavsky 1982)

Two signed graphs (G, σ) and (G, σ') on the same underlying graph G are equivalent if and only if they span the same set of balanced cycles.

Corollary (Zaslavsky 1982)

There is a O(m) algorithm to recognise if two signed graphs (G, σ) and (G, σ') are equivalent.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000 •00000	00000 000	0 0000 000
Signed Homomorphisms		

Overview

Signed Graphs Signed graphs Signed Homomorphisms

Cartesian Product of signed graphs Definitions and Properties Algebraic properties

Cartesian products and signed chromatic number Firsts results Products of cycles

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000 00000	00000 000	00000 000
Signed Homomorphisms		

A homomorphism φ from G to H is a mapping from the vertices of G to the vertices of H such that $\varphi(u)\varphi(v) \in E(H)$ for every edge uv of G.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000 00000	00000 000	0 0000 000
Signed Homomorphisms		

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000 00000	00000 000	00000 000
Signed Homomorphisms		

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000 00000	00000 000	00000 000
Signed Homomorphisms		

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000 00000	00000 000	00000 000
Signed Homomorphisms		

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000 00000	00000 000	00000 000
Signed Homomorphisms		

A signed homomorphism φ from (G, σ) to (H, π) is a mapping from the vertices of G to the vertices of H such that there exists $(G, \sigma') \equiv (G, \sigma)$ verifying that for every edge uv of G, $\varphi(uv) \in E(H)$ and $\sigma'(uv) = \varphi(\pi(uv))$ for every edge uv of G.

We note $(G, \sigma) \rightarrow_{s} (H, \pi)$.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000 00000	00000 000	00000 000
Signed Homomorphisms		

A signed homomorphism φ from (G, σ) to (H, π) is a mapping from the vertices of G to the vertices of H such that there exists $(G, \sigma') \equiv (G, \sigma)$ verifying that for every edge uv of G, $\varphi(uv) \in E(H)$ and $\sigma'(uv) = \varphi(\pi(uv))$ for every edge uv of G.

Definition

The signed chromatic number $\chi_s(G, \sigma)$ is the order of the smallest simple signed graph (H, π) such that $(G, \sigma) \rightarrow_s (H, \pi)$.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000 00000	00000	00000 000
Signed Homomorphism	15	

A signed homomorphism φ from (G, σ) to (H, π) is a mapping from the vertices of G to the vertices of H such that there exists $(G, \sigma') \equiv (G, \sigma)$ verifying that for every edge uv of G, $\varphi(uv) \in E(H)$ and $\sigma'(uv) = \varphi(\pi(uv))$ for every edge uv of G.

Definition

The signed chromatic number $\chi_s(G, \sigma)$ is the order of the smallest simple signed graph (H, π) such that $(G, \sigma) \rightarrow_s (H, \pi)$.

 $\chi_s = 2$

$$\chi_s(G, 1) = \chi(G),$$

$$\chi_s(T) = 2 \text{ where } T \text{ is a signed tree,}$$

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic numbe
000000 00000	00000	00000 000
Signed Homomorphism	15	

A signed homomorphism φ from (G, σ) to (H, π) is a mapping from the vertices of G to the vertices of H such that there exists $(G, \sigma') \equiv (G, \sigma)$ verifying that for every edge uv of G, $\varphi(uv) \in E(H)$ and $\sigma'(uv) = \varphi(\pi(uv))$ for every edge uv of G.

Definition

The signed chromatic number $\chi_s(G, \sigma)$ is the order of the smallest simple signed graph (H, π) such that $(G, \sigma) \rightarrow_s (H, \pi)$.

$$\chi_s(G, 1) = \chi(G),$$

$$\chi_s(T) = 2 \text{ where } T \text{ is a signed tree}$$

$$\chi_s = 2 \quad \chi_s = 4 \tag{12/30}$$

Signed Graphs
00000

Cartesian products and signed chromatic number

Signed Homomorphisms

Signed chromatic number of cycles

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
	00000	
00000	000	000
Definitions and Proper	ties	

Overview

Signed Graphs Signed graphs Signed Homomorphisms

Cartesian Product of signed graphs Definitions and Properties

Algebraic properties

Cartesian products and signed chromatic number Firsts results Products of cycles

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	0 ● 000 0000	00000 000
Definitions and Propert	ies	

The **Cartesian product** of *G* and *H* is the graph $G \square H$ whose vertex set is $V(G) \times V(H)$ and where (x, y) and (x', y') are adjacent if and only if x = x' and *y* is adjacent to *y'* in *H* or y = y' and *x* is adjacent to *x'* in *G*.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000		00000 000

Definitions and Properties

Definition (Germina, Hameed K, Zaslavsky)

The signed Cartesian product of (G, σ) and (H, π) , and note $(G, \sigma) \Box (H, \pi)$, the signed graph with vertex set $V(G) \times V(H)$. It has for positive (resp. negative) edges the pairs $\{(u_1, v_1), (u_2, v_2)\}$ such that $u_1 = u_2$ and v_1v_2 is a positive (resp. negative) edge of (H, π) or such that $v_1 = v_2$ and u_1u_2 is a positive (resp. negative) edge of (G, σ) .

