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Signed graphs

Definition

A signed graph (G , σ) is a graph where each edge can be either
positive or negative. The function σ : E (G )→ {−,+} is the
signature of (G , σ). Moreover we can switch at any vertex v .
Switching at v consists in inverting the signs of all edges incident
with v .

+

−



4/30

Signed Graphs Cartesian Product of signed graphs Cartesian products and signed chromatic number

Signed graphs

Definition

A signed graph (G , σ) is a graph where each edge can be either
positive or negative. The function σ : E (G )→ {−,+} is the
signature of (G , σ). Moreover we can switch at any vertex v .
Switching at v consists in inverting the signs of all edges incident
with v .



4/30

Signed Graphs Cartesian Product of signed graphs Cartesian products and signed chromatic number

Signed graphs

Definition

A signed graph (G , σ) is a graph where each edge can be either
positive or negative. The function σ : E (G )→ {−,+} is the
signature of (G , σ). Moreover we can switch at any vertex v .
Switching at v consists in inverting the signs of all edges incident
with v .



4/30

Signed Graphs Cartesian Product of signed graphs Cartesian products and signed chromatic number

Signed graphs

Definition

A signed graph (G , σ) is a graph where each edge can be either
positive or negative. The function σ : E (G )→ {−,+} is the
signature of (G , σ). Moreover we can switch at any vertex v .
Switching at v consists in inverting the signs of all edges incident
with v .



4/30

Signed Graphs Cartesian Product of signed graphs Cartesian products and signed chromatic number

Signed graphs

Definition

A signed graph (G , σ) is a graph where each edge can be either
positive or negative. The function σ : E (G )→ {−,+} is the
signature of (G , σ). Moreover we can switch at any vertex v .
Switching at v consists in inverting the signs of all edges incident
with v .



4/30

Signed Graphs Cartesian Product of signed graphs Cartesian products and signed chromatic number

Signed graphs

Definition

A signed graph (G , σ) is a graph where each edge can be either
positive or negative. The function σ : E (G )→ {−,+} is the
signature of (G , σ). Moreover we can switch at any vertex v .
Switching at v consists in inverting the signs of all edges incident
with v .



5/30

Signed Graphs Cartesian Product of signed graphs Cartesian products and signed chromatic number

Signed graphs

Definition

A signed graph (G , σ) is a graph where each edge can be either
positive or negative. The function σ : E (G )→ {−1, 1} is the
signature of (G , σ). Moreover we can switch at any vertex v .
Switching at v consists in inverting the signs of all edges incident
with v .

Definition (Equivalent signed graphs)

Two signed graphs (G , σ) and (G , σ′) are equivalent if we can
obtain one from the other by a sequence of switches. In this case
we note (G , σ) ≡ (G , σ′).

≡
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Signed graphs

Related to Ising Model in physics.

Picture uploaded on researchgate.com by Sascha Wald.
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Signed graphs

Definition

A cycle is balanced if it has an even number of negative edges.
A cycle is unbalanced if it has an odd number of negative edges.
BCk = a balanced cycle of length k .
UCk = an unbalanced cycle of length k .

There are four classes of cycles:

even length odd length

balanced
BCeven BCodd

unbalanced
UCeven UCodd
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Signed graphs

Theorem (Zaslavsky 1982)

Two signed graphs (G , σ) and (G , σ′) on the same underlying
graph G are equivalent if and only if they span the same set of
balanced cycles.

Corollary (Zaslavsky 1982)

There is a O(m) algorithm to recognise if two signed graphs
(G , σ) and (G , σ′) are equivalent.
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Signed Homomorphisms

Definition

A homomorphism ϕ from G to H is a mapping from the vertices
of G to the vertices of H such that ϕ(u)ϕ(v) ∈ E (H) for every
edge uv of G.

→ →

→ →
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Signed Homomorphisms

Definition

A signed homomorphism ϕ from (G , σ) to (H, π) is a mapping
from the vertices of G to the vertices of H such that there exists
(G , σ′) ≡ (G , σ) verifying that for every edge uv of G,
ϕ(uv) ∈ E (H) and σ′(uv) = ϕ(π(uv)) for every edge uv of G.

(G , σ)

u

switch at u
≡

u

(H, π)

→

We note (G , σ)→s (H, π).
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Signed Homomorphisms

Definition

A signed homomorphism ϕ from (G , σ) to (H, π) is a mapping
from the vertices of G to the vertices of H such that there exists
(G , σ′) ≡ (G , σ) verifying that for every edge uv of G,
ϕ(uv) ∈ E (H) and σ′(uv) = ϕ(π(uv)) for every edge uv of G.

Definition

The signed chromatic number χs(G , σ) is the order of the
smallest simple signed graph (H, π) such that (G , σ)→s (H, π).