Signed Graphs 000000 00000 Cartesian Product of signed graphs 0000

Cartesian products and signed chromatic number 00000

Definitions and Properties

Ex:
$$(P, \rho) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000 0000	00000 000
	-	

Definitions and Properties

If
$$(G, \sigma) \rightarrow_{s} (G', \sigma')$$
 then
 $(G, \sigma) \Box (H, \pi) \rightarrow_{s} (G', \sigma') \Box (H, \pi)$

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	0000 000	00000 000
Definitions and Properties		

If
$$(G, \sigma) \rightarrow_{s} (G', \sigma')$$
 then
 $(G, \sigma) \Box (H, \pi) \rightarrow_{s} (G', \sigma') \Box (H, \pi)$

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	0000 000	00000 000
D.C.M. I.D. M		

Definitions and Properties

If
$$(G, \sigma) \rightarrow_{s} (G', \sigma')$$
 then
 $(G, \sigma) \Box (H, \pi) \rightarrow_{s} (G', \sigma') \Box (H, \pi)$

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000 0000	00000 000
	-	

Definitions and Properties

Theorem

If
$$(G, \sigma) \rightarrow_{s} (G', \sigma')$$
 then
 $(G, \sigma) \Box (H, \pi) \rightarrow_{s} (G', \sigma') \Box (H, \pi)$

18/30

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	0000 000	00000 000
Definitions and Properties		

If
$$(G, \sigma) \rightarrow_{\mathfrak{s}} (G', \sigma')$$
 then
 $(G, \sigma) \Box (H, \pi) \rightarrow_{\mathfrak{s}} (G', \sigma') \Box (H, \pi)$

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000 0000	00000 000
Definitions and Properties		

If
$$(G, \sigma) \rightarrow_{s} (G', \sigma')$$
 then
 $(G, \sigma) \Box (H, \pi) \rightarrow_{s} (G', \sigma') \Box (H, \pi)$

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	0000 000	00000 000
Definitions and Properties		

.

If
$$(G, \sigma) \rightarrow_{s} (G', \sigma')$$
 then
 $(G, \sigma) \Box (H, \pi) \rightarrow_{s} (G', \sigma') \Box (H, \pi)$

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000 •00	00000
Algebraic properties		

Overview

Signed Graphs Signed graphs Signed Homomorphisms

Cartesian Product of signed graphs Definitions and Properties

Algebraic properties

Cartesian products and signed chromatic number Firsts results Products of cycles

00000	

Cartesian products and signed chromatic number 00000 000

Algebraic properties

A signed graph (G, σ) is *s*-prime if it cannot be written as $(G, \sigma) \equiv (A, \pi_A) \Box (B, \pi_B)$.

Theorem

If (G, σ) is a connected signed graph then

$$(G,\sigma) \equiv (G_1,\sigma_1) \Box \ldots \Box (G_k,\sigma_k)$$

where each (G_i, σ_i) is a s-prime graph and this decomposition is unique up to isomorphism and the order of the factor. Moreover the prime factor decomposition of G is finer than the one of (G, σ) .

By using replicating a proof of Imrich, Klavžar and Rall:

Theorem

If $(A, \pi_A), (B, \pi_B)$ and (C, π_C) are three signed graphs with $(A, \pi_A) \Box (B, \pi_B) \equiv (A, \pi_A) \Box (C, \pi_C)$ then $(B, \pi_B) \equiv (C, \pi_C)$.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000	00000
Algebraic properties		000

Claim

If (G, σ) is a signed graph and C is a UC₄ in (G, σ) then C is induced in one of the prime factor of (G, σ) .

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000	00000
Algebraic properties	000	000

Claim

If (G, σ) is a signed graph and C is a UC₄ in (G, σ) then C is induced in one of the prime factor of (G, σ) .

By adapting a technique from Imrich and Peterin:

Theorem

We can decompose a signed graph into its prime decomposition in time O(m).