I χs(G ,1) = χ(G ),
I χs(T ) = 2 where T is a signed tree,

χs = 2 χs = 4
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Signed Homomorphisms

Signed chromatic number of cycles

even length odd length

balanced
χs(BCeven) = 2 χs(BCodd) = 3

unbalanced
χs(UCeven) = 4 χs(UCodd) = 3
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Definitions and Properties

Definition

The Cartesian product of G and H is the graph G � H whose
vertex set is V (G )× V (H) and where (x , y) and (x ′, y ′) are
adjacent if and only if x = x ′ and y is adjacent to y ′ in H or
y = y ′ and x is adjacent to x ′ in G .

H H H H H H H H H

G

G

G

G

G

G

G
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Definitions and Properties

Definition (Germina, Hameed K, Zaslavsky)

The signed Cartesian product of (G , σ) and (H, π), and note
(G , σ) � (H, π), the signed graph with vertex set V (G )× V (H).
It has for positive (resp. negative) edges the pairs
{(u1, v1), (u2, v2)} such that u1 = u2 and v1v2 is a positive (resp.
negative) edge of (H, π) or such that v1 = v2 and u1u2 is a
positive (resp. negative) edge of (G , σ).

� =
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Definitions and Properties

Ex: (P, ρ) =
30

1 2
�

01

2
�

0

1

000 100 200 300

010

020

110 210 310

320220120

001 101 201 301

011

021

111

121

211

221

311

321
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Definitions and Properties

Theorem

If (G , σ)→s (G ′, σ′) then

(G , σ) � (H, π)→s (G ′, σ′) � (H, π)

� =

u
≡

switch at u vu →
identify u and v
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Algebraic properties

A signed graph (G , σ) is s-prime if it cannot be written as
(G , σ) ≡ (A, πA) � (B, πB).

Theorem

If (G , σ) is a connected signed graph then

(G , σ) ≡ (G1, σ1) � . . . � (Gk , σk)

where each (Gi , σi ) is a s-prime graph and this decomposition is
unique up to isomorphism and the order of the factor. Moreover
the prime factor decomposition of G is finer than the one of (G , σ).

By using replicating a proof of Imrich, Klavžar and Rall:

Theorem

If (A, πA), (B, πB) and (C , πC ) are three signed graphs with
(A, πA) � (B, πB) ≡ (A, πA) � (C , πC ) then (B, πB) ≡ (C , πC ).
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Algebraic properties

Claim

If (G , σ) is a signed graph and C is a UC4 in (G , σ) then C is
induced in one of the prime factor of (G , σ).

By adapting a technique from Imrich and Peterin:

Theorem

We can decompose a signed graph into its prime decomposition in
time O(m).
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Firsts results

Theorem

If (F , π) is a forest then

χs((G , σ) � (F , π)) = χs((G , σ) � (K2,1)).

Corollary

If (Fi , πi ) is a forest for i ∈ {1, . . . , k} then

χs((F1, π1) � . . . � (Fk , πk)) = 2.
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Firsts results

Note that, χs((Pn, σ) � (Pm, π)) = 2.

Theorem

If G = Pn � Pm and σ is any signature of G then (G , σ)→s SPal
∗
5

and χs(G , σ) ≤ 6. If min(n,m) ≤ 4 then χs(G , σ) ≤ 5.

The signed graph SPal∗5 . A grid with χs(G , σ) = 5.
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Firsts results

Theorem

Let (Gi , σi ) for i ∈ {1, . . . , k} be k signed graphs then

χs((G1, σ1) � . . . � (Gk , σk)) ≤
k∏

i=1

χs(Gi , σi ).

Problem

What is the smallest λ such that for all non trivial signed graphs:

χs((G1, σ1) � . . . � (Gk , σk)) ≤ λ
k∏

i=1

χs(Gi , σi )?
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Firsts results

Figure: A signed graph K of order 18 such that χs(K � K2) = 25.

Thus:

0.69444 ' 25

36
≤ λ ≤ 1
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Products of cycles

Theorem

If (G , σ) and (H, π) are two signed cycles then the signed
chromatic number of (P, ρ) = (G , σ) � (H, π) is given by the
table below.

source: https://math.stackexchange.com/questions/3139424/how-to-morph-a-2d-grid-of-saturation-and-
luminance-onto-the-surface-of-a-torus
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Products of cycles

Theorem

If (G , σ) and (H, π) are two signed cycles then the signed
chromatic number of (P, ρ) = (G , σ) � (H, π) is given by the
table below.

source: https://math.stackexchange.com/questions/3139424/how-to-morph-a-2d-grid-of-saturation-and-
luminance-onto-the-surface-of-a-torus

(G , σ) � (H, π) BCeven BCodd UCeven UCodd

BCeven 2 3 4 3

BCodd 3 3 5 5

UCeven 4 5 4 5

UCodd 3 5 5 3

Table: The signed chromatic number for each type of products of two
cycles.



29/30

Signed Graphs Cartesian Product of signed graphs Cartesian products and signed chromatic number

Products of cycles

(G , σ) � (H, π) BCeven BCodd UCeven UCodd

BCeven 2 3 4 3

BCodd 3 3 5 5

UCeven 4 5 4 5

UCodd 3 5 5 3

Lemma

For every two integers p,q ∈ N:

χs(UCq � BC2p+1) > 4.
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Thank you for your attention.
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