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000	●0000 000
Firsts results		

Overview

Signed Graphs Signed graphs Signed Homomorphisms

Cartesian Product of signed graphs Definitions and Properties Algebraic properties

Cartesian products and signed chromatic number Firsts results Products of cycles

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000	0000 000
Firsts results		

Theorem

If
$$(F, \pi)$$
 is a forest then

$$\chi_{\mathfrak{s}}((G,\sigma) \Box (F,\pi)) = \chi_{\mathfrak{s}}((G,\sigma) \Box (K_2,\mathbb{1})).$$

Corollary

If
$$(F_i, \pi_i)$$
 is a forest for $i \in \{1, \dots, k\}$ then
 $\chi_s((F_1, \pi_1) \Box \dots \Box (F_k, \pi_k)) = 2$

00000

Cartesian products and signed chromatic number

Firsts results

Note that,
$$\chi_s((P_n, \sigma) \Box (P_m, \pi)) = 2.$$

Theorem

If $G = P_n \Box P_m$ and σ is any signature of G then $(G, \sigma) \rightarrow_s SPal_5^*$ and $\chi_s(G, \sigma) \leq 6$. If min $(n, m) \leq 4$ then $\chi_s(G, \sigma) \leq 5$.

The signed graph $SPal_5^*$.

A grid with $\chi_s(G,\sigma) = 5$.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000	
Firsts results		

Theorem

Let (G_i, σ_i) for $i \in \{1, \ldots, k\}$ be k signed graphs then

$$\chi_{s}((G_{1},\sigma_{1}) \Box \ldots \Box (G_{k},\sigma_{k})) \leq \prod_{i=1}^{k} \chi_{s}(G_{i},\sigma_{i}).$$

Problem

What is the smallest λ such that for all non trivial signed graphs:

$$\chi_s((G_1,\sigma_1) \Box \ldots \Box (G_k,\sigma_k)) \leq \lambda \prod_{i=1}^k \chi_s(G_i,\sigma_i)?$$

Cartesian products and signed chromatic number

Firsts results

Figure: A signed graph K of order 18 such that $\chi_s(K \Box K_2) = 25$. Thus:

$$0.69444 \simeq \frac{25}{36} \le \lambda \le 1$$

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
		00000
		● 0 0
Products of cycles		

Overview

Signed Graphs Signed graphs Signed Homomorphisms

Cartesian Product of signed graphs Definitions and Properties Algebraic properties

Cartesian products and signed chromatic number

Firsts results Products of cycles

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
		00000
		000
Products of cycles		

Theorem

If (G, σ) and (H, π) are two signed cycles then the signed chromatic number of $(P, \rho) = (G, \sigma) \square (H, \pi)$ is given by the table below.

 $source: \ https://math.stackexchange.com/questions/3139424/how-to-morph-a-2d-grid-of-saturation-and-luminance-onto-the-surface-of-a-torus$

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
00000	000	000
Products of cycles		

Theorem

If (G, σ) and (H, π) are two signed cycles then the signed chromatic number of $(P, \rho) = (G, \sigma) \Box (H, \pi)$ is given by the table below.

$(G,\sigma) \Box (H,\pi)$	BC _{even}	BC _{odd}	UC _{even}	UC _{odd}
BC _{even}	2	3	4	3
BC _{odd}	3	3	5	5
UC _{even}	4	5	4	5
UC _{odd}	3	5	5	3

Table: The signed chromatic number for each type of products of two cycles.

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000	
Products of cycles		

$(G,\sigma) \Box (H,\pi)$	BC _{even}	BC _{odd}	UC _{even}	UC _{odd}
BC _{even}	2	3	4	3
BC _{odd}	3	3	5	5
UC _{even}	4	5	4	5
UC _{odd}	3	5	5	3

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000	
Products of cycles		

$(G,\sigma) \Box (H,\pi)$	BC _{even}	BC _{odd}	UC _{even}	UC _{odd}
BC _{even}	2	3	4	3
BC _{odd}	3	3	5	5
UC _{even}	4	5	4	5
UC _{odd}	3	5	5	3

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
		000
Products of cycles		

$(G,\sigma) \Box (H,\pi)$	BC _{even}	BC _{odd}	UC _{even}	UC _{odd}
BC _{even}	2	3	4	3
BC _{odd}	3	3	5	5
UC _{even}	4	5	4	5
UC _{odd}	3	5	5	3

Lemma

For every two integers $p,q \in \mathbb{N}$:

 $\chi_s(UC_q \square BC_{2p+1}) > 4.$

Signed Graphs	Cartesian Product of signed graphs	Cartesian products and signed chromatic number
000000	00000	

Thank you for your attention.